The traditional notion of noncontextuality in quantum theory

Deterministic hidden variable model for pure states and projective measurements

$$
\int \mu(\lambda) d \lambda=1
$$

$$
\sum_{k} \chi_{k}(\lambda)=1 \text { for all } \lambda
$$

Note: the outcomes are deterministic given λ

$$
\left|\left\langle\psi \mid \psi_{k}\right\rangle\right|^{2}=\int d \lambda \mu(\lambda) \chi_{k}(\lambda)
$$

Traditional notion of noncontextuality

A given vector may appear in many different measurements

The traditional notion of noncontextuality:
Every vector is associated with the same $\quad \chi(\lambda)$ regardless of how it is measured (i.e. the context)

The traditional notion of noncontextuality (take 2):
For every λ, every basis of vectors receives a 0-1 valuation, wherein exactly one element is assigned the value 1 (corresponding to the outcome that would occur for λ), and every vector is assigned the same value regardless of which basis it is considered a part (i.e. the context).

The traditional notion of noncontextuality (take 2):
For every λ, every basis of vectors receives a 0-1 valuation, wherein exactly one element is assigned the value 1 (corresponding to the outcome that would occur for λ), and every vector is assigned the same value regardless of which basis it is considered a part (i.e. the context).

John S. Bell

Ernst Specker (with son) and Simon Kochen

Bell-Kochen-Specker theorem: A traditional noncontextual hidden variable model of quantum theory for Hilbert spaces of dimension 3 or greater is impossible.

Example: The CEGA 18 ray proof in 4d:

Cabello, Estebaranz, Garcia-Alcaine, Phys. Lett. A 212, 183 (1996)

Example: The CEGA 18 ray proof in 4d:

Cabello, Estebaranz, Garcia-Alcaine, Phys. Lett. A 212, 183 (1996)

If we list all 9 orthogonal quadruples, each ray appears twice in the list

$0,0,0,1$	$0,0,0,1$	$1,-1,1,-1$	$1,-1,1,-1$	$0,0,1,0$	$1,-1,-1,1$	$1,1,-1,1$	$1,1,-1,1$	$1,1,1,-1$
$0,0,1,0$	$0,1,0,0$	$1,-1,-1,1$	$1,1,1,1$	$0,1,0,0$	$1,1,1,1$	$1,1,1,-1$	$-1,1,1,1$	$-1,1,1,1$
$1,1,0,0$	$1,0,1,0$	$1,1,0,0$	$1,0,-1,0$	$1,0,0,1$	$1,0,0,-1$	$1,-1,0,0$	$1,0,1,0$	$1,0,0,1$
$1,-1,0,0$	$1,0,-1,0$	$0,0,1,1$	$0,1,0,-1$	$1,0,0,-1$	$0,1,-1,0$	$0,0,1,1$	$0,1,0,-1$	$0,1,-1,0$

In each of the 9 quadruples, one ray is assigned 1 , the other three 0 Therefore, 9 rays must be assigned 1

But each ray appears twice and so there must be an even number of rays assigned 1

CONTRADICTION!

Example: Kochen and Specker's original 117 ray proof in 3d

The traditional notion of noncontextuality (take 3):
For every λ, every projector Π is assigned a value 0 or 1 regardless of which basis it is a coarse-graining of (i.e. the context)
$v(\Pi)=0$ or 1 for all Π
Coarse-graining of a measurement implies a coarsegraining of the value (because it is just post-processing)
$v\left(\sum_{k} \Pi_{k}\right)=\sum_{k} v\left(\Pi_{k}\right)$

Every measurement has some outcome

$$
v(I)=1
$$

The traditional notion of noncontextuality (take 4):
For Hermitian operators $\mathrm{A}, \mathrm{B}, \mathrm{C}$ satisfying

$$
[A, B]=0 \quad[A, C]=0 \quad[B, C] \neq 0
$$

the value assigned to A should be independent of whether it is measured together with B or together with C (i.e. the context)

Measure $A=$ measure projectors onto eigenspaces of $A,\left\{\Pi_{a}\right\}$

$$
A=\sum_{a} a \Pi_{a} \quad \rightarrow \quad v(A)=\sum_{a} a v\left(\Pi_{a}\right)
$$

Measure A in context of B
$=$ measure projectors onto joint eigenspaces of A and $B,\left\{\Pi_{a b}\right\}$ then coarse-grain over B outcome $\Pi_{a}=\sum_{b} \Pi_{a b}$

Measure A in context of C
$=$ measure projectors onto joint eigenspaces of A and $C,\left\{\Pi_{a c}\right\}$
Then coarse-grain over C outcome $\Pi_{a}=\sum_{c} \Pi_{a c}$
$v\left(\Pi_{a}\right)$ is independent of context $\rightarrow v(A)$ is independent of context

Functional relationships among commuting Hermitian operators must be respected by their values

$$
\begin{gathered}
\text { If } f(L, M, N, \ldots)=0 \\
\text { then } f(v(L), v(M), v(N), \ldots)=0
\end{gathered}
$$

Proof: the possible sets of eigenvalues one can simultaneously assign to L, M, N, \ldots are specified by their joint eigenstates. By acting the first equation on each of the joint eigenstates, we get the second.

Example: Mermin's magic square proof in 4d

X_{1}	X_{2}	$X_{1} X_{2}$	I	$\begin{aligned} X_{1} X_{2}\left(X_{1} X_{2}\right) & =I \\ Y_{1} Y_{2}\left(Y_{1} Y_{2}\right) & =I \end{aligned}$
Y_{2}	Y_{1}	$Y_{1} Y_{2}$	I	$\left(X_{1} Y_{2}\right)\left(Y_{1} X_{2}\right)\left(Z_{1} Z_{2}\right)=I$
				$X_{1} Y_{2}\left(X_{1} Y_{2}\right)=I$
$X_{1} Y_{2}$	$Y_{1} X_{2}$	$Z_{1} Z_{2}$	I	$Y_{1} X_{2}\left(Y_{1} X_{2}\right)=I$
I	I	-I		$\left(X_{1} X_{2}\right)\left(Y_{1} Y_{2}\right)\left(Z_{1} Z_{2}\right)=-I$
$v\left(X_{1}\right) v\left(X_{2}\right) v\left(X_{1} X_{2}\right)=1$				
$v\left(Y_{1}\right) v\left(Y_{2}\right) v\left(Y_{1} Y_{2}\right)=1$				Product of LHSs $=+1$
$v\left(X_{1} Y_{2}\right) v\left(Y_{1} X_{2}\right) v\left(Z_{1} Z_{2}\right)=1$				Product of RHSs $=-1$
$v\left(X_{1}\right) v\left(Y_{2}\right) v\left(X_{1} Y_{2}\right)=1$				CONTRADICTION
$v\left(Y_{1}\right) v\left(X_{2}\right) v\left(Y_{1} X_{2}\right)=1$				
$v\left(X_{1} X_{2}\right) v\left(Y_{1} Y_{2}\right) v\left(Z_{1} Z_{2}\right)=-1$				

Problems with the traditional definition of noncontextuality:

- applies only to projective measurements
- applies only to deterministic hidden variable models
- applies only to models of quantum theory

An operational notion of noncontextuality would determine

- whether any given operational theory admits of a noncontextual model
- whether any given experimental data can be explained by a noncontextual model

The traditional notion of noncontextuality extended to any operational theory

Operational theories

These are defined as lists of instructions
An operational theory specifies
$p(k \mid \mathrm{P}, \mathrm{M}) \equiv \begin{aligned} & \text { The probability of outcome } \mathrm{k} \text { of } \\ & \mathrm{M} \text { given } \mathrm{P}\end{aligned}$

A deterministic hidden variable model of an operational theory
Specifies an ontic state space Λ

Preparation

Measurement

$$
\int \mu_{\mathrm{P}}(\lambda) d \lambda=1
$$

$$
\begin{aligned}
& \chi_{\mathrm{M}, k} \in\{0,1\} \\
& \sum_{k} \chi_{\mathrm{M}, k}(\lambda)=1 \text { for all } \lambda
\end{aligned}
$$

$$
\chi_{\mathrm{M}, 1}(\lambda)
$$

$$
p(k \mid \mathrm{P}, \mathrm{M})=\int d \lambda \chi_{\mathrm{M}, k}(\lambda) \mu_{\mathrm{P}}(\lambda)
$$

Operational definition of joint measurability

Operational definition of joint measurability

Definition of a traditionally noncontextual hidden variable model for an operational theory

One for which:
Outcomes are fixed deterministically by the ontic state λ Outcomes are independent of the context of the measurement

Example:

M_{1} and M_{2} jointly measurable M_{1} and M_{3} jointly measurable

Outcome assigned to M_{1} by λ is independent of context

Ernst Specker, "The logic of propositions which are not simultaneously decidable", Dialectica 14, 239 (1960).

Specker's example

If the outcomes are fixed deterministically by the ontic state and are independent of the context in which the measurement is performed, then

$$
p(\text { success }) \leq \frac{2}{3}
$$

Frustrated Networks

Nodes are binary variables
Edges imply joint measurability
\because Outcomes agree
$\propto-\ldots--$ Outcomes disagree
Frustration = no valuation satisfying all correlations

If the outcomes are fixed deterministically by the ontic state and are independent of the context in which the measurement is performed, then

$$
p(\text { success }) \leq \frac{3}{4}
$$

Locality + Determinism
\rightarrow independence of outcomes on remote contexts

Klyachko's example

$$
p(\text { success }) \leq \frac{4}{5}
$$

5 projective mmts:

$$
\begin{aligned}
& \left\{\left|l_{1}\right\rangle\left\langle l_{1}\right|, I-\left|l_{1}\right\rangle\left\langle l_{1}\right|\right\} \\
& \left\{\left|l_{2}\right\rangle\left\langle l_{2}\right|, I-\left|l_{2}\right\rangle\left\langle l_{2}\right|\right\} \\
& \left\{\left|l_{3}\right\rangle\left\langle l_{3}\right|, I-\left|l_{3}\right\rangle\left\langle l_{3}\right|\right\} \\
& \left\{\left|l_{4}\right\rangle\left\langle l_{4}\right|, I-\mid l_{4}^{\rangle}\left\langle l_{4}\right|\right\} \\
& \left\{\left|l_{5}\right\rangle\left\langle l_{5}\right|, I-\left|l_{5}\right\rangle\left\langle l_{5}\right|\right\}
\end{aligned}
$$

where $\left\langle l_{i} \mid l_{i \oplus 1}\right\rangle=0 \quad i \in\{1, \ldots, 5\}$

Klyachko's example

5 projective mmts:

$$
\begin{aligned}
& \left\{\left|l_{1}\right\rangle\left\langle l_{1}\right|, I-\left|l_{1}\right\rangle\left\langle l_{1}\right|\right\} \\
& \left\{\left|l_{2}\right\rangle\left\langle l_{2}\right|, I-\left|l_{2}\right\rangle\left\langle l_{2}\right|\right\} \\
& \left\{\left|l_{3}\right\rangle\left\langle l_{3}\right|, I-\left|l_{3}\right\rangle\left\langle l_{3}\right|\right\} \\
& \left\{\left|l_{4}\right\rangle\left\langle l_{4}\right|, I-\mid l_{4}^{\rangle\left\langle l_{4}\right|\right\}}\right. \\
& \left\{\left|l_{5}\right\rangle\left\langle l_{5}\right|, I-\left|l_{5}\right\rangle\left\langle l_{5}\right|\right\}
\end{aligned}
$$

where $\left\langle l_{i} \mid l_{i \oplus 1}\right\rangle=0 \quad i \in\{1, \ldots, 5\}$

Klyachko's example

5 projective mmts:

$$
\begin{aligned}
& \left\{\left|l_{1}\right\rangle\left\langle l_{1}\right|, I-\left|l_{1}\right\rangle\left\langle l_{1}\right|\right\} \\
& \left\{\left|l_{2}\right\rangle\left\langle l_{2}\right|, I-\left|l_{2}\right\rangle\left\langle l_{2}\right|\right\} \\
& \left\{\left|l_{3}\right\rangle\left\langle l_{3}\right|, I-\left|l_{3}\right\rangle\left\langle l_{3}\right|\right\} \\
& \left\{\left|l_{4}\right\rangle\left\langle l_{4}\right|, I-\mid l_{4}^{\rangle\left\langle l_{4}\right|\right\}}\right. \\
& \left\{\left|l_{5}\right\rangle\left\langle l_{5}\right|, I-\left|l_{5}\right\rangle\left\langle l_{5}\right|\right\}
\end{aligned}
$$

where $\left\langle l_{i} \mid l_{i \oplus 1}\right\rangle=0 \quad i \in\{1, \ldots, 5\}$

5 projective mmts:

$$
\begin{aligned}
& \left\{\left|l_{1}\right\rangle\left\langle l_{1}\right|, I-\left|l_{1}\right\rangle\left\langle l_{1}\right|\right\} \\
& \left\{\left|l_{2}\right\rangle\left\langle l_{2}\right|, I-\left|l_{2}\right\rangle\left\langle l_{2}\right|\right\} \\
& \left\{\left|l_{3}\right\rangle\left\langle l_{3}\right|, I-\left|l_{3}\right\rangle\left\langle l_{3}\right|\right\} \\
& \left\{\left|l_{4}\right\rangle\left\langle l_{4}\right|, I-\mid l_{4}^{\rangle}\left\langle l_{4}\right|\right\} \\
& \left\{\left|l_{5}\right\rangle\left\langle l_{5}\right|, I-\left|l_{5}\right\rangle\left\langle l_{5}\right|\right\}
\end{aligned}
$$

where $\left\langle l_{i} \mid l_{i \oplus 1}\right\rangle=0 \quad i \in\{1, \ldots, 5\}$

$$
\cos ^{2} \theta=\frac{1}{\sqrt{5}}
$$

5 projective mmts:

$$
\begin{aligned}
& \left\{\left|l_{1}\right\rangle\left\langle l_{1}\right|, I-\left|l_{1}\right\rangle\left\langle l_{1}\right|\right\} \\
& \left\{\left|l_{2}\right\rangle\left\langle l_{2}\right|, I-\left|l_{2}\right\rangle\left\langle l_{2}\right|\right\} \\
& \left\{\left|l_{3}\right\rangle\left\langle l_{3}\right|, I-\left|l_{3}\right\rangle\left\langle l_{3}\right|\right\} \\
& \left\{\left|l_{4}\right\rangle\left\langle l_{4}\right|, I-\left|l_{4}^{\rangle} l_{4}\right|\right\} \\
& \left\{\left|l_{5}\right\rangle\left\langle l_{5}\right|, I-\left|l_{5}\right\rangle\left\langle l_{5}\right|\right\}
\end{aligned}
$$

where $\left\langle l_{i} \mid l_{i \oplus 1}\right\rangle=0 \quad i \in\{1, \ldots, 5\}$

Klyachko's example

$$
\cos ^{2} \theta=\frac{1}{\sqrt{5}}
$$

5 projective mmts:

$$
\begin{aligned}
& \left\{\left|l_{1}\right\rangle\left\langle l_{1}\right|, I-\left|l_{1}\right\rangle\left\langle l_{1}\right|\right\} \\
& \left\{\left|l_{2}\right\rangle\left\langle l_{2}\right|, I-\left|l_{2}\right\rangle\left\langle l_{2}\right|\right\} \\
& \left\{\left|l_{3}\right\rangle\left\langle l_{3}\right|, I-\left|l_{3}\right\rangle\left\langle l_{3}\right|\right\} \\
& \left\{\left|l_{4}\right\rangle\left\langle l_{4}\right|, I-\mid l_{4}^{\rangle\left\langle l_{4}\right|\right\}}\right. \\
& \left\{\left|l_{5}\right\rangle\left\langle l_{5}\right|, I-\left|l_{5}\right\rangle\left\langle l_{5}\right|\right\}
\end{aligned}
$$

where $\left\langle l_{i} \mid l_{i \oplus 1}\right\rangle=0 \quad i \in\{1, \ldots, 5\}$
Preparation: the ψ that lies on the symmetry axis

Klyachko's example

Consider measuring:

$$
\begin{aligned}
& \left\{\left|l_{1}\right\rangle\left\langle l_{1}\right|, I-\left|l_{1}\right\rangle\left\langle l_{1}\right|\right\} \\
& \left\{\left|l_{2}\right\rangle\left\langle l_{2}\right|, I-\left|l_{2}\right\rangle\left\langle l_{2}\right|\right\}
\end{aligned}
$$

$$
\cos ^{2} \theta=\frac{1}{\sqrt{5}}
$$

Equivalently: $\left\{\left|l_{1}\right\rangle\left\langle l_{1}\right|,\left|l_{2}\right\rangle\left\langle l_{2}\right|,\left|l_{12}^{-}\right\rangle\left\langle l_{12}^{-}\right|\right\}$

Klyachko's example

Consider measuring:

$$
\begin{array}{lc}
\left\{\left|l_{1}\right\rangle\left\langle l_{1}\right|, I-\left|l_{1}\right\rangle\left\langle l_{1}\right|\right\} \\
\left\{\left|l_{2}\right\rangle\left\langle l_{2}\right|, I-\left|l_{2}\right\rangle\left\langle l_{2}\right|\right\} & \cos ^{2} \theta=\frac{1}{\sqrt{5}}
\end{array}
$$

Equivalently: $\left\{\left|l_{1}\right\rangle\left\langle l_{1}\right|,\left|l_{2}\right\rangle\left\langle l_{2}\right|,\left|l_{12}^{-}\right\rangle\left\langle l_{12}^{-}\right|\right\}$

Klyachko's example

Consider measuring:

$$
\begin{aligned}
& \left\{\left|l_{1}\right\rangle\left\langle l_{1}\right|, I-\left|l_{1}\right\rangle\left\langle l_{1}\right|\right\} \\
& \left\{\left|l_{2}\right\rangle\left\langle l_{2}\right|, I-\left|l_{2}\right\rangle\left\langle l_{2}\right|\right\}
\end{aligned}
$$

$$
\cos ^{2} \theta=\frac{1}{\sqrt{5}}
$$

Equivalently: $\left\{\left|l_{1}\right\rangle\left\langle l_{1}\right|,\left|l_{2}\right\rangle\left\langle l_{2}\right|,\left|l_{12}^{-}\right\rangle\left\langle l_{12}^{-}\right|\right\}$
$\left.\left\{\mid l_{1}\right)\left\langle l_{1}\right|, I-\left|l_{1}\right\rangle\left\langle l_{1}\right|\right\}$
$\left\{\left|l_{2}\right\rangle\left\langle l_{2}\right|, I-\mathscr{l}_{\left.\left.l_{2}\right\rangle\left\langle l_{2}\right|\right\}}\right.$
$\left\{\left|l_{1}\right\rangle\left\langle l_{1} \mid, I-\Omega_{1}\right\rangle\left\langle l_{1}\right|\right\}$
$\left\{\left|l_{2}\right\rangle\left\langle l_{2}\right|, I-\left|l_{2}\right\rangle\left\langle l_{2}\right|\right\}$

$$
\begin{aligned}
& \left\{\left|l_{1}\right\rangle\left\langle l_{1}\right|, I-\mathscr{l}_{\left.\left.l_{1}\right\rangle\left\langle l_{1}\right|\right\}}\right. \\
& \left\{\left|l_{2}\right\rangle\left\langle l_{2}\right|, I-\left|l_{2}\right\rangle\left\langle l_{2}\right|\right\}
\end{aligned}
$$

Klyachko's example

Consider measuring:

$$
\begin{aligned}
& \left\{\left|l_{1}\right\rangle\left\langle l_{1}\right|, I-\left|l_{1}\right\rangle\left\langle l_{1}\right|\right\} \\
& \left\{\left|l_{2}\right\rangle\left\langle l_{2}\right|, I-\left|l_{2}\right\rangle\left\langle l_{2}\right|\right\}
\end{aligned}
$$

$$
\cos ^{2} \theta=\frac{1}{\sqrt{5}}
$$

Equivalently: $\left\{\left|l_{1}\right\rangle\left\langle l_{1}\right|,\left|l_{2}\right\rangle\left\langle l_{2}\right|,\left|l_{12}^{-}\right\rangle\left\langle l_{12}^{-}\right|\right\}$

$$
\begin{aligned}
& \left.\begin{array}{c}
\left.\left\{\mid l_{1}\right)\left\langle l_{1}\right|, I-\left|l_{1}\right\rangle\left\langle l_{1}\right|\right\} \\
\left\{\left|l_{2}\right\rangle\left\langle l_{2}\right|, I-\left\{l_{2}\right\rangle\left\langle l_{2}\right|\right\}
\end{array}\right\} \quad \begin{array}{c}
\text { prob. }\left|\left\langle\psi \mid l_{1}\right\rangle\right|^{2} \\
=\frac{1}{\sqrt{5}}
\end{array} \\
& \left.\begin{array}{r}
\left\{\left|l_{1}\right\rangle\left\langle l_{1}\right|, I-\int\left\{l_{1}\right\rangle\left\langle l_{1}\right|\right\} \\
\left\{\left|l_{2}\right\rangle\left\langle l_{2}\right|, I-\left|l_{2}\right\rangle\left\langle l_{2}\right|\right\}
\end{array}\right] \quad \begin{array}{c}
\text { prob. }\left|\left\langle\psi \mid l_{2}\right\rangle\right|^{2} \\
=\frac{1}{\sqrt{5}}
\end{array} \\
& \left.\begin{array}{c}
\left\{\left|l_{1}\right\rangle\left\langle l_{1}\right|, I-\Omega\left|l_{1}\right\rangle\left\langle l_{1}\right|\right\} \\
\left\{\left|l_{2}\right\rangle\left\langle l_{2}\right|, I-\left\{l_{2}\right\rangle\left\langle l_{2}\right|\right\}
\end{array}\right] \quad \begin{array}{c}
\text { prob. }\left|\left\langle\psi \mid l_{-12}^{-}\right\rangle\right|^{2} \\
=1-\frac{2}{\sqrt{5}}
\end{array}
\end{aligned}
$$

Klyachko's example

Consider measuring:

$$
\begin{aligned}
& \left\{\left|l_{1}\right\rangle\left\langle l_{1}\right|, I-\left|l_{1}\right\rangle\left\langle l_{1}\right|\right\} \\
& \left\{\left|l_{2}\right\rangle\left\langle l_{2}\right|, I-\left|l_{2}\right\rangle\left\langle l_{2}\right|\right\}
\end{aligned}
$$

$$
\cos ^{2} \theta=\frac{1}{\sqrt{5}}
$$

Equivalently: $\left\{\left|l_{1}\right\rangle\left\langle l_{1}\right|,\left|l_{2}\right\rangle\left\langle l_{2}\right|,\left|l_{12}^{-}\right\rangle\left\langle\left\langle l_{12}^{-}\right|\right\}\right.$

$\left\{\left|l_{2}\right\rangle\left\langle l_{2}\right|, I-\left\{l_{2}\right\rangle\left\langle l_{2}\right|\right\}$

$$
\begin{gathered}
\text { Probability of } \\
\text { anticorreled outcomes } \\
\left|\left\langle\psi \mid l_{1}\right\rangle\right|^{2}+\left|\left\langle\psi \mid l_{2}\right\rangle\right|^{2} \\
=\frac{2}{\sqrt{5}}
\end{gathered}
$$

$|\psi\rangle$

$\left.\begin{array}{c}\left\{\left|l_{1}\right\rangle\left\langle l_{1} \mid, I-\mathscr{l}_{\left.l_{1}\right\rangle}\right\rangle\left(l_{1} \mid\right\}\right. \\ \left\{\left|l_{2}\right\rangle\left\langle l_{2}\right|, I-I-\left\{_{2}\right\rangle\left\langle l_{2}\right|\right\}\end{array}\right\} \begin{gathered}\left.\text { prob. }|\langle\psi||_{12}^{-}\right\rangle\left.\right|^{2} \\ =1-\frac{2}{\sqrt{5}}\end{gathered}$

Klyachko's example

$$
\cos ^{2} \theta=\frac{1}{\sqrt{5}}
$$

Similarly for any pair of measurements...

Probability of anticorreled outcomes

$$
=\frac{2}{\sqrt{5}}
$$

Klyachko's example

$$
\cos ^{2} \theta=\frac{1}{\sqrt{5}}
$$

Similarly for any pair of measurements...

Probability of

 anticorreled outcomes$$
=\frac{2}{\sqrt{5}}
$$

Quantum probability of success

$$
p(\text { success })=\frac{2}{\sqrt{5}} \simeq 0.89>\frac{4}{5}
$$

A generalized notion of noncontextuality for any operational theory

A hidden variable model of an operational theory
Specifies an ontic state space Λ

Preparation

Measurement

$$
\int \mu_{\mathrm{P}}(\lambda) d \lambda=1
$$

$$
0 \leq \xi_{\mathrm{M}, k} \leq 1
$$

$$
\sum_{k} \xi_{\mathrm{M}, k}(\lambda)=1 \text { for all } \lambda
$$

$$
p(k \mid \mathrm{P}, \mathrm{M})=\int d \lambda \xi_{\mathrm{M}, k}(\lambda) \mu_{\mathrm{P}}(\lambda)
$$

Generalized definition of noncontextuality:

A hidden variable model of an operational theory is noncontextual if
 Operational equivalence
 of two experimental procedures
 Equivalent representations in the hidden variable model

Measurement noncontextuality

