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Exercise 8.1 Bohr–van Leeuwen theorem

Prove the Bohr–van Leeuwen theorem, which states that there is no magnetism in classical
physics.
Hint: H(p1, . . . ,pN ; q1, . . . , qN) is the Hamiltonian of the N -particle system with van-
ishing external magnetic field. In comparison, the Hamiltonian with applied magnetic
field B is then given by H(p1 − e/cA1, . . . ,pN − e/cAN ; q1, . . . , qN), where B = ∇×A
and Ai ≡ A(qi). The (thermal average of the) magnetization can be calculated using
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with the partition function Z of the system in the magnetic field.

Exercise 8.2 Landau Diamagnetism

Calculate the orbital part of the magnetization (e.g. ignore the Zeeman-term) of the free
electron gas in 3D in the limits of low temperature and small external field (T → 0, B →
0). In addition, show that the magnetic susceptibility at T = 0 and B = 0 is given by

χ = −1

3

m2

m∗2
χP , (2)

where χP is the Pauli susceptibility.1

Hint: Calculate the free energy,

F = Nµ− kBT
∑
i
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[
1 + e−(εi−µ)/kBT

]
, (3)

at T = 0 to second order in B using the Euler-Maclaurin formula,
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[f ′(n0 + 1/2)− f ′(−1/2)] . (4)

Exercise 8.3 Landau Levels in Graphene

Graphene is defined as a single two-dimensional layer of graphite, the C-atoms are ar-
ranged on a two-dimensional honeycomb lattice (cf. exercise 5). The latter is not a
Bravais-lattice, but a triangular lattice with a diatomic basis. Consequently, the recip-
rocal lattice, which is a honeycomb lattice as well, has two inequivalent points called K-
and K ′-points (see Fig. 1). The two atoms per unit cell create a valence and a conduction
band which cross linearly in one point (called the Dirac point) at the K- and K ′-points
and form the so-called Dirac cones (see Fig. 1). In undoped graphene, the Fermi energy
is exactly at the Dirac point.

1The Pauli susceptibility χP = µ2
Bρ(εF ) (at T = 0) is a concequence of the Zeeman energy-term in

the Hamiltonian for particles with non-zero spin; µB = e~
2mc ; ρ is the density of states (including the spin

degeneracy).
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Figure 1: a) First Brillouin zone of graphene with K- and K ′-points. b) Band structure
of graphene at the K- and K ′-points: the Dirac cones.

To a good approximation, the spectrum in graphene is linear at the Fermi energy and
described by the Hamiltonian2

Ĥeff = vF

(
p̂xσx + p̂yσy 0

0 p̂xσx − p̂yσy

)
, (5)

where the Pauli matrices σ act on a pseudo-spin3 and the two parts refer to the inequivalent
points K and K ′.

a) Using the Peierls-substitution p→ p− (e/c)A, find the Landau levels in graphene
for a magnetic field perpendicular to the plane (ignore the Zeeman-term).

Hint: As the 2 parts of the effective Hamiltonian Eq. (5) are independent on each
other, it is enough to consider only the first part HK = vF (pxσx + pyσy); the second
part has the same spectrum. Take the “square” of the Schrödinger equation. Note
that not only the σµ have non-trivial (anti-)commutation relations but also p and
r do not commute.

b) Determine the degeneracy of the Landau levels.

c)* Will the magnetization of graphene oscillate when changing the magnetic field?
What is the dependence of the ground state energy and the magnetization on a
small magnetic field?
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2One possible way to come to the Hamiltonian given in Eq. (5) is to recall the Eq. (7) from Solution
Sheet 5 with the formula for H within the tight-binding model on a hexagonal lattice. If you would
expand it near the Fermi point K, then substitute there ~k by p̂, you would (after a rotation of axes x,
y) get the first part of the Hamiltonian given in Eq. (5). Similarly one could obtain the second part by
expanding near K ′.

3Recall exercise 5:
(
1
0

)
does correspond to a particle on sublattice A and

(
0
1

)
to a particle on the

sublattice B.


