Definition: group
$$\mathcal{G}$$
 is a set $\mathcal{G} = \{a, b, c, ...\}$ with a product \cdot
 $a \in \mathcal{G}$
 $b \in \mathcal{G}$ \longrightarrow $a \cdot b \in \mathcal{G}$ associative $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
identity $E \in \mathcal{G}$ with $E \cdot a = a \cdot E = a$
inverse $a \in \mathcal{G}$ \longrightarrow $a^{-1} \in \mathcal{G}$ with $a^{-1} \cdot a = a \cdot a^{-1} = E$

Example: C_{4v} symmetry operation of square $C_{4v} = \{E, C_4, C_4^{-1}, C_2, \sigma_h, \sigma'_h, \sigma_d, \sigma'_d\}$ $C_4 \cdot C_4 = C_2 \qquad \underbrace{\sigma_h \cdot C_4 = \sigma'_d \quad C_4 \cdot \sigma_h = \sigma_d}_{\sigma_h \cdot C_4 \neq C_4 \cdot \sigma_h}$ non-abelian

subgroup: group \mathcal{G}' subset of \mathcal{G} $\mathcal{G}' \subset \mathcal{G}$

representations

Representation of a group

represent elements of group as linear operations on a vector space

n-dimensional vector space $\mathcal{V} = \{ |1
angle, |2
angle, \dots, |n
angle \}$

operation:
$$g \in \mathcal{G} \longrightarrow \hat{S}_g$$
 with $\hat{S}_g |k\rangle = |k\rangle'$
 $gg' \longmapsto \hat{S}_g \hat{S}_{g'} = \hat{S}_{gg'}$ and $\hat{S}_E = \hat{1}$

j

linear operation as matrix representation in $\,\mathcal{V}\,$ (dependent on basis)

$$\begin{split} |k\rangle' &= \hat{S}_g |k\rangle = \sum_j |j\rangle \langle j| \hat{S}_g |k\rangle = \sum_j M_{kj}(g) |j\rangle \\ g'' &= gg' \longmapsto \langle j| \hat{S}_{g''} |k\rangle = \sum_m \langle j| \hat{S}_g |m\rangle \langle m| \hat{S}_{g'} |k\rangle \quad \text{and} \quad \langle j| \hat{S}_E |k\rangle = \delta_{jk} \\ \text{character:} \quad \chi(g) &= \sum \langle j| \hat{S}_g |j\rangle \quad \text{basis independent} \end{split}$$

irreducible representation: independent of basis $\{\hat{M}(g)\}$ connects whole $\, \mathcal{V} \,$

trivial representation: n = 1 $g \rightarrow \hat{M}(g) = 1$

example: C_{4v} \hat{M} transformation of $\{\vec{a}_x, \vec{a}_y\}$ $\vec{a}_y = (0,1)$ $= \begin{pmatrix} 0 & 1 \\ \vec{a}_x = (1,0) \end{pmatrix} \qquad E \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} C_4 \rightarrow \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} C_4^{-1} \rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} C_2 \rightarrow \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ $= \sigma_h \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \sigma'_h \rightarrow \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \sigma_d \rightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \sigma'_d \rightarrow \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$

character table

	${m E}$	C_4	C_{4}^{-1}	C_2	σ_h	σ'_h	σ_d	σ_d'	basis function
A_1	1	1	1	1	1	1	1	1	1
A_2	1	1	1	1	-1	-1	-1	-1	$xy(x^2-y^2)$
B_1	1	-1	-1	1	1	1	-1	-1	$x^2 - y^2$
B_2	1	-1	-1	1	-1	-1	1	1	xy
\bar{E}	2	0	0	-2	0	0	0	0	$\{x,y\}$

Group theory representations & quantum mechanics

vector space \implies Hilbert space $\{|\psi_1\rangle, |\psi_2\rangle, \ldots\}$

group of symmetry operation $\mathcal{G} = \{\hat{S}_1, \hat{S}_2, \ldots\}$

Hamiltonian: $\mathcal{H} \hspace{.1in} igstarrow [\hat{S}_j, \mathcal{H}] = 0$ invariant under symmetry operation

stationary states: $\mathcal{H}|\phi_n\rangle = \epsilon_n |\phi_n\rangle$ $[\hat{S}, \mathcal{H}] = 0 \longrightarrow \mathcal{H}\hat{S}|\phi_n\rangle = \hat{S}\mathcal{H}|\phi_n\rangle = \epsilon_n \hat{S}|\phi_n\rangle$ $|\phi_n\rangle$ and $|\phi'_n\rangle = \hat{S}|\phi_n\rangle$ degenerate

$$|\phi_n'
angle = \hat{S}|\phi_n
angle = \sum_m |\phi_m
angle \langle \phi_m|\hat{S}|\phi_n
angle$$

within the subspace of degenerate states

Group theory representations & quantum mechanics

symmetry lowering $C_{4v}
ightarrow C_{2v}$

Compatibility relation

splitting of degeneracy through symmetry lowering

