Exercise 1. Density Operator Overdose.

Write out the density matrices of the following systems in the standard $|\uparrow\rangle$, $|\downarrow\rangle$ basis (or the relevant basis for the system).

- (i) A spin 1/2 particle in its "down" state $|\downarrow\rangle$;
- (ii) A spin 1/2 particle in the superposition state $|\psi\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\rangle i |\downarrow\rangle\right)$;
- (iii) A spin 1/2 particle, randomly produced with probability 1/2 in either state |↑⟩ or |↓⟩.
 Suppose you are given either many copies of system (ii) or many copies of system (iii). Devise a procedure to distinguish both cases.
- (iv) A spin ¹/₂ particle in the superposition state $|\phi\rangle = \frac{\sqrt{3}}{2}|\uparrow\rangle + \frac{1}{2}|\downarrow\rangle$;
- (v) The particle described in (iv), after having measured it and observed it in the state $|\uparrow\rangle$;
- (vi) The particle described in (iv), after someone else measured it in the basis $\{|\uparrow\rangle, |\downarrow\rangle\}$ but didn't tell you the measurement result ;
- (vii) The particle described in (iv), after someone else measured it in the basis $\{|+\rangle, |-\rangle\}$ (where $|\pm\rangle = \frac{1}{\sqrt{2}} (|\uparrow\rangle \pm |\downarrow\rangle)$) but didn't tell you the measurement result ;
- (viii) The spin state of an electron coming out of a source that produces particles with uniformly random spin. Assume that the spins are created in a random direction given by the spherical angles θ , ϕ , evenly distributed on the surface of the sphere. The state with "spin in direction θ , ϕ " is given by

$$|\theta,\phi\rangle = \cos\frac{\theta}{2}|\uparrow\rangle + e^{i\phi}\sin\frac{\theta}{2}|\downarrow\rangle .$$
 (1)

(This representation is known as the Bloch sphere, or Poincaré sphere for photon polarizations.)

(ix) Two (distinguishable) spin 1/2 particles in the entangled state

$$|\Psi^{-}\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\rangle_{1}|\downarrow\rangle_{2} - |\downarrow\rangle_{1}|\uparrow\rangle_{2}\right) ; \qquad (2)$$

- (x) The two particles of system (ix), after particle #1 was measured in the basis $|\pm\rangle = \frac{1}{\sqrt{2}} (|\uparrow\rangle \pm |\downarrow\rangle)$, and was found in the $|+\rangle$ state. In particular, what is the state of particle #2?
- (xi) Two (distinguishable) spin 1/2 particles with their state chosen at random between $|\uparrow\rangle_1|\downarrow\rangle_2$ and $|\downarrow\rangle_1|\uparrow\rangle_2$ with probability 1/2;
- (xii) The two particles of system (xi), after particle #1 was measured in the basis $|\pm\rangle = \frac{1}{\sqrt{2}} (|\uparrow\rangle \pm |\downarrow\rangle)$, and was found in the $|+\rangle$ state. In particular, what is the state of particle #2?
- (xiii) A harmonic oscillator in thermodynamic equilibrium at temperature T. *Hint.* At thermodynamic equilibrium, each Hamiltonian eigenstate $|n\rangle$ of energy ϵ_n is populated with probability proportional to $e^{-\epsilon_n/kT}$.