Sheet 1

Due date: 2 March 2012

Exercise 1 [Field of a sphere with a spherical cavity]: A sphere with homogeneous charge density ρ and radius R_{A} contains a spherical cavity with radius R_{I} whose center is shifted by the vector a with respect to the center of the sphere $\left(R_{I}+|\mathbf{a}|<R_{A}\right)$. Compute the electric field strength in the cavity.
[Hint: Use Gauss's law as well as the superposition principle.]

Exercise 2 [Electric potential of a hydrogen atom]: The electric potential of a hydrogen atom is given by

$$
\phi(\mathbf{r})=k \frac{e}{a_{0}} \mathrm{e}^{-\frac{2|\mathbf{r}|}{a_{0}}}\left(1+\frac{a_{0}}{|\mathbf{r}|}\right),
$$

where e is the elementary charge and a_{0} is the Bohr radius. Find the charge density distribution $\rho(\mathbf{r})$ of this potential, and verify that the hydrogen atom is electrically neutral.
[Hint: Use Poisson's equation as well as the identities

$$
\begin{aligned}
\Delta\left(\frac{1}{|\mathbf{r}|}\right) & =-4 \pi \delta^{(3)}(\mathbf{r}) \\
\int_{0}^{\infty} \mathrm{d} x x^{n} \mathrm{e}^{-\beta x} & \left.=(-1)^{n} \frac{\partial^{n}}{\partial \beta^{n}}\left[\int_{0}^{\infty} \mathrm{d} x \mathrm{e}^{-\beta x}\right]=\frac{n!}{\beta^{n+1}} \quad(\beta>0) .\right]
\end{aligned}
$$

Exercise 3 [Conducting sphere in an electric field]: A conducting sphere with radius R and total charge Q is brought into a homogeneous electric field $\mathbf{E}^{0}=E_{0} \mathbf{e}_{3}$. Compute the electric potential of this configuration.
[Hint: Motivate the following ansatz in spherical coordinates

$$
\Phi=f_{0}(r)+f_{1}(r) \cos \theta,
$$

and solve Laplace's equation $\Delta \Phi=0$ with

$$
\Delta \Phi(r, \theta, \phi)=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \Phi}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \cdot \frac{\partial}{\partial \theta}\left(\sin \theta \cdot \frac{\partial \Phi}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \cdot \frac{\partial^{2} \Phi}{\partial \phi^{2}}
$$

To find the solution use the following boundary conditions:
(i) At infinity the electric field goes to the homogeneous electric field.
(ii) The electric potential is constant on the surface of the sphere.

The remaining parameter is determined by Gauss's law.]

