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Exercise 1. Shor code

In the lecture we saw how to encode a qubit using Shor’s code in order to protect it from
arbitrary error on one qubit.

(a) Construct the encoding circuit of the code using Hadamard and CNOT gates.

Solution.

432 Quantum error-correction

Exercise 10.4: Consider the three qubit bit flip code. Suppose we had performed the
error syndrome measurement by measuring the eight orthogonal projectors
corresponding to projections onto the eight computational basis states.

(1) Write out the projectors corresponding to this measurement, and explain how
the measurement result can be used to diagnose the error syndrome: either
no bits flipped or bit number j flipped, where j is in the range one to three.

(2) Show that the recovery procedure works only for computational basis states.
(3) What is the minimum fidelity for the error-correction procedure?

10.2 The Shor code

There is a simple quantum code which can protect against the effects of an arbitrary
error on a single qubit! The code is known as the Shor code, after its inventor. The code
is a combination of the three qubit phase flip and bit flip codes. We first encode the qubit
using the phase flip code: |0〉 → |+++〉, |1〉 → |−−−〉. Next, we encode each of these
qubits using the three qubit bit flip code: |+〉 is encoded as (|000〉+ |111〉)

√
2 and |−〉 is

encoded as (|000〉− |111〉)
√
2. The result is a nine qubit code, with codewords given by:

|0〉 → |0L〉 ≡
(|000〉 + |111〉)(|000〉 + |111〉)(|000〉 + |111〉)

2
√
2

|1〉 → |1L〉 ≡
(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)

2
√
2

. (10.13)

Figure 10.4. Encoding circuit for the Shor nine qubit code. Some of the |0〉 states appear indented, simply to
emphasize the concatenated nature of the encoding.

.

The quantum circuit encoding the Shor code is shown in Figure 10.4. As described
above, the first part of the circuit encodes the qubit using the three qubit phase flip code;

Let |Ψ〉 be the nine qubit Shor encoding of the qubit α|0〉 + β|1〉. Assume that |Ψ〉 is exposed
to a noise process which introduces a bit and a phase flip error on the fourth qubit yielding the
faulty state Z4Xx|Ψ〉

(b) What measurements will help you to infer the location and the type of the error (that is,
is it a bit flip, a phase flip or both)?

Solution. By measuring Z4Z5 and Z5Z6 you can see that there is a bit flip error on the fourth bit. By

measuring X1X2X3X4X5X6 and X4X5X6X7X8X9 you can see the phase flip in the second block of three

qubits.

(c) Given the syndrome of the error above, how can you reconstruct the original state |Ψ〉?

Solution. In order to fix the bit flip on the fourth qubit we can apply X4. In order to fix the phase flip

in the second block we can apply Z4Z5Z6.
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Exercise 2. Error analysis

Let |Ψ〉 be the nine qubit Shor encoding of the qubit α|0〉+β|1〉. Assume that the depolarization
channel N , which is given by N (ρ) = (1−p)ρ+ p

3(XρX+Y ρY +ZρZ), is acting simultaneously,
but independently, on each qubit of |Ψ〉. Hence, the noise process is formally described by N⊗9.

(a) What is the probability that an error occurs that cannot be corrected by the Shor code?
Neglect higher order terms in the calculation, i.e. do not take into account when three or
more errors occur simultaneously on different qubits.

Hint. Can we fix errors in two qubits in some special cases?

Solution. We compute a lower bound on the probability that an error occurs which can be corrected.
Of course, if no error occurs we are fine. This happens with probability (1 − p)9 as the noise is acting
independently on each qubit. The probability that a single X,Y or Z flip occurs is

9 · p
3

(1− p)8 + 9 · p
3

(1− p)8 + 9 · p
3

(1− p)8 .

Exactly two bit flips can be corrected in 27 out of the total 36 cases (the bit flips have to be in different
blocks). Hence, the probability that these errors can be corrected is

27 ·
(p

3

)2

(1− p)7 .

Exactly two phase flips can be corrected in only 9 out of the total 36 cases (the phase flips have to be in
the same block). Hence, the probability that these errors can be corrected is

9 ·
(p

3

)2

(1− p)7 .

2 Y flips cannot be corrected by the Shor code. Note that even if there are more than two errors it is still
possible that the Shor code protects against these errors.

Combining everything together, the probability that the error can be corrected is

(1− p)9 + 9 · p · (1− p)8 + 4 · p2 · (1− p)7 ≈ 1− 32 · p2

where we neglected higher order terms. Therefore the probability that an error which cannot be corrected

occurs is / 32 · p2.

(b) How large can p be such that the concatenation of the Shor code still reduces the error
probability?

Solution. First note that we cannot use the analysis we did in the previous item to solve this one. The
reason is that although we have the error process N at the first concatenation level this does not imply
that the same error process is acting on the second concatenation level as well (where each of the nine
qubits in the Shor code is represented itself by nine qubits, i.e., total of 81 qubits at the second level). At
each concatenation level, we have a different error process N i acting on the (logical) qubits given by

N i(ρ) = (1− pi) · ρ+ pi · Ñ i(ρ)

with p1 = p. Never the less, the error process is still acting independently on the (logical) qubits and

therefore the overall noise process at the i’th concatenation level is described by
(
N i

)⊗9
.

The goal now is to determine a lower bound on the probability that an error occurred which can be
corrected at the i’th concatenation level, in which the noise process

(
N i

)⊗9
is acting on the nine logical

qubits. Taking into account no error or one error, the probability the the error can be corrected is aprox.
1− 36 · p2i and hence the next concatenation is useful only if the error probability is given by

pi+1 / 36 · p2i .
Solving this recursive formula yields for the error probability, given n concatenation levels, the following
upper bound

pn ≤
1

36
· (36 · p)2

n

.

If we set p < 1
36

this expression goes to zero when increasing the number of concatenation levels.
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