
Bell Inequalities



• I assume familiarity with basic Quantum 
Information (i.e. Nielsen/Chuang)



How strong are 
quantum correlations?

• Bell inequalities

• as games

• geometrically



Alice and Bob win if

CHSH-Game
Clauser, Horne, Shimony & Holt

a≠b for x=0, y=0
a≠b for x=0, y=1
a≠b for x=1, y=0
a=b for x=1, y=1

Alice and Bob cannot communicate 
referee supplies questions to Alice and Bob (x and y)
(equal probability for all questions)

What is the maximal probability of winning?

Alice Bob

Referee they win if



Mathematical setup

• Alice and Bob have access to correlations
given by

• Winning condition   

• Questions are chosen with probability                  

conditional probabilty distribution



Alice and Bob win if

Classical Deterministic Strategy

a≠b for x=0, y=0
a≠b for x=0, y=1
a≠b for x=1, y=0
a=b for x=1, y=1

a=f(x)

Average winning probability  75%
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f(0)=0  f(1)=0  g(0)=1 g(1)=1Example strategy



Optimality 

• There is no better strategy

• At most three conditions are satisfied

4th3rd 2nd

is in conflict with 1st: 

• Winning probability



Alice and Bob win if

Shared Randomness

a≠b for x=0, y=0
a≠b for x=0, y=1
a≠b for x=1, y=0
a=b for x=1, y=1

Bell 
inequality

Convex combination of 
classical deterministic 

strategies -> fixed 
deterministic strategy is 

best

Can we beat this with shared                 entanglement?

z

shared randomness
(local hidden variable)

Alice Bob

Referee

deterministic strategies

Bell inequality



Quantum Strategy
POVM 

   

best to choose pure state 
(cf. convex combination)
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Entangled Qubits

50%

50%

Bob‘s state=antipodal point
for every measurement

„spooky action at a distance“

Measurement:
Madrid or 
Wellington

Source



Cos2 45°/2=                ≈ 85%
Cos2 45°/2 ≈ 85%
Cos2 45°/2 ≈ 85%
1-Cos2 135°/2≈ 85%

a≠b for x=0, y=0
a≠b for x=0, y=1
a≠b for x=1, y=0
a=b for x=1, y=1
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Violating the CHSH inequality

multiple of 45°

45°



Cirelson‘s bound
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Cirelson‘s bound

Lemma: Let 

Define Note

Then

Proof:

verify with Mathematica

squares are non-negative

qed
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Cirelson‘s bound
Characterisation of winning probability 
& Lemma gives Cirelson‘s bound:



Non-signaling distributions

Description of Bob‘s system alone independent of 
Alice‘s measurement 

reduced state
PB(b|y) =

X

a

P (ab|0y) =
X

a

P (ab|1y)

PA(a|x) =
X

b

P (ab|x0) =
X

b

P (ab|x1)

Alice Bob

Referee

P (ab|xy)

Only requirement on               is that Alice and Bob 
cannot communicate (no signaling condition) 

P (ab|xy)



Popescu-Rohrlich (PR) Box

Alice and Bob win if
a≠b for x=0, y=0
a≠b for x=0, y=1
a≠b for x=1, y=0
a=b for x=1, y=1

P (01|00) = P (10|00) = 1

2

P (01|01) = P (10|01) = 1

2

P (01|10) = P (10|10) = 1

2

P (00|11) = P (11|11) = 1

2

. They always win! 

state is non-signaling: 
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Comparison of correlations

winning 
probability

0              0.75       0.85..    1

More parties? More questions? More answers?

active research field

PR box

Prob[                 ]

Prob[                 ]

Shared rand
Quantum 

Non-sign 



Comparison of correlations

Classically local

Quantum

Nonsignaling

Conditional probability distributions

Figure 8.3: The bipartite conditional probability distributions with a fixed and finite
number of possible inputs and outputs x, y, a, b form a convex polytope. In
this polytope, the non-signaling, quantum, and classically local distributions
form a sequence of nested subsets. The classically local and the non-signaling
sets are both convex polytopes, while the quantum set is convex but not a
polytope.

Definition 8.5.1. A conditional probability distribution is called non-signaling if
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(8.21)

We can now check that all conditional distributions arising from bipartite quantum
measurements, as in equation (8.6), are non-signaling. By letting �A = trB�AB , and use
the fact that {Bb

y}y is a POVM, we find
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=tr(Aa
x � 1̂B�AB)

=tr(Aa
x�A).

(8.22)

Hence, Alice cannot notice any of Bob’s choices. By instead summing over x, we find the
analogous statement for Bob.

89

Convex sets: 
non-signaling: polytope
quantum: semidefinite
shared rand: polytope

Shared
randomness

Game is hyperplane
Prob[win]


