$\label{eq:Gauge/Gravity Duality} Gauge/Gravity Duality \\ The \ AdS_5/CFT_4 \ Correspondence \\$

Kevin Ferreira

ETH Zürich

27th May 2013

Kevin	Ferreira	
Gauge	/Gravity	Duality

Kevin Ferreira

Gauge/Gravity Duality

Part 0: Large N Gauge Theories as String Theories

- The 't Hooft limit
- Perturbative diagram expansion
- Link with Strings

Part 0: Large N Gauge Theories as String Theories

- The 't Hooft limit
- Perturbative diagram expansion
- Link with Strings

Part I: D3-branes: Gauge Theories and Gravity Solutions

- D3-branes and gauge theories
- I Global and Gauge Symmetries Groups
- 3 Black p-branes as classical SuGra solutions

Part II: AdS_5/CFT_4 Correspondence

- Low Energy Limits
- AdS/CFT Conjecture, Duality
- Formulation
- Holography

Part II: AdS_5/CFT_4 Correspondence

- Low Energy Limits
- AdS/CFT Conjecture, Duality
- Formulation
- Holography

Part III: AdS_5/CFT_4 Correlation Functions

- General method
- 2 2-point functions and bulk-to.boundary propagators
- n-point functions and boundary-to-boundary propagators

<u>Part 0</u>

Large N Gauge Theories as String Theories

or How special limits of special theories take you to a special place

Consider U(N) Yang-Mills theory, coupling constant g_{YM} $\rightarrow\,$ Gauge fields in the adjoint representation of U(N) A^a_μ with field strength

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + ig_{YM}\left[A_{\mu}, A_{\nu}\right]$$

 $\rightarrow~$ Lagrangian density

$$\mathcal{L} = \frac{1}{g_{YM}^2} \left(Tr(F_{\mu\nu}^2) + \mathcal{L}_{matter} \right)$$

t'Hooft parameter: $\lambda \equiv g_{YM}^2 N \Longrightarrow \mathcal{L} \sim N/\lambda$

t'Hoot limit: $N \to \infty$ and λ fixed

Double Line Notation

Represent the adjoint gauge field $A_{\mu} = A^a_{\mu}T^a$ as a direct product of fundamental and anti-fundamental fields:

 $\rightarrow A^{i}_{j}$, $N \times N$ hermitian matrices

- $\rightarrow \quad U(N) \text{ propagator: } < A^{j}_{\ i}A^{l}_{\ k} > \propto \ \delta^{l}_{\ i}\delta^{j}_{\ k}$
- \rightarrow Feynman diagrams: network of double lines

Vacuum diagrams: compact closed oriented surfaces.

Planar Perturbative Expansion

Example: gluon self energy

 \rightarrow free index s taking N different values: $graph \propto {\cal O}(g_{YM}^2N),$ finite in t'Hooft limit

$$\mathcal{L} = \frac{N}{\lambda} \left(Tr(F_{\mu\nu}^2) + \mathcal{L}_{matter} \right)$$

Feynman rules:

■
$$N/\lambda$$
 for each vertex (V)
■ λ/N for each propagator (E, edge)
■ N for each loop (F, face)
 $\implies N^{V+F-E}\lambda^{E-V} = N^{\chi}\lambda^{E-V}$ for each vacuum bubble graph

Perturbative Expansion

For closed oriented surfaces, $\chi=2-2g$

 \rightarrow perturbative expansion

$$\sum_{g=0}^{\infty} N^{2-2g} f_g(\lambda) = \sum_{g=0}^{\infty} \left(\frac{1}{N}\right)^{2g} N^2 f_g(\lambda)$$

 $\rightarrow\,$ large N limit: dominated by maximal $\chi/{\rm minimal}~g$, sphere topology

 $\rightarrow\,$ correspond to the perturbative theory of closed oriented strings

In general, $S \to S + N \sum_j J_j G_j$ and $\langle \Pi_{j=1}^n G_j \rangle = (iN)^{-n} \left[\frac{\delta^n W}{\Pi_{j=1}^n \delta J_j} \right]_{J_j=0} \propto N^{2-n}$

 $\rightarrow 1/N$ as a coupling constant g_s

<u>Part I</u>

D3-branes Gauge Theories and Gravity Solutions

or How to describe something in two amazing different ways

Kevin	Ferreira	
Gauge	/Gravity	Duality

System: N parallel D3-branes in type IIB string theory in 10d

 \rightarrow low energy effective theory: U(N) gauge theory in (3+1)-dimensions with 16 supercharges.

System: N parallel D3-branes in type IIB string theory in 10d

 \rightarrow low energy effective theory: U(N) gauge theory in (3+1)-dimensions with 16 supercharges.

This gauge theory is unique: $\underbrace{\mathcal{N}=4}_{\text{Super Yang-Mills}}$ and contains:

System: N parallel D3-branes in type IIB string theory in 10d

 \rightarrow low energy effective theory: U(N) gauge theory in (3+1)-dimensions with 16 supercharges.

This gauge theory is unique: $\underbrace{\mathcal{N}=4 \text{ Super Yang-Mills}}_{\text{contains:}}$ and

- **•** λ^a_{α} , $\alpha = 1, 2$, a = 1, ..., 4 left Weyl fermionic fields
- X^i , i = 1, ..., 6 real scalar fields $SO(6) \sim SU(4)$
- $F_{\mu\nu} = \partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu} + i [A_{\mu}, A_{\nu}]$, A_{μ} gauge fields with field strength $F_{\mu\nu}$
- $D_{\mu}\lambda = \partial\lambda + i [A_{\mu}, \lambda]$, a covariant derivative.

Formulation of $\mathcal{N} = 4$ SYM

,

The Lagrangian is completely settled by supersymmetry:

$$\mathcal{L} = Tr\left(-\frac{1}{2g^2}F_{\mu\nu}F^{\mu\nu} + \frac{\theta_I}{8\pi^2}F_{\mu\nu}\tilde{F}^{\mu\nu} - \sum_a i\bar{\lambda}^a\bar{\sigma}^\mu D_\mu\lambda_a - \sum_i D_\mu X^i D^\mu X_i + \sum_{a,b,i} gC_i^{ab}\lambda_a \left[X^i,\lambda_b\right] + \sum_{a,b,i} g\bar{C}_{iab}\bar{\lambda}^a \left[X^i,\bar{\lambda}_b\right] + \frac{g^2}{2}\sum_{i,j} \left[X^i,X^j\right]^2\right)$$

$$[\lambda^a] = \frac{3}{2}$$
 $[X^i] = 1$ $[A_\mu] = 1,$ $[g_{YM}] = 0$

 \implies renormalisable theory Quantum level: $\mathcal{N} = 4 \ SYM$ exhibits no UV divergences! Also, it preserves all its symmetries!

Kevin Ferreira

Symmetries of $\mathcal{N} = 4$ SYM

■ R-symmetry
$$SO(6) \sim SU(4)$$
, with generators $T^A, \ A = 1, ..., 15$

• scale invariance + Poincaré invariance \rightarrow conformal symmetry in 4d SO(2,4) with generators $P_{\mu}, L_{\mu\nu}, D, K_{\mu}$

 \blacksquare even more, $\mathcal{N}=4$ Poincaré Supersymmetry + conformal invariance

 \rightarrow superconformal symmetry SU(2,2|4), with superalgebra

$$\begin{pmatrix} P_{\mu}, K_{\mu}, L_{\mu\nu}, D & Q^a_{\alpha}, \bar{S}^a_{\dot{\alpha}} \\ \hline & & & \\ \hline & & & \\ \hline & \bar{Q}_{\dot{\alpha}a}, S_{\alpha a} & T^A \end{pmatrix}$$

Now for something completely different.

D3-branes are massive charged objects in a gravity theory: string theory!

What happens when taking the same low energy limit, and describe it with string theory?

Now for something completely different.

D3-branes are massive charged objects in a gravity theory: string theory!

What happens when taking the same low energy limit, and describe it with string theory?

 $\sim\,$ Replace D-branes by a non-trivial geometry, as in everyday life physics!

Black p-Branes

Again, type IIB string theory in 10-d.

Low energy effective action

$$S = \frac{1}{(2\pi)^7 \alpha'^4} \int d^{10}x \sqrt{-g} \left(e^{-2\phi} (R + 4(\nabla\phi)^2) - \frac{2}{(5)!} F_5^2 \right)$$

Again, type IIB string theory in 10-d.

Low energy effective action

$$S = \frac{1}{(2\pi)^7 \alpha'^4} \int d^{10}x \sqrt{-g} \left(e^{-2\phi} (R + 4(\nabla\phi)^2) - \frac{2}{(5)!} F_5^2 \right)$$

 \rightarrow Look for solution as 3-d electric source of charge N for A_4 .

$$N = \int_{S^5} *F_5$$

Require desirable symmetries: ISO(1,3) in 3-d along D3-brane, and spherical symmetry SO(6) in 6 transversal directions.

Classical SuGra Solution

In 4-d Gravity with point-like object: Reissner-Nördstrom black hole solution

In 10-d SuperGravity with 3-d object: not so easy...

In 4-d Gravity with point-like object: Reissner-Nördstrom black hole solution

In 10-d SuperGravity with 3-d object: not so easy...

Extremal Solution:

$$ds^{2} = \frac{1}{\sqrt{H(r)}} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + \sqrt{H(r)} (dr^{2} + r^{2} d\Omega_{5}^{2})$$

with $H(r) = 1 + \frac{R^{4}}{r^{4}}$ $R^{4} = 4\pi g_{s} \alpha'^{2} N$

In 4-d Gravity with point-like object: Reissner-Nördstrom black hole solution

In 10-d SuperGravity with 3-d object: not so easy...

Extremal Solution:

$$ds^{2} = \frac{1}{\sqrt{H(r)}} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + \sqrt{H(r)} (dr^{2} + r^{2} d\Omega_{5}^{2})$$
with $H(r) = 1 + \frac{R^{4}}{r^{4}}$

$$R^{4} = 4\pi g_{s} \alpha'^{2} N$$

This description is appropriate at low curvature of the 3-brane geometry:

$$R \gg l_s \implies 1 \ll g_s N \ll N$$

Duality coming from this double-description:

- $\blacksquare g_sN \gg 1:$ use the SuGra solution
- $g_s N \ll 1$: use perturbative string theory

Duality coming from this double-description:

- $\blacksquare g_sN \gg 1:$ use the SuGra solution
- $g_s N \ll 1$: use perturbative string theory

Take the near horizon limit: $r \ll R$

$$ds^{2} = \frac{r^{2}}{R^{2}} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + R^{2} \frac{dr^{2}}{r^{2}} + R^{2} d\Omega_{5}^{2}$$
$$R^{4} = 4\pi g_{s} \alpha'^{2} N$$

Claim: this is the metric of the product space $AdS_5 \times S^5$!

Duality coming from this double-description:

- $\blacksquare g_sN \gg 1:$ use the SuGra solution
- $g_s N \ll 1$: use perturbative string theory

Take the near horizon limit: $r \ll R$

$$ds^{2} = \frac{r^{2}}{R^{2}} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + R^{2} \frac{dr^{2}}{r^{2}} + R^{2} d\Omega_{5}^{2}$$
$$R^{4} = 4\pi g_{s} \alpha'^{2} N$$

Claim: this is the metric of the product space $AdS_5 \times S^5$!

Take a deep breath:

N D3-branes can consistently be described in a low energy limit by

Duality coming from this double-description:

- $\blacksquare g_sN \gg 1:$ use the SuGra solution
- $g_s N \ll 1$: use perturbative string theory

Take the near horizon limit: $r \ll R$

$$ds^{2} = \frac{r^{2}}{R^{2}} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + R^{2} \frac{dr^{2}}{r^{2}} + R^{2} d\Omega_{5}^{2}$$
$$R^{4} = 4\pi g_{s} \alpha'^{2} N$$

Claim: this is the metric of the product space $AdS_5 \times S^5$!

Take a deep breath:

N D3-branes can consistently be described in a low energy limit by $\hfill\blacksquare$ a U(N) gauge theory on the world-volume

Duality coming from this double-description:

- $\blacksquare g_sN \gg 1:$ use the SuGra solution
- $g_s N \ll 1$: use perturbative string theory

Take the near horizon limit: $r \ll R$

$$ds^{2} = \frac{r^{2}}{R^{2}} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + R^{2} \frac{dr^{2}}{r^{2}} + R^{2} d\Omega_{5}^{2}$$
$$R^{4} = 4\pi g_{s} \alpha'^{2} N$$

Claim: this is the metric of the product space $AdS_5 \times S^5$!

Take a deep breath:

N D3-branes can consistently be described in a low energy limit by

- a U(N) gauge theory on the world-volume
- a string theory in a background which near the horizon is $AdS_5 \times S^5$ with radius $R^4 = 4\pi g_s \alpha'^2 N$

$\frac{\text{Part II}}{\text{AdS}_5/\text{CFT}_4 \text{ Correspondence}}$

or How to get to the point

Low Energy Limit Action

N parallel D3-branes

Low Energy Limit Action

N parallel D3-branes

String theory:

- \rightarrow closed strings, excitations of empty space
- $\rightarrow~$ open strings ending on D-branes, excitations of the D-branes

N parallel D3-branes

String theory:

- $\rightarrow~$ closed strings, excitations of empty space
- $\rightarrow~$ open strings ending on D-branes, excitations of the D-branes

Take low energy limit, so that only massless states survive:

 $\rightarrow~$ closed strings states: give type IIB SuGra

 $\rightarrow~$ open strings states: give $\mathcal{N}=4~U(N)~SYM$ up to higher derivative terms

$$\implies$$
 $S = S_{bulk} + S_{brane} + S_{int}$

N parallel D3-branes

String theory:

- $\rightarrow~$ closed strings, excitations of empty space
- $\rightarrow~$ open strings ending on D-branes, excitations of the D-branes

Take low energy limit, so that only massless states survive:

 $\rightarrow~$ closed strings states: give type IIB SuGra

 $\rightarrow~$ open strings states: give $\mathcal{N}=4~U(N)~SYM$ up to higher derivative terms

$$\implies$$
 $S = S_{bulk} + S_{brane} + S_{int}$

Take $\alpha' \to 0$, g_s , N fixed: $\rightarrow S_{int}$ vanishes $\rightarrow S_{bulk}$ becomes free gravity $\rightarrow S_{brane}$ becomes pure $\mathcal{N} = 4 U(N) SYM$

Low Energy Limit Description

- \implies Two decoupled systems:
 - 10d free gravity in the bulk
 - 4d gauge theory in the branes

Low Energy Limit Description

- \implies Two decoupled systems:
 - 10d free gravity in the bulk
 - 4d gauge theory in the branes

Now replace the N D3-branes by the geometry we found, and take the low energy limit:
Low Energy Limit Description

- \implies Two decoupled systems:
 - 10d free gravity in the bulk
 - 4d gauge theory in the branes

Now replace the N D3-branes by the geometry we found, and take the low energy limit:

Energies are redshifted by a factor $1/\left(1+\frac{R^4}{r^4}\right)^{\frac{1}{4}}$

- \rightarrow states of any mass close to the horizon r = 0 will survive
- ightarrow massless states away from the horizon also survive
 - ightarrow these two sets of states are decoupled from each other

- \implies Two decoupled systems:
 - 10d free gravity in the bulk
 - near horizon full theory

- \implies Two decoupled systems:
 - 10d free gravity in the bulk
 - near horizon full theory

Remember: near horizon region is $AdS_5 \times S^5$

Conclusion:

In both approaches, we get two decoupled theories:

10d free gravity in the bulk	10d free gravity in the bulk
4d gauge theory in the branes	near horizon full theory

Identify the two approaches and be forced to make the conjecture:

 $\mathcal{N} = 4 \ U(N) \ SYM$ in flat 3+1 dimensions

is "equivalent" to

Type IIB superstring theory on $AdS_5 \times S^5$

String theory

- AdS₅ has isometry group SO(2,4)
- S^5 has rotational symmetry SO(6)

 $\mathcal{N} = 4 \,\, \mathrm{SYM}$

- 4d conformal symmetry $\simeq SO(2,4)$
- it also has global symmetry SO(6)

In fact, the whole supersymmetric group match on both sides

 $\rightarrow\,$ both sides of the conjecture have the same spacetime symmetries!

Regimes

Remember:

$$R^4 = 4\pi g_s \alpha'^2 N$$

Regimes

Remember:

$$R^4 = 4\pi g_s \alpha'^2 N$$

A perturbative analysis in the YM part can be trusted when

$$g_{YM}^2 N \sim g_s N \sim \frac{R^4}{l_s^4} \ll 1 \quad \mbox{ Perturbative FT Regime}$$

Remember:

$$R^4 = 4\pi g_s \alpha'^2 N$$

A perturbative analysis in the YM part can be trusted when

$$g_{YM}^2 N \sim g_s N \sim \frac{R^4}{l_s^4} \ll 1 \quad \mbox{ Perturbative FT Regime}$$

The classical gravity description can be trusted when

$$\frac{R^4}{l_s^4} \sim g_s N \sim g_{YM}^2 N \gg 1 \qquad {\rm Gravity \; Regime}$$

 \implies perfectly incompatible: duality

Boundary Considerations

<u>Problem</u>: how to link AdS_5 fields to CFT₄ operators?

<u>Problem</u>: how to link AdS_5 fields to CFT₄ operators?

<u>Fact</u>: AdS space has a boundary; any Field Theory on AdS needs boundary conditions on its fields to be solvable. The conformal boundary of AdS_5 is compactified 4d Minkowski space \mathbb{M}^4 .

The CFT₄ lives precisely on \mathbb{M}^4 .

<u>Problem</u>: how to link AdS_5 fields to CFT₄ operators?

<u>Fact</u>: AdS space has a boundary; any Field Theory on AdS needs boundary conditions on its fields to be solvable. The conformal boundary of AdS_5 is compactified 4d Minkowski space \mathbb{M}^4 .

The CFT₄ lives precisely on \mathbb{M}^4 .

<u>Solution</u>: for an operator O in CFT₄, add to the Lagrangian

$$\int d^4x \ \phi_0(\vec{x}) O(\vec{x})$$

where a field $\phi(\vec{x}, z)$ in AdS_5 has boundary condition

$$\phi(\vec{x}, z)|_{z=0} = \phi_0(\vec{x})$$

Formulation

 \implies value of $\phi(\vec{x}, z)$ on the boundary act as source to operator O.

Formulation

 \implies value of $\phi(\vec{x}, z)$ on the boundary act as source to operator O.

So, naturally propose:

 $\langle e^{\int d^4x \ \phi_0(\vec{x})O(\vec{x})} \rangle_{CFT} \stackrel{\text{AdS/CFT}}{=} Z_{AdS}^{string} \left[\phi(\vec{x},z) |_{z=0} = \phi_0(\vec{x}) \right]$

which matches

the generating functional of *O*-correlation functions with the full partition function of string theory (in AdS) with boundary condition.

This is the way correlation functions may be computed.

<u>Note</u>: The coupling requires field ϕ and operator O to have the same quantum numbers of the theories' symmetry group!

Take a Breath: what have we done?

Take a Breath: what have we done?

I N D3-branes in string theory + low energy limit \rightarrow decoupled system with states in

4d $\mathcal{N} = 4 \ SU(N) \ SYM \otimes$ free 10d SuGra

I N D3-branes in string theory + low energy limit \rightarrow decoupled system with states in

4d $\mathcal{N} = 4 \ SU(N) \ SYM \otimes$ free 10d SuGra

2 N D3-branes as geometry + low energy limit \rightarrow decoupled system with states in

I N D3-branes in string theory + low energy limit \rightarrow decoupled system with states in

4d $\mathcal{N} = 4 \ SU(N) \ SYM \otimes$ free 10d SuGra

2 N D3-branes as geometry + low energy limit \rightarrow decoupled system with states in

Full type IIB string theory in $AdS_5 \times S^5 \otimes$ free 10d SuGra

Identify the two views, conjecture equivalence

I N D3-branes in string theory + low energy limit \rightarrow decoupled system with states in

4d $\mathcal{N} = 4 \ SU(N) \ SYM \otimes$ free 10d SuGra

2 N D3-branes as geometry + low energy limit \rightarrow decoupled system with states in

- Identify the two views, conjecture equivalence
- Remark the equivalence as a duality: appreciate it as powerful; question how to test it

■ N D3-branes in string theory + low energy limit

 $\rightarrow~$ decoupled system with states in

4d $\mathcal{N} = 4 \ SU(N) \ SYM \otimes$ free 10d SuGra

2 N D3-branes as geometry + low energy limit

 $\rightarrow~$ decoupled system with states in

- Identify the two views, conjecture equivalence
- Remark the equivalence as a duality: appreciate it as powerful; question how to test it
- Let the CFT live on the boundary of the string theory; propose link by letting boundary values of fields on the bulk couple as sources to operators on the boundary CFT

N D3-branes in string theory + low energy limit

 $\rightarrow~$ decoupled system with states in

4d $\mathcal{N} = 4 \ SU(N) \ SYM \otimes$ free 10d SuGra

N D3-branes as geometry + low energy limit

 $\rightarrow~$ decoupled system with states in

- **Identify the two views, conjecture equivalence**
- Remark the equivalence as a duality: appreciate it as powerful; question how to test it
- Let the CFT live on the boundary of the string theory; propose link by letting boundary values of fields on the bulk couple as sources to operators on the boundary CFT
- o Despair

Small detour on Holography.

The AdS/CFT correspondence is an explicit realisation of holography.

By matching every observable on AdS_5 to every observable on CFT_4 , we apparently reduce the dimension of our theory by 1 without any problem.

Where do the mismatching degrees of freedom go?

Small detour on Holography.

The AdS/CFT correspondence is an explicit realisation of holography.

By matching every observable on AdS_5 to every observable on CFT_4 , we apparently reduce the dimension of our theory by 1 without any problem.

Where do the mismatching degrees of freedom go?

Solution:

Holographic principle: in a full quantum gravity description this is not a problem, it is even required.

Black-hole entropy: $S_{BH} = \frac{A}{4}$

 \rightarrow generalised 2nd law of thermodynamics: $dS_{BH+matter} \geq 0$

This law requires an entropy bound for matter.

Black-hole entropy: $S_{BH} = \frac{A}{4}$

 \rightarrow generalised 2nd law of thermodynamics: $dS_{BH+matter} \geq 0$

This law requires an entropy bound for matter.

Spherical entropy bound:

$$S_{matter} \leq \frac{A}{4G_N}$$

In a quantum system, e^S is the number of independent quantum states compatible with certain macroscopic parameters, e.g. E, T, V, \ldots

This is also the number of degrees of freedom of the quantum theory where the system is described.

In a quantum system, e^S is the number of independent quantum states compatible with certain macroscopic parameters, e.g. E, T, V, \ldots

This is also the number of degrees of freedom of the quantum theory where the system is described.

More precisely,

$$N \equiv \#dof = \log \dim(\mathcal{H})$$
$$\dim(\mathcal{H}) = e^{S}$$

For a QFT: $N = \infty$ For a regularised QFT (e.g. quantum gravity): $N \sim V$ Contradiction: $S \leq A/4 \Longrightarrow N \sim A$ We aknowledge the previous result as a law of nature and generalise the concept.

Holographic Principle:

"In a quantum theory of gravity all physics within some volume can be described in terms of some theory on the boundary which has less than one d.o.f. per Planck area"

 $\rightarrow~$ so that it satisfies the required bound.

In a nutshell, our theories have a redundacy in the form of useless d.o.f.; this redundancy can be solved by considering some "dual theories" on the boundary of the space our theories live in.

The AdS/CFT correspondence explicitly realises this principle.

How: count the degrees of freedom and compare with the area.

Problem: CFT has infinitely many d.o.f.; boundary of AdS has infinite area...

 \rightarrow regularise infinities and compare them.

The AdS/CFT correspondence explicitly realises this principle.

How: count the degrees of freedom and compare with the area.

Problem: CFT has infinitely many d.o.f.; boundary of AdS has infinite area...

 \rightarrow regularise infinities and compare them.

- Regularise the boundary: discrete cells of size δ , 1 d.o.f. per cell
- $\blacksquare \ \# \ {\rm cells} \sim \delta^{-3}$
- # d.o.f. in U(N) with this UV cut-off: $S \sim N^2 \delta^{-3}$
- $\blacksquare \Longrightarrow ~$ we have a IR cut-off at $z \sim \delta$ on the bulk

Area in AdS_5 of the surface $z \sim \delta$:

$$A \sim \frac{R^3}{\delta^3}$$

Given that $G_5 \sim N^{-2} R^3$,

$$\implies S \sim A/G_5$$

The holographic bound is thus saturated by the AdS/CFT correspondence.

AdS/CFT is a realisation of the Holographic Principle.

Part III: AdS_5/CFT_4 Correlation Functions

or How to find old CFT friends

So,

$$Z_{CFT} \left[\phi_0\right] \equiv \langle e^{\int d^4x \ \phi_0(\vec{x})O(\vec{x})} \rangle_{CFT} = Z_{AdS}^{string} \left[\phi(\vec{x},z)|_{z=0} = \phi_0(\vec{x})\right]$$

we meet again.

So,

$$Z_{CFT} [\phi_0] \equiv \langle e^{\int d^4x \ \phi_0(\vec{x})O(\vec{x})} \rangle_{CFT} = Z_{AdS}^{string} [\phi(\vec{x}, z)|_{z=0} = \phi_0(\vec{x})]$$

we meet again.

Computing *O*-correlation functions:

$$\langle O...O\rangle = \left.\frac{\delta^n Z_{CFT}\left[\phi_0\right]}{\delta\phi_0^n}\right|_{\phi_0=0}$$

 $\rightarrow \phi(\vec{x},z)$ solves e.o.m. derived from S_{AdS_5} (on-shell), with given boundary conditions

 \rightarrow the extension from ϕ_0 to ϕ is unique

Massless Scalar Field 2-pt Function

Consider

$$S_{AdS}\left[\phi\right] = \frac{1}{2} \int d^{d+1}x \sqrt{g} \ (\partial\phi)^2$$

Idea

\blacksquare solve ϕ in terms of ϕ_0 with regularised boundary condition

• evaluate
$$S[\phi]$$
 on $\phi \to S_{AdS}[\phi_0]$

\blacksquare take functional derivatives w.r.t. ϕ_0

 $\rightarrow \phi$ is on-shell: integrate S_{AdS} by parts. The term giving the e.o.m. is zero, the remaining regularised boundary term is

$$S_{AdS}\left[\phi\right] = \lim_{\epsilon \to 0} \frac{1}{2} \int_{T_{\epsilon}} d^d x \sqrt{h} \ \phi \ \partial_n \phi$$

$$\rightarrow \quad S_{AdS} \left[\phi_0 \right] = \frac{cd}{2} \int \ d\vec{x} \ d\vec{x}' \ \frac{\phi_0(\vec{x})\phi_0(\vec{x}')}{|\vec{x} - \vec{x}'|^{2d}}$$

2-pt function in a CFT of operator O with conformal dimension

$$\Delta = d$$

Also:

$$\langle O \rangle = \left. \frac{\delta S_{AdS}}{\delta \phi_0} \right|_{\phi_0 = 0} = 0$$

$$\rightarrow \quad S_{AdS} \left[\phi_0 \right] = \frac{cd}{2} \int \ d\vec{x} \ d\vec{x}' \ \frac{\phi_0(\vec{x})\phi_0(\vec{x}')}{|\vec{x} - \vec{x}'|^{2d}}$$

2-pt function in a CFT of operator O with conformal dimension

$$\Delta = d$$

Also:

$$\langle O \rangle = \left. \frac{\delta S_{AdS}}{\delta \phi_0} \right|_{\phi_0 = 0} = 0$$

Massive case: more complicated. Result:

$$\Delta = \frac{1}{2} \left(d + \sqrt{d^2 + 4m^2 R^2} \right)$$
General Conception

Massive interacting scalar fields:

$$S_{AdS} = \int d^5x \sqrt{g} \left(\frac{1}{2} (\partial \phi_i)^2 + \frac{1}{2} m_i^2 \phi_i^2 + \sum_{k=3}^m \lambda_{i_1 \dots i_k} \phi_{i_1} \dots \phi_{i_k} \right)$$

Typical e.o.m.: $(\Box + m^2)\phi = \lambda \phi^n$

General Conception

Massive interacting scalar fields:

$$S_{AdS} = \int d^5 x \sqrt{g} \left(\frac{1}{2} (\partial \phi_i)^2 + \frac{1}{2} m_i^2 \phi_i^2 + \sum_{k=3}^m \lambda_{i_1 \dots i_k} \phi_{i_1} \dots \phi_{i_k} \right)$$

Typical e.o.m.: $(\Box + m^2)\phi = \lambda \phi^n$

Perturbative expansion on λ :

at
$$\lambda^0$$
: $\phi^{zero}(x,z) = \int K(x-x',z) \phi_0(x')$

at
$$\lambda^1: \quad \phi^{one}(x,z) = \int G(x-x',z-z')(\phi^{zero}(x',z'))^n$$

where G(x - x', z - z') is a bulk-to-bulk Green's function.

THANK YOU FOR YOUR ATTENTION!

Kevin Ferreira Gauge/Gravity Duality