

$$v = V_{2\vec{G}_n}$$

$$E_1 = \frac{\hbar^2}{2m} \left(\frac{2\pi}{a}\right)^2$$

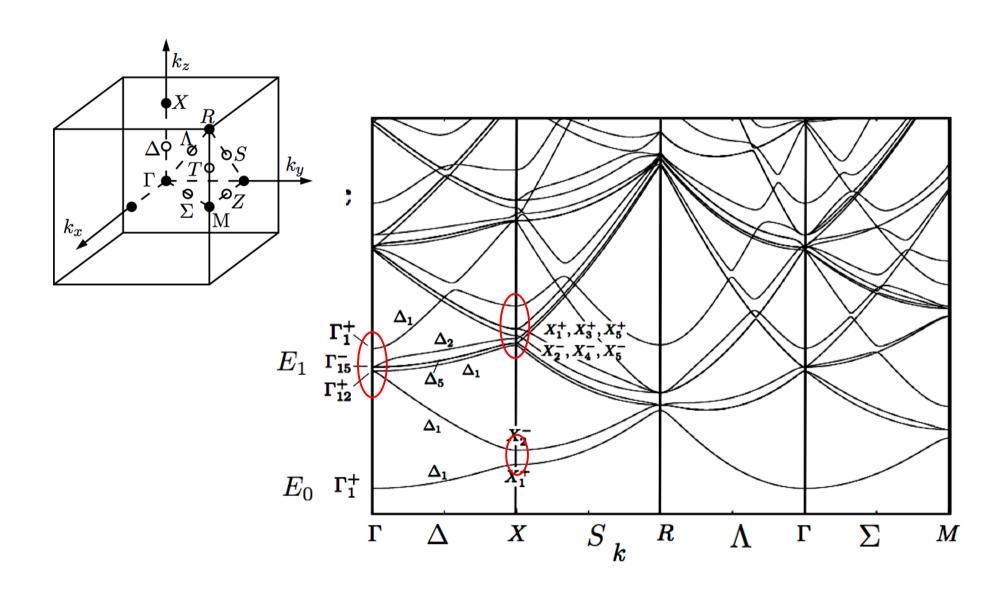
$$det \begin{bmatrix} E_{1} - E & v & u & u & u & u \\ v & E_{1} - E & u & u & u & u \\ u & u & E_{1} - E & v & u & u \\ u & u & v & E_{1} - E & u & u \\ u & u & u & v & E_{1} - E & v \\ u & u & u & v & E_{1} - E & v \end{bmatrix} = 0$$

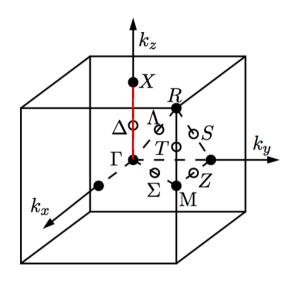
$$u_{\vec{k}=0}(\vec{r}) = \sum_{n=1}^{6} c_n e^{i \vec{r} \cdot \vec{G}_n}$$

$$G = \frac{2\pi}{a}$$

$E = \epsilon_{1\mathbf{k}=0}$	$(c_1,c_2,c_3,c_4,c_5,c_6)$	$u_{m{k}=0}(m{r})$	Γ	d_{Γ}
$\boxed{E_1+v+4u}$	$(1,1,1,1,1,1)/\sqrt(6)$	$\phi_0 = \cos Gx + \cos Gy + \cos Gz$	Γ_1^+	1
$\boxed{E_1+v-2u}$	$(-1,-1,-1,-1,2,2)/2\sqrt{3}$	$\phi_{3z^2-r^2} = 2\cos Gz - \cos Gx - \cos Gy ,$	Γ_{12}^+	2
	(1,1,-1,-1,0,0)/2	$\phi_{\sqrt{3}(x^2-y^2)} = \sqrt{3}(\cos Gx - \cos Gy)$		
$oxed{E_1-v}$	$(1,-1,0,0,0,0)/\sqrt{2}$	$\phi_x = \sin Gx$	Γ_{15}^-	3
	$(0,0,1,-1,0,0)/\sqrt{2}$	$\phi_y = \sin Gy$		
	$(0,0,0,0,1,-1)/\sqrt{2}$	$\phi_z = \sin Gz$		

even	basis function	odd	basis function
Γ_1^+	$1, x^2 + y^2 + z^2$	Γ_1^-	$xyz(x^2-y^2)(y^2-z^2)(z^2-x^2)$
$\mid \Gamma_2^+$	$(x^2-y^2)(y^2-z^2)(z^2-x^2)$	$\parallel\Gamma_2^-$	xyz
Γ_{12}^+	$\{2z^2-x^2-y^2,\sqrt{3}(x^2-y^2)\}$	Γ_{12}^-	$\{xyz\{2z^2-x^2-y^2,\sqrt{3}(x^2-y^2)\}$
Γ_{15}^+	$\{s_x,s_y,s_x\}$	Γ_{15}^-	$\{x,y,z\}$
Γ_{25}^+	$\{yz,zx,xy\}$	Γ_{25}^{-}	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$



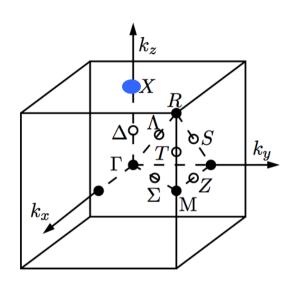


 Δ -line

compatibility relations

O_h	C_{4v}	
Γ_1^+	Δ_1	1
Γ_{12}^+	$\Delta_1\oplus\Delta_3$	1+1
Γ_{15}^-	$\Delta_1 \oplus \Delta_5$	1+2

representation	base function
Δ_1	1,z
Δ_2	$xy(x^2-y^2)$
Δ_3	x^2-y^2
Δ_4	xy
Δ_5	$\mid \{x,y\}$

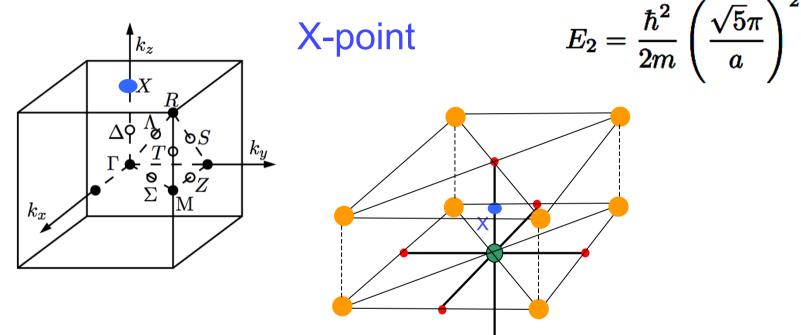


X-point
$$E_0 = \frac{\hbar^2}{2m} \left(\frac{G}{2}\right)^2$$

parabolas around
$$ec{G}_1 = ec{0} \qquad ec{G}_2 = rac{2\pi}{a}(0,0,1)$$

$$X_{1}^{+}: \quad E = \frac{\hbar^{2}}{2m} \left(\frac{\pi}{a}\right)^{2} - |V_{\vec{G}_{2}}|, \quad e^{iG_{2}z/2} \cos\left(\frac{G_{2}z}{2}\right),$$

$$X_{2}^{-}: \quad E = \frac{\hbar^{2}}{2m} \left(\frac{\pi}{a}\right)^{2} + |V_{\vec{G}_{2}}|, \quad e^{iG_{2}z/2} \sin\left(\frac{G_{2}z}{2}\right).$$



parabolas around

$$\vec{G}_1 = \frac{2\pi}{a}(1,0,0), \quad \vec{G}_2 = \frac{2\pi}{a}(1,0,1), \quad \vec{G}_3 = \frac{2\pi}{a}(-1,0,0), \quad \vec{G}_4 = \frac{2\pi}{a}(-1,0,1),$$

$$\vec{G}_5 = \frac{2\pi}{a}(0,1,0), \quad \vec{G}_6 = \frac{2\pi}{a}(0,1,1), \quad \vec{G}_7 = \frac{2\pi}{a}(0,-1,0), \quad \vec{G}_8 = \frac{2\pi}{a}(0,-1,1).$$

X-point
$$E_2 = \frac{\hbar^2}{2m} \left(\frac{\sqrt{5}\pi}{a} \right)^2$$

representation	$u_{oldsymbol{k}=\pi(0,0,1)/a}(oldsymbol{r})$	degeneracy
X_1^+	$(\cos(Gx) + \cos(Gy))e^{iGz/2}\cos(Gz/2)$	1
X_3^+	$(\cos(Gx) - \cos(Gy))e^{iGz/2}\cos(Gz/2)$	1
X_5^+	$\{\sin(Gx)e^{-iGz/2}\sin(Gz/2),\sin(Gy)e^{iGz/2}\sin(Gz/2)\}$	2
X_2^-	$(\cos(Gx) + \cos(Gy))e^{iGz/2}\sin(Gz/2)$	1
X_4^-	$(\cos(Gx) - \cos(Gy))e^{iGz/2}\sin(Gz/2)$	1
X_5^-	$\left\{\sin(Gx)e^{iGz/2}\cos(Gz/2),\sin(Gy)e^{iGz/2}\cos(Gz/2)\right\}$	2

even	base function	odd	base function
X_1^+	1	X_1^-	$xyz(x^2-y^2)$
X_2^+	$egin{array}{c} xy(x^2-y^2) \ x^2-y^2 \end{array}$	X_2^-	z
X_3^+	$ x^2 - y^2 $	X_3^-	xyz
X_4^+	xy	X_4^-	$\left egin{array}{c} xyz \ z(x^2-y^2) \end{array} ight $
X_5^+	$\{zx,zy\}$	X_5^-	$\{x,y\}$