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Exercise 8.1 Bohr—van Leeuwen theorem

Prove the Bohr—van Leeuwen theorem, which states that there is no magnetism in classical
physics.

Hint: H(py,...,PN;q1,---,qy) is the Hamiltonian of the N-particle system with van-
ishing external magnetic field. In comparison, the Hamiltonian with applied magnetic
field B is then given by H(p, — e/cAq,...,py —e/cAN;qy,...,qy), Where B =V x A
and A; = A(q,;). The (thermal average of the) magnetization can be calculated using
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with the partition function Z of the system in the magnetic field.

Exercise 8.2 Landau Diamagnetism

Calculate the orbital part of the magnetization (e.g. ignore the Zeeman-term) of the free
electron gas in 3D in the limits of low temperature and small external field (7" — 0, B —
0). In addition, show that the magnetic susceptibility at "= 0 and B = 0 is given by
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where yp is the Pauli susceptibility.
Hint: Calculate the free energy,
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at T' = 0 to second order in B using the Euler-Maclaurin formula,
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Exercise 8.3 Landau Levels in Graphene

Graphene is defined as a single two-dimensional layer of graphite, the C-atoms are ar-
ranged on a two-dimensional honeycomb lattice (cf. exercise 5). The latter is not a
Bravais-lattice, but a triangular lattice with a diatomic basis. Consequently, the recip-
rocal lattice, which is a honeycomb lattice as well, has two inequivalent points called K-
and K'-points (see Fig. 1). The two atoms per unit cell create a valence and a conduction
band which cross linearly in one point (called the Dirac point) at the K- and K’-points
and form the so-called Dirac cones (see Fig. 1). In undoped graphene, the Fermi energy
is exactly at the Dirac point.

!The Pauli susceptibility xp = p%p(er) (at T = 0) is a concequence of the Zeeman energy-term in
the Hamiltonian for particles with non-zero spin; ug = QfZC; p is the density of states (including the spin
degeneracy).
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Figure 1: a) First Brillouin zone of graphene with K- and K’-points. b) Band structure
of graphene at the K- and K’-points: the Dirac cones.

To a good approximation, the spectrum in graphene is linear at the Fermi energy and
described by the Hamiltonian?
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where the Pauli matrices o act on a pseudo-spin® and the two parts refer to the inequivalent
points K and K’.

a) Using the Peierls-substitution p — p — (e/c) A, find the Landau levels in graphene
for a magnetic field perpendicular to the plane (ignore the Zeeman-term).

Hint: As the 2 parts of the effective Hamiltonian Eq. (5) are independent on each
other, it is enough to consider only the first part Hx = vp(p,0, + pyoy); the second
part has the same spectrum. Take the “square” of the Schrodinger equation. Note
that not only the o, have non-trivial (anti-)commutation relations but also p and
r do not commute.

b) Determine the degeneracy of the Landau levels.

¢)®* Will the magnetization of graphene oscillate when changing the magnetic field?
What is the dependence of the ground state energy and the magnetization on a
small magnetic field?
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20ne possible way to come to the Hamiltonian given in Eq. (5) is to recall the Eq. (7) from Solution
Sheet 5 with the formula for A within the tight-binding model on a hexagonal lattice. If you would
expand it near the Fermi point K, then substitute there ik by p, you would (after a rotation of axes z,
y) get the first part of the Hamiltonian given in Eq. (5). Similarly one could obtain the second part by
expanding near K’.

3Recall exercise 5: (é) does correspond to a particle on sublattice A and ((1)) to a particle on the
sublattice B.



