Sheet 0

Due date: 2 March 2012

Exercise 1 [Identities of vector analysis]: Prove the following basic identities of vector analysis:

$$
\begin{aligned}
\mathbf{a} \cdot(\mathbf{b} \wedge \mathbf{c}) & =\mathbf{b} \cdot(\mathbf{c} \wedge \mathbf{a})=\mathbf{c} \cdot(\mathbf{a} \wedge \mathbf{b}) \\
\mathbf{a} \wedge(\mathbf{b} \wedge \mathbf{c}) & =(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c} \\
(\mathbf{a} \wedge \mathbf{b}) \cdot(\mathbf{c} \wedge \mathbf{d}) & =(\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d})-(\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c}) \\
\operatorname{curl} \operatorname{grad} \psi & =0 \\
\operatorname{div}(\operatorname{curl} \mathbf{A}) & =0 \\
\operatorname{curl}(\operatorname{curl} \mathbf{A}) & =\operatorname{grad}(\operatorname{div} \mathbf{A})-\Delta \mathbf{A} \\
\operatorname{div}(\psi \mathbf{A}) & =\mathbf{A} \cdot \operatorname{grad} \psi+\psi \operatorname{div} \mathbf{A} \\
\operatorname{curl}(\psi \mathbf{A}) & =(\operatorname{grad} \psi) \wedge \mathbf{A}+\psi \operatorname{curl} \mathbf{A} \\
\operatorname{grad}(\mathbf{A} \cdot \mathbf{B}) & =(\mathbf{A} \cdot \nabla) \mathbf{B}+(\mathbf{B} \cdot \nabla) \mathbf{A}+\mathbf{A} \wedge \operatorname{curl} \mathbf{B}+\mathbf{B} \wedge \operatorname{curl} \mathbf{A} \\
\operatorname{div}(\mathbf{A} \wedge \mathbf{B}) & =\mathbf{B} \cdot \operatorname{curl} \mathbf{A}-\mathbf{A} \cdot \operatorname{curl} \mathbf{B},
\end{aligned}
$$

where $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \in \mathbb{R}^{3}$ are fixed vectors, ψ is a scalar field, and \mathbf{A}, \mathbf{B} are vector fields on \mathbb{R}^{3}.
[Hint: the i-th component of the wedge product $\mathbf{a} \wedge \mathbf{b}$ is given by

$$
(\mathbf{a} \wedge \mathbf{b})_{i}=\sum_{j k} \epsilon_{i j k} a_{j} b_{k},
$$

where $\epsilon_{i j k}$ is the totally antisymmetric tensor in three dimensions and $\epsilon_{123}=1$. Show that the totally antisymmetric tensor satisfies the following identities

$$
\sum_{i} \epsilon_{i j k} \epsilon_{i l m}=\delta_{j l} \delta_{k m}-\delta_{j m} \delta_{k l} \quad \text { and } \quad \sum_{i j} \epsilon_{i j k} \epsilon_{i j m}=2 \delta_{k m}
$$

Exercise 2 [Stokes' Theorem]: Let $\mathbf{D}(\mathbf{x})$ be a vector field pointing in the same direction at each point $\mathrm{x} \in \mathbb{R}^{3}$.
(i) Under which condition does the curl of $\mathbf{D}(\mathbf{x})$ vanish?
(ii) Choose a simple example of a non-rotational vector field $\mathbf{D}(\mathbf{x})$ as above, and consider a closed curve along which the line integral of $\mathbf{D}(\mathbf{x})$ does not vanish. Show that Stokes' theorem holds true in this case by direct computation.

