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Exercise 5.1 Tight-Binding Model of Graphene

Compute the low-energy band structure of graphene within a tight-binding description
taking only nearest-neighbor hopping into account!

To get started, consider the electronic configuration of C. C has four valence electrons
which occupy 2s2 and 2p2 orbitals. The hexagonal structure of the lattice suggests that
three of these valence electrons occupy hybrid sp2-orbitals to form covalent σ-bonds with
their nearest neighbors (bonding angle 2π/3). Due to the large binding energy, there are
no low-energy excitations involving these electrons. The remaining electron occupies the
pz orbital that sticks out of the planar lattice forms weaker π-bonds with the neighboring
atoms. Based on these considerations, it seems reasonable to focus solely on the electrons
in the pz-orbitals, so that the problem reduces to one electron and one orbital per atom.

Figure 1:

Hint: Before embarking into the calculation, you may wish to refresh your memory about
the unit cell and Brillouin zone for a hexagonal lattice.

To write down the hopping Hamiltonian, divide the lattice into two sublattices A and B
as shown in Fig. 1 and introduce fermionic field operators ai and bi (i labels the site)
on these sublattices. Then argue that the hopping matrix element is the same for all bi
(i = 1, 2, 3) in Fig. 1 for a given site. Use the Fourier transform,
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where N is the number of unit cells and Ra,i (Rb,i) is the position of the i-th site on
sublattice A (B) to obtain a Hamiltonian of the form
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Plot the band structure and show that the Fermi “surface” consists of two points by find-
ing the values of k for which the energy is zero.



Finally, obtain the low-energy structure by expanding the energy to leading order in small
deviations k around the Fermi points. The low-energy Hamiltonian can be shown to be
equivalent to the celebrated Dirac Hamiltonian for relativistic fermions (in a (2 + 1)-
dimensional space-time). Can you see what is ’relativistic’ about the dispersion relation?

Exercise 5.2 Specific Heat of a Semiconductor and a Metal

a) Calculate the specific heat of a semiconductor under the assumption kBT � Eg,
where Eg is the band gap. Show that it is given by an ideal gas-like part (3/2)n(T )kB
plus a correction, where n(T ) is the number of excitations. Is this correction small
or large?

Hint: First, approximate the dispersion of both the conduction and the valence
band parabolically, with the two effective masses mv and mc. Then, calculate the
chemical potential µ from the condition, that the number of electrons in the con-
duction band (ne(T )) must be equal to the number of holes in the valence band
(nh(T )).

b) Calculate the specific heat of a metal for small temperatures kBT � µ by using the
Bohr-Sommerfeld expansion
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where a1 = π2/6, a2 = 7π4/360, . . .

Hint: We use the Jellium model to describe the metal, i.e. we assume free electrons
with the dispersion relation

εk =
~2k2

2m
(4)

which occupy all states which satisfy εk < EF at T = 0. Compute the density of
states and calculate the particle density n(µ, T ) and the energy density u(µ, T ) up
to second order in T . In order to express u in terms of n and T , determine the
chemical potential µ by fixing the particle density.

Office hour:
Monday, March 26th, 2012 (9:00 to 11:00 am)
HIT K 11.3
Daniel Müller


