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Exercise 1. Pusey–Barrett–Rudolph argument for non-orthogonal states

In this exercise you will generalize the argument given in the lecture to arbitrary non-orthogonal
states by following the appendix of the paper by Pusey, Barrett and Rudolph (arXiv:1111.3328).
For this, suppose that you are given n copies of a device that prepares a quantum system in either
the state |ψ0〉 or the state |ψ1〉. Thus there are 2n possible preparations, |ψ~x〉 = |ψx1〉⊗. . .⊗|ψxn〉,
where ~x is a binary string with xi = 0/1 if the i-th system is prepared in state |ψ0/1〉. The
challenge is to find a joint measurement of the n systems such that each measurement outcome
has probability zero for (at least) one of the preparations.

(a) Show that (up to global phases) there always exist orthonormal vectors |0〉, |1〉 such that

|ψ0〉 = cos
θ

2
|0〉+ sin

θ

2
|1〉, |ψ1〉 = cos

θ

2
|0〉 − sin

θ

2
|1〉,

with 0 < θ ≤ π
2 .

Solution. We can always rotate the Bloch sphere (i.e., the basis vectors |0〉 and |1〉) such that

Then it is clear that the states |ψi〉〈ψi| (whose Bloch vectors we have denoted by ri) have the desired form

(with θ as in the figure).

We shall think of |0〉 and |1〉 defining the computational basis of a qubit, and write |~x〉 =
|x1〉 ⊗ . . .⊗ |xn〉 for the corresponding product basis.

(b) Consider the following measurement procedure: First, apply the unitary Zβ =
(

1
eiβ

)
to

each qubit. Second, apply the unitary Rα which maps |0 . . . 0〉 7→ eiα|0 . . . 0〉 and acts as the
identity on the orthogonal complement. Third, apply a Hadamard gate H = 1√

2

(
1 1
1 −1

)
to each qubit. Finally, measure each qubit in the computational basis. Show that the
probability of outcome |~x〉 given the initial state |ψ~x〉 as predicted by quantum mechanics
is equal to

1

2n
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2

)2n ∣∣∣∣eiα − 1 +

(
1 + eiβ tan

θ

2

)n∣∣∣∣2 .
Solution. The desired probability is the modulus squared of

〈~x |H⊗nRαZ⊗nβ |ψ~x〉
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⊗
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(hence the overall phases which we had ignored in (a) indeed do not matter).

(c) Show that for large enough n, the phases α, β can be chosen such that these probabilities
are all zero.

Solution. We would like to find n, α and β such that

eiα − 1 +

(
1 + eiβ tan

θ

2

)n
= 0.

Of course, it suffices to find n and β such that

|1−
(

1 + eiβ tan
θ

2

)n
| = 1. (S.1)

Geometrically, fn(β) = 1−
(
1 + eiβ tan θ

2

)n
defines a curve in the complex plane for any fixed n, and the

condition (S.1) amounts to showing that this curve intersects the unit circle. Note that tan θ
2
∈ (0, 1] since

θ ∈ (0, π
2

] (see picture), and therefore

fn(π) = 1−
(

1− tan
θ

2

)n
∈ (0, 1]

is always contained in the unit disk. On the other hand, for large enough n� 1

fn(0) = 1−
(

1 + tan
θ

2

)n
< −1.

For such n, continuity of fn(β) ensures that there exists β with |fn(β)| = 1.

(d) Conclude that, under the assumptions 1–3 stated in the lecture, there does not exist a
physical state z compatible with both |ψ0〉 and |ψ1〉.

Solution. This works precisely as you saw in the lecture.

Exercise 2. Reality of the wave function from different assumptions

In this exercise, your task is to understand an alternative argument due to Colbeck and Renner
(arXiv:1111.6597), which derives the reality of the wave function from a different set of assump-
tions. As in the lecture, we consider a system prepared in a state described by a wave function
Ψ; the experimenter then chooses a measurement setting A and records the measurement out-
come X. Mathematically, Ψ, A, and X are modelled by random variables on some underlying
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probability space. Let Γ 3 Ψ be a collection of random variables on the same probability space,
modeling all information that is in principle available before the measurement setting is chosen.
Technically, we shall assume that measurement settings can be chosen freely ; in particular, this
implies that PA|Γ = PA. We shall also assume that quantum theory is correct, so that e.g. PX|AΨ

is given by the predictions of quantum mechanics.

Under these assumptions, it has been shown that the wave function Ψ is complete for the
description of this system (arXiv:1005.5173). Here and in the following, a subset of random
variables Γ0 ⊆ Γ is said to be complete for the description of the system if PX|ΓA = PX|Γ0A,
i.e. if

Γ→ (Γ0, A)→ X

is a Markov chain.

(a) Compare this notion of completeness with the one discussed in last semester’s quantum
information theory lecture. (This part of the exercise is optional.)

Let us now consider another subset of random variables Z ⊆ Γ (a “list of elements of reality”)
that is also complete for the description of the system.

(b) Show that
PX|Z=z,A=a = PX|Ψ=ψ,A=a

whenever P(Z = z,Ψ = ψ) > 0 and P(A = a) > 0.

Solution. It follows from the completeness of Z and Ψ that we have two Markov chains

Γ 3 Ψ→ (Z,A)→ X,

Γ ⊇ Z → (Ψ, A)→ X.

Therefore,
PX|ZA = PX|ΨZA = PX|ΨA,

or, equivalently,
PX|Z=z,A=a = PX|Ψ=ψ,A=a

for all z, ψ and a for which

P(Z = z,Ψ = ψ,A = a) = P(Z = z,Ψ = ψ)P(A = a) > 0.

(the last equality follows from the assumption of free measurement settings).

(c) Conclude that the wave function Ψ is determined uniquely by Z. In this sense, the system’s
wave function is in one-to-one correspondence with its elements of reality.

Solution. Suppose ψ and ψ′ are both compatible with z, i.e.

P(Z = z,Ψ = ψ) > 0, P(Z = z,Ψ = ψ′) > 0.

Then (b) implies that
PX|Ψ=ψ,A=a = PX|Ψ=ψ′,A=a

whenever P(A = a) > 0. Clearly, there exists a measurement setup for which this implies that ψ = ψ′

(e.g., the projective measurement {|ψ〉〈ψ|,1 − |ψ〉〈ψ|}). Thus there exists at most a single wave function

Ψ = ψ compatible with each Z = z, i.e. Ψ is uniquely determined by Z.
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