Sheet 3

Due date: 16 March 2012

Exercise 1 [Multipole expansion]:

- (i) Consider a charge configuration with Cartesian multipole moments q, \mathbf{p} und Q_{ij} with respect to a coordinate system S, and Cartesian multipole moments \hat{q} , $\hat{\mathbf{p}}$ and \hat{Q}_{ij} with respect to a coordinate system \hat{S} shifted by the vector \mathbf{R} relatively to S. The coordinate axis of S and \hat{S} are assumed to be parallel. What is the relation between the monopole-, dipole- and quadrupole moments in the two coordinate systems?
- (ii) If $q \neq 0$, can **R** be chosen such that $\hat{\mathbf{p}} = 0$? Moreover, if $q \neq 0$ and $\mathbf{p} \neq \mathbf{0}$, can **R** be chosen such that $\hat{Q}_{ij} = 0$?

Exercise 2 [Magnetic field of an inductor]: Consider an inductor with radius R and length L along the z-axis (the rotation axis of the inductor). Furthermore, let n be the number of windings per unit length, and I the electric current through the inductor. Compute the z-component of the magnetic field for an arbitrary point on the z-axis, and determine the magnetic field for $L \to \infty$ with n held fixed.

[Hint:
$$\int dx \frac{1}{\sqrt{x^2 + w^2}} = \frac{x}{w^2 \cdot \sqrt{x^2 + w^2}}$$
.]

Exercise 3 [Force between a wire and a conductor loop]: Consider an infinitely long, straight wire and a conductor loop with radius a, both lying in the *x-y*-plane. What is the force \vec{F} on the conductor loop and the wire if b is the distance between the center of the conductor loop and the wire (with b > a), I_1 the electric current through the wire, and I_2 the current through the conductor loop?

[**Hint**: Use the integral of exercise 2 as well as $\int_{0}^{2\pi} dt \frac{1}{s + \cos t} = \frac{2\pi}{\sqrt{s^2 - 1}}$, for s > 1.]