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Quantum marginal problem and entanglement

Lecturer: Michael Walter Lecture 11

11.1 The group of SLOCC operations

Last time we talked about SLOCC (stochastic LOCC), where we can post-select on particular
outcomes. Given a class of states that can be interconverted by SLOCC,

Cψ = {∣φ⟩ ∶ ∣φ⟩
SLOCC
←→ ∣ψ⟩},

a result by Dür, Vidal and Cirac says that

Cψ ∶= {∣φ⟩ ∶ ∣φ⟩ ∝ (A⊗B ⊗C)∣ψ⟩ ∶ A,B,C ∈ SL(d)}

For three qubits there is a simple classification of all such classes of entanglement. Apart from
product states and states with only bipartite entanglement, there are two classes, with the following
representative states:

∣GHZ⟩ =
1

2
(∣000⟩ + ∣111⟩)

∣W ⟩ =
1

2
(∣001⟩ + ∣010⟩ + ∣100⟩)

Note that the class of SLOCC operations forms a group, which we denote by

G = {A⊗B ⊗C ∶ A,B,C ∈ SL(d)}.

In this language, we can rephrase the result of Dür, Vidal and Cirac as follows: Any SLOCC
entanglement class is simply the orbit G ⋅ ∣ψ⟩ABC of a representative quantum state ∣ψ⟩ under the
group of SLOCC operations G (up to normalization).

An easy-to-check fact is that SL(d) = {eX ∶ tr(X) = 0}. Therefore,

G = {eA ⊗ eB ⊗ eC = eA⊗I⊗I+I⊗B⊗I+I⊗I⊗C ∶ trA = trB = trC = 0},

and we find that the Lie algebra of G is spanned by the traceless local Hamiltonians.

11.2 Quantum marginal problem for an entanglement class

What are the possible ρA, ρB, ρC that are compatible with a pure state in a given entanglement
class? Note that this only depends on the spectra λA, λB and λC of the reduced density matrices,
as one can always apply local unitaries and change the basis without leaving the SLOCC class.

Are there any new constraints? Yes! For example, the reduced density matrices of the class of
product states are always pure, hence its local eigenvalues satisfy λAmax = λ

B
max = λ

C
max = 1.

A more interesting example is the W-class. Here, the set of compatible spectra is given by the
equation λAmax + λ

B
max + λ

C
max ≥ 2, as we will discuss in the problem session (see Figure 1).
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Figure 1: The entanglement polytope of the W class (blue) is the region of all local eigenvalues
that are compatible with a state from the W class or its closure.

11.3 The case of the origin

Let us start with the following special case of the problem: Given an entanglement class G ⋅ ∣φ⟩ABC ,
does it contain a state ∣ψ⟩ABC with ρA = ρB = ρC = I/d? (Such a state is also called locally
maximally mixed ; it corresponds to the “origin” in the coordinate system of Figure 1.) This is
equivalent to

tr(ρAA) = tr(ρBB) = tr(ρCC) = 0

for all traceless Hermitian matrices A,B,C, which in turn is equivalent to

tr(ρAA) + tr(ρBB) + tr(ρCC) = 0

for all traceless Hermitian matrices A,B,C. We can write it as

⟨ψABC ∣A⊗ I ⊗ I + I ⊗B ⊗ I + I ⊗ I ⊗C ∣ψABC⟩ = 0.

Thus the norm of the state ∣ψABC⟩ should not change (to 1st order) when we apply an arbitrary
infinitesimal SLOCC operation. Indeed:

∂

∂t
∣
=0
∥eAt ⊗ eBt ⊗ eCt∣ψABC⟩∥

2
=
∂

∂t
∣
=0
⟨ψABC ∣e

2At
⊗ e2Bt ⊗ e2Ct∣ψABC⟩

=2 ⟨ψABC ∣A⊗ I ⊗ I + I ⊗B ⊗ I + I ⊗ I ⊗C ∣ψABC⟩.

In particular, if ∣ψABC⟩ is a closest point to the origin (i.e., a vector of minimal norm) in the orbit
G ⋅ ∣φABC⟩ then ρA = ρB = ρC = I/d.

What happens when there is no point in the class with ρA = ρB = ρC = I/d? That might seem
strange, as it implies by the above that there is no closest point to the origin. But since the group
G is not compact, such situations can indeed occur. For example,

(
ε

1
ε

) ⊗ (
ε

1
ε

) ⊗ (
ε

1
ε

) ∣W ⟩ = ε∣W ⟩ (11.1)
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and when ε goes to zero, we approaches the origin 0 of the Hilbert space. However, 0 is not an
element of the W-class G ⋅ ∣W ⟩ (in fact, {0} is a G-orbit on its own).

Although so far we have only proved the converse, this observation is in fact enough to conclude
that there exists no W-class state which is locally maximally mixed. We have the following general
result, which can be proved using the Hilbert–Mumford criterion:

Theorem 11.1 (Kempf–Ness). The following are equivalent:

• There exists a vector of minimal norm in G ⋅ ∣φ⟩ABC .

• There exists a quantum state in the class G ⋅ ∣φ⟩ABC with ρA = ρB = ρC = I/d.

• G ⋅ ∣φ⟩ABC is closed.

Thus there exists no quantum state in the W-class that is maximally mixed.
How about if we look at the closure of the W-class? States in the closure of class are those

which can be approximated arbitrarily well by states from the class. Thus they can in principle be
used for the same tasks as any state in the class itself (as long as the task is “continuous”).

It is a fact that the closure of any orbit G ⋅ ∣φ⟩ABC is a disjoint union of orbits, among which
there is a unique closed orbit. There are two options: Either this orbit {0}, or it is the orbit through
some proper (unnormalized) quantum state. Therefore:

Corollary 11.2. There exists a quantum state in the closure of G ⋅ ∣φ⟩ that is locally maximally
mixed if, and only if, 0 ∉ G ⋅ ∣φABC⟩.

We saw before that 0 is in the closure of the W-class. Therefore, the corollary shows that we
cannot even approximate a locally maximally mixed state by states from the W-class. This agrees
with Figure 1, which shows that the set of eigenvalues that are compatible with the closure of the
W class does not contain the locally maximally mixed point.

11.4 Invariant polynomials

If we have two closed sets—such as {0} and an orbit closure G ⋅ ∣φ⟩ which not contain the origin—
then we can always find a continuous function which separates these sets. Since we are working in
the realm of algebraic geometry, we can always choose this function to be aG-invariant homogeneous
polynomial P , such that P (0) = 0 and P (∣ψ⟩) ≠ 0. The converse is obviously also true, and so we
find that:

Theorem 11.3. There exists a quantum state in the closure of G ⋅ ∣φ⟩ that is locally maximally
mixed if, and only if, there exists a non-constant G-invariant homogeneous polynomial such that
P (∣φABC⟩) ≠ 0.

At first sight, this new characterization does not look particularly useful, since we have to check
all G-invariant homogeneous polynomials. However, since the algebra of G-invariant polynomials
is finitely generated, we only have to check a finite number of polynomials. For three qubits, e.g.,
there is only a single generator: Every G-invariant polynomial is a linear combination of powers of
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Cayley’s hyperdeterminant

P (∣ψ⟩) = ψ2
000ψ

2
111 + ψ

2
100ψ

2
011 + ψ

2
010ψ

2
101 + ψ

2
001ψ

2
110

− 2ψ000ψ111ψ100ψ011 − 2ψ000ψ111ψ010ψ101 − 2ψ000ψ111ψ001ψ110

− 2ψ100ψ011ψ010ψ101 − 2ψ100ψ011ψ001ψ110 − 2ψ010ψ101ψ001ψ110

+ 4ψ000ψ110ψ101ψ011 + 4ψ111ψ001ψ010ψ100.

It is non-zero precisely on the quantum states of GHZ class.

We conclude this lecture with some remarks. The characterization in terms of invariant poly-
nomials brings us into the realm of representation theory. Indeed, the space of polynomials on the
Hilbert space is a G-representation, and the invariant polynomials are precisely the trivial sub-
representations of this representation. Now, it is natural to ask about the meaning of the other
irreducible representations. It turns out that, in the same way as trivial representations correspond
to the local eigenvalues 1/d, . . . ,1/d, these other representations correspond to the other spectra
that are compatible with the class (i.e., the points besides the “origin” in Figure 1). Although we
do not have the time to discuss this, this can also be proved using the techniques we have discussed
in this lecture (there is a “shifting trick” based on the Borel–Weil theorem that can be used to
replace the origin by any other triple of local spectra).

As a direct corollary, one can show that the solution to the quantum marginal problem for
the closure of an entanglement class is always convex. It is in fact a convex polytope, which we
might call the entanglement polytope of the class. Thus, the object in Figure 1 is the entanglement
polytope of the W class.

Of course, one can always ignore the entanglement class in the above discussion. In this way, one
gets a representation-theoretic characterization of the solution of the ordinary one-body quantum
marginal problem. In the next lecture, we will discuss an alternative way of arriving at this
characterization that starts with representation theory rather than geometry.
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