Exercise 1. One-Body Quantum Marginal Problem for N Qubits

Let $\rho=|\Psi\rangle\langle\Psi|$ be a pure quantum state of N qubits. We shall denote by $\lambda_{\max }^{(k)}$ the maximal eigenvalue of the reduced density matrix of the k-th qubit, $\rho^{(k)}$.
(a) Show that the eigenvalues satisfy the polygonal inequalities

$$
\begin{equation*}
\sum_{l \neq k} \lambda_{\max }^{(l)} \leq \lambda_{\max }^{(k)}+(N-2) . \tag{1}
\end{equation*}
$$

Solution. Just as in the lecture, we use the variational principle for the largest eigenvalue. By symmetry, it suffices to consider the case where $k=N$:

$$
\begin{aligned}
\sum_{l<N} \lambda_{\max }^{(l)} & =\sum_{l<N} \max _{\|\phi\|=1}\langle\phi| \rho^{(l)}|\phi\rangle=\max _{\left\|\phi^{(l)}\right\|=1} \sum_{l<N}\left\langle\phi^{(l)}\right| \rho^{(l)}\left|\phi^{(l)}\right\rangle \\
& =\max _{\left\|\phi^{(1)}\right\|=\ldots\left\|\phi^{(N-1)}\right\|=1} \operatorname{tr}(\rho^{(1 \ldots N-1)} \underbrace{\sum_{l<N} \mathbf{1}^{\otimes(l-1)} \otimes\left|\phi^{(l)}\right\rangle\left\langle\phi^{(l)}\right| \otimes \mathbf{1}^{\otimes(N-l-1)}}_{\leq\left|\phi^{(1)} \otimes \ldots \otimes \phi^{(N-1)}\right\rangle\left\langle\phi^{(1)} \otimes \ldots \otimes \phi^{(N-1)}\right|+(N-2) \mathbf{1}^{\otimes(N-1)}}) .
\end{aligned}
$$

In order to upper-bound the underbraced Hermitian operator, we have used that its eigenvalues are $N-$ $1, N-2, \ldots, 1,0$ and, moreover, that the eigenvalue $N-1$ has multiplicity one, with eigenvector given by the product of the $|\phi\rangle^{(l)}$. (More generally, it is easy to see that the multiplicity of an eigenvalue μ is equal to the binomial coefficient $\binom{N-1}{\mu}$.)
If we maximize over all pure states of $N-1$ (instead of only over the product ones) then we find that

$$
\sum_{l<N} \lambda_{\max }^{(l)} \leq \max _{\|\phi\|=1}\langle\phi| \rho^{(1 \ldots N-1)}|\phi\rangle+(N-2)
$$

The left-hand side is equal to the maximal eigenvalue of $\rho^{(1 \ldots N-1)}$, which in turn is the maximal eigenvalue $\lambda_{\max }^{(N)}$ of $\rho^{(N)}$, since the overall state is pure.

These inequalities are in fact the only constraints. That is, for any choice of $\lambda_{\max }^{(k)} \in[0.5,1]$ satisfying (1) there exists a corresponding pure state.
(b) Prove this statement by explicitely constructing a global state.

Hint. Solve the problem for $N=3$ and induct.

Solution. We follow the inductive argument of Higuchi, Sudbery and Szulc for $N \geq 3$ (arXiv:0209085); the case where $N=2$ follows trivially from the Schmidt decomposition.
(1) $N=3$: We consider the "ansatz"

$$
\left|\Psi_{3}\right\rangle=a|000\rangle+b|011\rangle+c|101\rangle+d|110\rangle
$$

where a, b, c, d are real and $a^{2}+b^{2}+c^{2}+d^{2}=1$. Then,

$$
\rho^{(1)}=\left(\begin{array}{ll}
a^{2}+b^{2} & \\
& c^{2}+d^{2}
\end{array}\right), \quad \rho^{(2)}=\left(\begin{array}{cc}
a^{2}+c^{2} & \\
& b^{2}+d^{2}
\end{array}\right), \quad \rho^{(3)}=\left(\begin{array}{ll}
a^{2}+d^{2} & \\
& b^{2}+c^{2}
\end{array}\right)
$$

and we would like to solve the equations

$$
\begin{aligned}
& \lambda_{\max }^{(1)}=a^{2}+b^{2}, \\
& \lambda_{\max }^{(2)}=a^{2}+c^{2}, \\
& \lambda_{\max }^{(3)}=a^{2}+d^{2} .
\end{aligned}
$$

These imply

$$
\begin{aligned}
b^{2} & =\frac{1}{2}\left(\lambda_{\max }^{(1)}+1-\lambda_{\max }^{(2)}-\lambda_{\max }^{(3)}\right) \\
c^{2} & =\frac{1}{2}\left(\lambda_{\max }^{(2)}+1-\lambda_{\max }^{(1)}-\lambda_{\max }^{(3)}\right) \\
d^{2} & =\frac{1}{2}\left(\lambda_{\max }^{(3)}+1-\lambda_{\max }^{(1)}-\lambda_{\max }^{(2)}\right),
\end{aligned}
$$

which can be solved over the reals provided that the polygonal inequalities (1) are satisfied. Moreover, it follows that

$$
a^{2}=1-b^{2}+c^{2}+d^{2}=1-\frac{1}{2}\left(3-\lambda_{\max }^{(1)}-\lambda_{\max }^{(2)}-\lambda_{\max }^{(3)}\right) \geq \frac{1}{4},
$$

so we can also choose a accordingly.
(2) $N>3$: We first note that the corresponding ansatz for $\left|\Psi_{N}\right\rangle$ as a linear combination of $|0 \ldots 0\rangle$ and those basis vectors which contain at least two " 1 "s does not work as smoothly, since the single-body reduced density matrices will no longer be diagonal in the computational basis. Hence we proceed differently:
Without loss of generality, we may assume that the given eigenvalues are ordered according to $\lambda_{\max }^{(1)} \leq$ $\ldots \leq \lambda_{\max }^{(N)}$, so that the inequality

$$
\begin{equation*}
\lambda_{\max }^{(2)}+\ldots+\lambda_{\max }^{(N)} \leq \lambda_{\max }^{(1)}+(N-2) \tag{S.1}
\end{equation*}
$$

is the strongest among all polygonal inequalities (i.e., it implies the other ones).
Set $\Delta:=1-\left(\lambda_{\max }^{(N)}-\lambda_{\max }^{(1)}\right) \in[0.5,1]$. We claim that there exists a quantum state $\left|\Psi_{N-1}\right\rangle$ of $N-1$ qubits with local eigenvalues $\Delta, \lambda_{\max }^{(2)}, \ldots, \lambda_{\max }^{(N-1)}$. To see this, we consider two cases: In the case where $\Delta \leq \lambda_{\max }^{(2)}$, the strongest of the polynomial inequalities is

$$
\lambda_{\max }^{(2)}+\ldots+\lambda_{\max }^{(N-1)} \leq \Delta+(N-3)
$$

which follows from (S.1). If $\Delta>\lambda_{\max }^{(2)}$ then the strongest of the polynomial inequalities is
$\Delta+\lambda_{\max }^{(3)}+\ldots+\lambda_{\max }^{(N-1)}=\lambda_{\max }^{(1)}+\left(1+\lambda_{\max }^{(3)}-\lambda^{(N)}\right)+\ldots+\lambda_{\max }^{(N-1)} \leq \lambda_{\max }^{(1)}+(N-3) \leq \lambda_{\max }^{(2)}+(N-3)$.
Consider now the Schmidt decomposition of $\left|\Psi_{N-1}\right\rangle$, which has the form

$$
\left|\Psi_{N-1}\right\rangle=|0\rangle \otimes\left|\phi_{N-2}\right\rangle+|1\rangle \otimes\left|\psi_{N-2}\right\rangle
$$

with $\left\langle\phi_{N-2} \mid \phi_{N-2}\right\rangle=\Delta=1-\left\langle\psi_{N-2} \mid \psi_{N-2}\right\rangle$. We make the following ansatz for the N-particle pure state:

$$
\left|\Psi_{N}\right\rangle=\cos (\chi)|0\rangle \otimes \phi_{N-2} \otimes|0\rangle+\sin (\chi)|1\rangle \otimes \phi_{N-2} \otimes|1\rangle+|1\rangle \otimes \psi_{N-2} \otimes|0\rangle .
$$

Clearly, the maximal eigenvalues of the particles $2, \ldots, N-1$ are correct for any choice of the phase χ. On the other hand,

$$
\rho^{(1)}=\left(\begin{array}{cc}
\cos ^{2}(\chi) \Delta & \\
& \sin ^{2}(\chi) \Delta+(1-\Delta)
\end{array}\right), \quad \rho^{(N)}=\left(\begin{array}{cc}
\cos ^{2}(\chi) \Delta+(1-\Delta) & \\
& \sin ^{2}(\chi) \Delta
\end{array}\right) .
$$

Since $\Delta \geq \lambda_{\max }^{(1)}$, we can find a phase χ such that $\cos ^{2}(\chi) \Delta=\lambda_{\max }^{(1)}$. But then,

$$
\cos ^{2}(\chi) \Delta+(1-\Delta)=\lambda_{\max }^{(1)}+\left(\lambda_{\max }^{(N)}-\lambda_{\max }^{(1)}\right)=\lambda_{\max }^{(N)},
$$

hence the maximal eigenvalues of both the first and last particle are correct for this choice of χ.
(c) Prove this statement by using convexity of the solution.

Solution. The polygonal inequalities (1) together with the "trivial" inequalities $\lambda_{\max }^{(k)} \geq 0.5$ cut out a convex polytope, whose vertices are all points of the form

$$
(\underbrace{0.5, \ldots, 0.5}_{\substack{\text { none or at least two }}}, 1, \ldots, 1)
$$

together with their permutations. Since the solution of the one-body quantum marginal problem (i.e., the set of achievable maximal eigenvalues) is convex, it suffices to show that each vertex is achievable:

$$
\begin{aligned}
|0 \ldots 0\rangle & \mapsto(1, \ldots, 1) \\
\frac{1}{\sqrt{2}}(|0 \ldots 0\rangle+|1 \ldots 1\rangle) \otimes|0 \ldots 0\rangle & \mapsto(0.5, \ldots, 0.5,1, \ldots, 1)
\end{aligned}
$$

Exercise 2. Isotypical Projectors

Recall from the lecture that any finite-dimensional unitary representation \mathcal{H} of $\mathrm{SU}(2)$ can be decomposed into a direct sum of irreducible representations which are all of the same spin, i.e.

$$
\mathcal{H}=\bigoplus_{j=0, \frac{1}{2}, 1, \ldots} \mathcal{H}_{j}, \quad \mathcal{H}_{j} \cong \underbrace{V_{j} \oplus \ldots \oplus V_{j}}_{m_{j} \text { times }}
$$

Here, V_{j} denotes the irreducible representation of $\mathrm{SU}(2)$ with spin $j \in\left\{0, \frac{1}{2}, 1, \ldots\right\}$. The subspace \mathcal{H}_{j} is called an isotypical component of \mathcal{H}; it is canonically defined (i.e., does not depend on any choices). The corresponding isotypical projector is the orthogonal projection onto \mathcal{H}_{j}, and we denote it by P_{j}. Similarly, the irreducible components of the product group $K=\mathrm{SU}(2)^{N}$ are just the tensor products $V_{j_{1}} \otimes \ldots \otimes V_{j_{N}}$, and hence the isotypical projectors are given by $P_{j_{1}} \otimes \ldots \otimes P_{j_{N}}$.

As in the lecture, let $\mathcal{H}=\left(\mathbb{C}^{2}\right)^{\otimes N}$ be the Hilbert space of N qubits and denote by $\mathbb{C}[\mathcal{H}]_{(k)}$ the space of polynomial functions on \mathcal{H} of degree k. Show that the following two statements are equivalent:

1. There exists a pure state $|\psi\rangle \in \mathcal{H}$ such that $\left(P_{j_{1}} \otimes \ldots \otimes P_{j_{N}}\right)|\psi\rangle^{\otimes k} \neq 0$.
2. $V_{j_{1}}^{*} \otimes \ldots \otimes V_{j_{N}}^{*} \subseteq \mathbb{C}[\mathcal{H}]_{(k)}$.

Discuss how this connects the spectrum estimation theorem from the last lecture with the representation-theoretic description of the one-body quantum marginal problem presented in the lecture before.

Solution. The vector $|\psi\rangle^{\otimes k}$ is an element of the symmetric subspace $\operatorname{Sym}^{k}(\mathcal{H})$, which is not only a subspace of $\mathcal{H}^{\otimes k}$, but also a representation of $\mathrm{U}(\mathcal{H})$ —indeed, if $|\phi\rangle$ is a fully symmetric tensor then so is $U^{\otimes k}|\phi\rangle$ for any global unitary $U \in \mathrm{U}(\mathcal{H})$. The same is of course true if we restrict to the "subgroup" of local unitaries $K=\operatorname{SU}(2)^{N}$.

Thus, if $\left(P_{j_{1}} \otimes \ldots \otimes P_{j_{N}}\right)|\psi\rangle^{\otimes k} \neq 0$ then the corresponding isotypical component of $\operatorname{Sym}^{k}(\mathcal{H})$ is necessarily non-zero (since $|\psi\rangle^{\otimes k}$ has non-zero overlap with it!), hence $V_{j_{1}} \otimes \ldots \otimes V_{j_{N}} \subseteq \operatorname{Sym}^{k}(\mathcal{H})$.

Abstractly, it follows that $V_{j_{1}}^{*} \otimes \ldots \otimes V_{j_{N}}^{*} \subseteq\left(\operatorname{Sym}^{k}(\mathcal{H})\right)^{*} \cong \mathbb{C}[\mathcal{H}]_{(k)}$ (Q: What is the last isomorphism?).
To make this concrete, choose a basis $\left|j_{1}, m_{1}\right\rangle \otimes \ldots \otimes\left|j_{N}, m_{N}\right\rangle$ of $V_{j_{1}} \otimes \ldots \otimes V_{j_{N}}$. Since $V_{j_{1}} \otimes \ldots \otimes V_{j_{N}} \subseteq \operatorname{Sym}^{k}(\mathcal{H})$, we can find a corresponding basis in $\operatorname{Sym}^{k}(\mathcal{H})$, which we shall denote by the same symbol. But then,

$$
\left|\psi^{\prime}\right\rangle \mapsto\left(\left\langle j_{1}, m_{1}\right| \otimes \ldots \otimes\left\langle j_{N}, m_{N}\right|\right)\left|\psi^{\prime}\right\rangle^{\otimes k}
$$

defines a family of polynomials of degree k which transform in the same way as the dual basis $\left\langle j_{1}, m_{1}\right| \otimes \ldots \otimes$ $\left\langle j_{N}, m_{N}\right|$. Note that the family is non-trivial, since we know that at least one of the functions is non-zero when we plug in $|\psi\rangle$. It follows that $V_{j_{1}}^{*} \otimes \ldots \otimes V_{j_{N}}^{*} \subseteq \mathbb{C}[\mathcal{H}]_{(k)}$.

The converse statement follows by reversing the above argument.
Coincidentally, $V_{j} \cong V_{j}^{*}$ for representations of $\mathrm{SU}(2)$. The irreducible representations of $\mathrm{SU}(d), d>2$, are in general no longer self-dual.

