Bell Inequalities

- I assume familiarity with basic Quantum Information (i.e. Nielsen/Chuang)

How strong are quantum correlations?

- Bell inequalities
- as games
- geometrically

CHSH-Game

Clauser, Horne, Shimony \& Holt
Alice and Bob cannot communicate referee supplies questions to Alice and Bob (x and y) (equal probability for all questions)

Alice

Referee

Alice and Bob win if

$$
\begin{aligned}
& a \neq b \text { for } x=0, y=0 \\
& a \neq b \text { for } x=0, y=1 \\
& a \neq b \text { for } x=1, y=0 \\
& a=b \text { for } x=1, y=1
\end{aligned}
$$

they win if
$a \oplus b \neq x . y$

What is the maximal probability of winning?

Mathematical setup

- Alice and Bob have access to correlations given by $P_{A B \mid X Y}(a b \mid x y)<$ conditional probabily distribution
- Winning condition $1 \geq Q_{A B X Y}(a b x y) \geq 0$
- Questions are chosen with probability $P_{X Y}(x y)$

$$
\operatorname{Prob}[\mathrm{win}]=\sum_{x y a b} P_{X Y}(x y) P_{A B \mid X Y}(a b \mid x y) Q(a b x y)
$$

Classical Deterministic Strategy

$P_{A B \mid X Y}(a b \mid x y)=\delta_{a, f(x)} \delta_{b, g(y)}$
Alice $a=f(x)$

Bob $b=g(y)$
Example strategy $\quad f(0)=0 f(1)=0 g(0)=1 g(1)=1$
$a \neq b$ for $x=0, y=0 \quad 100 \%$
$a \neq b$ for $x=0, y=1 \quad 100 \%$
$a \neq b$ for $x=1, y=0 \quad 100 \%$
$a=b$ for $x=l, y=1 \quad 0 \%$

Average winning probability 75\%

Optimality

- There is no better strategy
- At most three conditions are satisfied

$$
\begin{gathered}
g(0) \neq f(1)=g(1) \neq f(0) \\
\text { 3rd } \quad \text { 4th } \quad \text { 2nd }
\end{gathered}
$$

is in conflict with Ist: $\quad g(0) \neq f(0)$

- Winning probability $\operatorname{Prob}[$ win $\mid \operatorname{det}] \leq 3 / 4$

Shared Randomness

Quantum Strategy

$$
A_{a}^{x} \geq 0 \sum_{a} A_{a}^{x}=\mathbf{1}
$$

$$
P_{A B \mid X Y}(a b \mid x y)=\operatorname{tr} \rho_{A B} \stackrel{\stackrel{A}{A}}{a} \otimes B_{b}^{y}
$$

$$
=\operatorname{tr}|\psi\rangle\langle\psi| A_{a}^{x} \otimes B_{b}^{y}
$$

best to choose pure state
(cf. convex combination)

$$
\begin{aligned}
& |\psi\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle) \quad|\psi\rangle\langle\psi|=\frac{1}{4}\left(\mathbf{1} \otimes \mathbf{1}-\sigma_{x} \otimes \sigma_{x}-\sigma_{y} \otimes \sigma_{y}-\sigma_{z} \otimes \sigma_{z}\right) \\
& \operatorname{tr}_{A} A_{a}^{x} \otimes \mathbf{1}|\psi\rangle\langle\psi|=\frac{1}{2} \cdot \rho_{B, x, a} \\
& =\operatorname{tr}_{\substack{\text { measurement } \\
\text { projector }}}^{\begin{array}{c}
\text { probability of } \\
\text { result }
\end{array}}(\mathbf{1}+\vec{r} \cdot \vec{\sigma})|\psi\rangle\langle\psi|=\frac{1}{2}\left(\frac{1}{2}(\mathbf{1} \Theta \vec{r} \cdot \vec{\sigma})\right) \underbrace{}_{\substack{\text { post-measurement state is } \\
\text { antipodal point }}}
\end{aligned}
$$

Bob's state=antipodal point for every measurement „spooky action at a distance"

Violating the CHSH inequality

$\mathrm{a} \neq \mathrm{b}$ for $\mathrm{x}=0, \mathrm{y}=0 \operatorname{Cos}^{2} 45^{\circ} / 2=\frac{1}{2}\left(1+\frac{1}{\sqrt{2}}\right) \approx 85 \%$ $a \neq b$ for $x=0, y=1 \operatorname{Cos}^{2} 45^{\circ} / 2 \approx 85 \%{ }^{\sqrt{2}}$

$$
\operatorname{Prob}[\operatorname{win}]=\frac{1}{2}\left(1+\frac{1}{\sqrt{2}}\right)
$$

$a \neq b$ for $x=1, y=0 \operatorname{Cos}^{2} 45^{\circ} / 2 \approx 85 \%$ $a=b$ for $x=I, y=I \quad \mid-\operatorname{Cos}^{2} \quad 135^{\circ} / 2 \approx 85 \%$

Cirelson's bound

$\operatorname{Prob}[$ win \mid quantum $] \leq \frac{1}{2}\left(1+\frac{1}{\sqrt{2}}\right)$
Define $A^{x}=A_{0}^{x}-A_{1}^{x}$

$$
B^{x}=B_{1}^{y}-\uparrow_{\text {orthogonal projectors }}^{B_{0}^{y}}
$$

$\operatorname{Prob}[$ win $]=1 / 2+\langle\psi| A^{0} \otimes B^{0}+A^{0} \otimes B^{1}+A^{1} \otimes B^{0}-A^{1} \otimes B^{1}|\psi\rangle / 8$ $=1 / 8 \sum_{a b x y} P_{A B \mid X Y}(a b \mid x y)$
$\left.+\left(P_{A B \mid X Y}(01 \mid 00)+P_{A B \mid X Y}(10 \mid 00)\right)-P_{A B \mid X Y}(00 \mid 00)-P_{A B \mid X Y}(11 \mid 00)\right)$
$\left.+\left(P_{A B \mid X Y}(01 \mid 01)+P_{A B \mid X Y}(10 \mid 01)\right)-P_{A B \mid X Y}(00 \mid 01)-P_{A B \mid X Y}(11 \mid 01)\right)$
$\left.+\left(P_{A B \mid X Y}(01 \mid 10)+P_{A B \mid X Y}(10 \mid 10)\right)-P_{A B \mid X Y}(00 \mid 10)-P_{A B \mid X Y}(11 \mid 10)\right)$
$\left.+\left(P_{A B \mid X Y}(00 \mid 11)+P_{A B \mid X Y}(11 \mid 11)\right)-P_{A B \mid X Y}(01 \mid 11)-P_{A B \mid X Y}(10 \mid 11)\right)$

Cirelson's bound

Define $a^{x}=A^{x} \otimes \mathbf{1} \quad$ Note $\left(a^{x}\right)^{2}=\mathbf{1}=\left(b^{y}\right)^{2}$

$$
b^{y}=\mathbf{1} \otimes B^{y} \quad\left[a^{x}, b^{y}\right]=0
$$

Lemma: Let $\quad\left(a^{x}\right)^{2}=\mathbf{1}=\left(b^{y}\right)^{2} \quad\left[a^{x}, b^{y}\right]=0$
Then $a^{0} b^{0}+a^{0} b^{1}+a^{1} b^{0}-a^{1} b^{1} \leq 2 \sqrt{2} 1$
Proof: $\left.\quad a^{0} b^{0}+a^{0} b^{1}+a^{1} b^{0}-a^{1} b^{1}=\frac{1}{\sqrt{2}}\left(a^{0}\right)^{2}+\left(a^{1}\right)^{2}+\left(b^{0}\right)^{2}+\left(b^{1}\right)^{2}\right)$

$$
\begin{aligned}
& -\frac{\sqrt{2}-1}{8}\left[\left((\sqrt{2}+1)\left(a^{0}-b^{0}\right)+a^{1}-b^{1}\right)^{2}\right. \\
& \quad+\left((\sqrt{2}+1)\left(a^{0}-b^{1}\right)-a^{1}-b^{0}\right)^{2}
\end{aligned}
$$

verify with Mathematica

$$
\text { squares are non-negative } \xrightarrow{ }+\left((\sqrt{2}+1)\left(a^{1}-b^{0}\right)+a^{0}+b^{1}\right)^{2}
$$

$$
\left.+\left((\sqrt{2}+1)\left(a^{1}+b^{1}\right)-a^{0}-b^{0}\right)^{2}\right]
$$

$$
\leq \frac{1}{\sqrt{2}}\left(\left(a^{0}\right)^{2}+\left(a^{1}\right)^{2}+\left(b^{0}\right)^{2}+\left(b^{1}\right)^{2}\right)
$$

$$
\leq 2 \sqrt{2} 1
$$

Cirelson's bound

Characterisation of winning probability \& Lemma gives Cirelson's bound:

$$
\begin{aligned}
\operatorname{Prob}[\text { win }] & =1 / 2+\langle\psi| A^{0} \otimes B^{0}+A^{0} \otimes B^{1}+A^{1} \otimes B^{0}-A^{1} \otimes B^{1}|\psi\rangle / 8 \\
& \leq \frac{1}{2}+\frac{2 \sqrt{2}\langle\psi| \mathbf{1}|\psi\rangle}{8}=\frac{1}{2}\left(1+\frac{1}{\sqrt{2}}\right)
\end{aligned}
$$

Non-signaling distributions

Only requirement on $P(a b \mid x y)$ is that Alice and Bob cannot communicate (no signaling condition)

Description of Bob's system alone independent of Alice's measurement

$$
\begin{gathered}
\text { reduced state } \\
P_{B}(b \mid y)=\sum_{a}^{r e(a b \mid 0 y)=\sum_{a} P(a b \mid 1 y)} \\
P_{A}(a \mid x)=\sum_{b} P(a b \mid x 0)=\sum_{b} P(a b \mid x 1)
\end{gathered}
$$

Popescu-Rohrlich (PR) Box

$$
\begin{aligned}
& P(01 \mid 00)=P(10 \mid 00)=\frac{1}{2} \\
& P(01 \mid 01)=P(10 \mid 01)=\frac{1}{2} \\
& P(01 \mid 10)=P(10 \mid 10)=\frac{1}{2} \\
& P(00 \mid 11)=P(11 \mid 11)=\frac{1}{2}
\end{aligned}
$$

$$
\left\{\begin{array}{c}
\text { state is non-signaling: } \\
P_{B}(b \mid y)=\sum_{a} P(a b \mid 0 y)=\sum_{a} P(a b \mid 1 y)=\frac{1}{2} \\
P_{A}(a \mid x)=\sum_{b} P(a b \mid x 0)=\sum_{b} P(a b \mid x 1)=\frac{1}{2}
\end{array}\right.
$$

$$
a \neq b \text { for } x=0, y=0
$$

Alice and Bob win if
$a \neq b$ for $x=0, y=1$
$a \neq b$ for $x=l, y=0$
.They always win!
$a=b$ for $x=1, y=1$

Comparison of correlations

More parties? More questions? More answers?

Comparison of correlations

