Sheet 0

Due date: 2 March 2012

Exercise 1 [*Identities of vector analysis*]: Prove the following basic identities of vector analysis:

$$\begin{aligned} \mathbf{a} \cdot (\mathbf{b} \wedge \mathbf{c}) &= \mathbf{b} \cdot (\mathbf{c} \wedge \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \wedge \mathbf{b}) \\ \mathbf{a} \wedge (\mathbf{b} \wedge \mathbf{c}) &= (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{a} \cdot \mathbf{b}) \mathbf{c} \\ (\mathbf{a} \wedge \mathbf{b}) \cdot (\mathbf{c} \wedge \mathbf{d}) &= (\mathbf{a} \cdot \mathbf{c}) (\mathbf{b} \cdot \mathbf{d}) - (\mathbf{a} \cdot \mathbf{d}) (\mathbf{b} \cdot \mathbf{c}) \\ \text{curl grad } \psi &= 0 \\ \text{div}(\text{curl } \mathbf{A}) &= 0 \\ \text{curl}(\text{curl } \mathbf{A}) &= \text{grad}(\text{div } \mathbf{A}) - \Delta \mathbf{A} \\ \text{div}(\psi \mathbf{A}) &= \mathbf{A} \cdot \text{grad } \psi + \psi \text{ div } \mathbf{A} \\ \text{curl}(\psi \mathbf{A}) &= (\text{grad } \psi) \wedge \mathbf{A} + \psi \text{ curl } \mathbf{A} \\ \text{grad}(\mathbf{A} \cdot \mathbf{B}) &= (\mathbf{A} \cdot \nabla) \mathbf{B} + (\mathbf{B} \cdot \nabla) \mathbf{A} + \mathbf{A} \wedge \text{curl } \mathbf{B} + \mathbf{B} \wedge \text{curl } \mathbf{A} \\ \text{div}(\mathbf{A} \wedge \mathbf{B}) &= \mathbf{B} \cdot \text{curl } \mathbf{A} - \mathbf{A} \cdot \text{curl } \mathbf{B}, \end{aligned}$$

where $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \in \mathbb{R}^3$ are fixed vectors, ψ is a scalar field, and \mathbf{A}, \mathbf{B} are vector fields on \mathbb{R}^3 .

[Hint: the *i*-th component of the wedge product $\mathbf{a} \wedge \mathbf{b}$ is given by

$$(\mathbf{a} \wedge \mathbf{b})_i = \sum_{jk} \epsilon_{ijk} \, a_j \, b_k \; ,$$

where ϵ_{ijk} is the totally antisymmetric tensor in three dimensions and $\epsilon_{123} = 1$. Show that the totally antisymmetric tensor satisfies the following identities

$$\sum_{i} \epsilon_{ijk} \epsilon_{ilm} = \delta_{jl} \delta_{km} - \delta_{jm} \delta_{kl} \quad \text{and} \quad \sum_{ij} \epsilon_{ijk} \epsilon_{ijm} = 2\delta_{km} \cdot \delta_{km} + \delta_{km} \cdot \delta_{km} + \delta_{km} \cdot \delta_{km} \cdot \delta_{km} + \delta_{km} \cdot \delta_{km} \cdot$$

Exercise 2 [Stokes' Theorem]: Let $\mathbf{D}(\mathbf{x})$ be a vector field pointing in the same direction at each point $\mathbf{x} \in \mathbb{R}^3$.

- (i) Under which condition does the curl of $\mathbf{D}(\mathbf{x})$ vanish?
- (ii) Choose a simple example of a non-rotational vector field $\mathbf{D}(\mathbf{x})$ as above, and consider a closed curve along which the line integral of $\mathbf{D}(\mathbf{x})$ does not vanish. Show that Stokes' theorem holds true in this case by direct computation.