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Excitons

Exercise 4.1 One-Dimensional Model of a Semiconductor

Let us consider electrons moving on a one-dimensional chain. We use the so-called tight-
binding approximation. Thus, we assume that each atom has a localized electron state
and that the electrons are able to hop between neighboring atoms. This hopping process
describes the kinetic energy term.
It is most convenient to use a second-quantized language. For simplicity, we assume the
electrons to be spinless fermions. Let ci and c†i be the creation and annihilation operators
for an electron at site i, respectively. The overlap integral between neighboring electron
states is denoted by −t. Then, the kinetic energy operator is written as

H0 = −t
∑
i

(
c†ici+1 + c†i+1ci

)
. (1)

We assume that the chain containsN atoms and in the following we set the lattice constant
a = 1. Furthermore, we assume that two consecutive atoms are nonequivalent which is
modeled by an alternating potential of the form

V = v
∑
i

(−1)i c†ici. (2)

[a] Consider first the case v = 0. Show that the states created by

c†k =
1√
N

∑
j

e−ikjc†j (3)

are eigenstates of H0 with energy εk = −2t cos k.1 Here, k belongs to the first
Brillouin zone [−π, π).

[b] For v 6= 0 the eigenstates are created by

a†k = ukc
†
k + vkc

†
k+π, b†k = vkc

†
k − ukc

†
k+π (4)

where u2k + v2k = 1 (both uk and vk may be assumed to be real) for all k in the
reduced Brillouin zone [−π/2, π/2). Diagonalize the Hamilton operator and show
that it can be written in the form

H0 + V =
∑

k∈[−π
2
,π
2
)

(
−Eka†kak + Ekb

†
kbk

)
, Ek =

√
ε2k + v2. (5)

[c] Consider now the ground state of the half-filled chain (N/2 electrons). What is the
difference between the cases [a] and [b]?

1Which do satisfy the periodic boundary conditions assumed in this homework.



Exercise 4.2 Coulomb Interaction - Excitons

In the following we consider the half-filled chain with alternating potential from the pre-
vious task. Electrons are charged particles and therefore they repel. We use a simplified
version of the Coulomb potential, namely, we assume that the energy of the system is
increased by u whenever two electrons are on neighboring atoms (note that due to the
Pauli principle two spinless fermions can not be on the same site.) In second quantized
form the interaction term is written as follows:

U = u
∑
i

nini+1 = u
∑
i

c†ic
†
i+1ci+1ci. (6)

We assume that u� v, t. In this case, only the states with momentum in the vicinity of
±π/2 (boundary of the reduced Brillouin zone) are considerably affected by the Coulomb
interaction.

[a] Show that the repulsive interaction between the electrons leads to an attractive
interaction between electrons in the conduction band and holes in the valence band:

U ≈ −4u

N

∑
k,k′,q

cos(k − k′) ak+qb
†
kbk′a

†
k′+q +

���
���4u

∑
k

b†kbk . (7)

In deriving the above expression we have replaced all the vk’s and uk’s by v−π/2
(= vπ/2) and u−π/2 (= uπ/2). The second term is unimportant for the further
analysis and may be dropped out.

[b] Let us now calculate the energy of an exciton. We make the following ansatz for
the wave function of an exciton with momentum q:

|ψq〉 =
∑
k

Aqkak+qb
†
k|Ω〉 (8)

where |Ω〉 is the ground state of the system without interaction (at half filling).
Since we consider a small u we expect that the electron-hole pair is only weakly
bound and that the wave function extends over a large region in real space. On
the other hand, in reciprocal space, we expect that the exciton state is strongly
localized. Therefore, we replace cos(k − k′) in Eq. (7) by 1. Show that the energies
ωq (we are setting ~ = 1) of the exciton excitations |ψq〉 are given by the solution of

1

4u
=

1

N

∑
k

1

Ek + Ek+q − ωq
. (9)

Discuss the solution graphically. How is the excitation spectrum modified by the
interaction?

[c] Show that for small q the energy of the exciton is

ωq = 2v − u2v

t2
+

q2

2(2m∗)
(10)

where m∗ = v/(4t2) is the effective mass at the conduction band minimum.



[d] In the following we will use the continuum limit by expanding Ek ≈ v+ k2

2m∗
, k ∈ R.

Show that in the real space expression for the exciton state with q = 0,

|ψ〉 =
1

Ω

∫
drdr′f(r − r′)a (r)b†(r′)|Ω〉, (11)

f(r − r′) is determined by the Fourier-transform of A0
k w.r.t. k! As the exciton is

a bound state, f(r − r′) is expected to decay exponentially as |r − r′| → ∞, i.e.
f(r − r′) ∼ exp (−|r − r′|/λ). Derive an approximate expression for λ (This gives
an estimate of the size of the exciton)!
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