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Exercise 3.1 Two-orbital tight-binding model in 2d

Figure 1: Two-dimensional lattice of atom cores with a sketch of the atomic orbitals.

We calculate the band structure of a two-dimensional model system within the tight-
binding approximation. We consider atoms arranged in a square lattice configuration with
lattice constant a. Each atom is described by a potential V (r) giving rise to (Hydrogen-
like) atomic orbitals. Here we focus on the px- and py-orbitals only. The (single-particle)
Hamiltonian of the system is given by

H =
p2

2m
+
∑
j

V (r−Rj) (1)

with j = (jx, jy) and Rj = (jxa, jya, 0) (jx,y ∈ Z).

a) As a starting point for the tight-binding approximation, we turn to the formulation
in terms of Wannier functions. We define the Wannier function wα(r−Rj) of atom
j in band α (with α = px/y) by

Ψα,k(r) =
1√
N

∑
j

eik·Rjwα(r−Rj), (2)

where k = (kx, ky, 0) as the lattice is periodic in x- and y-direction. The different
bands originate from the two different atomic orbitals px and py. The Hamiltonian
can be written as the sum

H =
∑
α

Hα +
∑
α 6=α′

Hα,α′ , (3)

where the first term includes all the intra-band effects whereas the second one cou-
ples the two bands. In a first step, we neglect inter-orbital coupling. Show that



within the tight-binding approximation taking only nearest-neighbor hopping into
account, the Hamiltonian Hα can be written as

Hα =
∑
j

εαc
†
αjcαj + (txαc

†
α(j+x̂)cαj + tyαc

†
α(j+ŷ)cαj + h.c.). (4)

where we have omitted spin indices. Define t
x/y
α in terms of the Wannier functions

and determine relations between these coefficients.

b) Approximate the Wannier functions by atomic (hydrogen) states. Use symmetry

arguments to determine whether the t
x/y
α are positive, negative, or zero. Calculate

the resulting band structure and visualize both the band structure and the resulting
Fermi surface.

c) Next we take into account the hybridization between different orbitals. For that
purpose, we have to consider next-nearest neighbour hopping on the square diagonal.
Show that the Hamiltonian part Hα,α′ coupling the two bands can be written as

Hα,α′ =
∑
j

t+αα′c
†
α(j+x̂+ŷ)cα′j + t−αα′c

†
α(j+x̂−ŷ)cα′j + h.c. (5)

Define t±αα′ and determine the sign of t±αα′ . Calculate the resulting band structure
and visualize again both the band structure and the Fermi surface.

Exercise 3.2 Bloch Oscillations

In the quasi-classical description of a wave-packet peaked around some quasi-momentum
~k the group velocity is given by

ṙ =
1

~
∂εk
∂k

, (6)

while the change of the quasi-momentum is given by

~k̇ = Fext, (7)

with Fext the force due to applied external fields (in addition to the periodic potential).

a) We focus on the one-dimensional tight-binding model with the dispersion relation

εk = −2t cos(ka), (8)

where t is the nearest neighbor hopping constant and a the lattice constant (for
simplicity we consider only one band). Show that a uniform electric field does not
accelerate the electrons but lets them oscillate around some fixed position. This
means that, for sufficiently large fields, all metals would behave like insulators.
Why has this effect never been seen in normal metals? What would change if we
considered semiconductor superlattices instead of metals?



b) We now add a small damping term to Eq. (7) and analyze the consequences. The
rate of change of the quasi-momentum is thus given by

~k̇ = Fext −
mṙ

τ
, (9)

where τ is the relaxation time. Show that this damping can lead to a vanishing of the
oscillations and thus to a stationary solution. What is the corresponding condition
and how does the stationary solution look like? Calculate then analytically k(t) for
both situations to verify your considerations.

Office hour:
Monday, March 12th, 2012 - 13:00 to 15:00
HIT K 23.3
David Oehri


