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Chapter 3

Question 1. Waves and Potentials

How do I best approach a particle-in-a-potential-well-problem?

Answer: First thing is to split the wave function into the relevant sections: before the well, in the well, after
the well. The next thing is to split the wave into incoming parts (the part with eikx) and reflected parts (with
e−ikx) and think about which type of solution we expect for each part. For instance, this can give us that there is
no left-travelling part behind the well (so in the final section we do not have a e−ikx-type part in the solution), or
tells us whether to expect real or imaginary solutions for k (depending on if we expect plane waves or exponential
decay), depending on the particular problem we study.

After this, we can impose the boundary conditions where the different sections share borders: here, both the wave
function itself needs to match, as well as the first derivative thereof. By setting those equal at the boundaries, we
obtain a set of equations that we can then solve for the respective coefficients.

One final thing to note: When solving for the coefficients, one can of course only find everything depending on

the incoming part of the wave: either set in the left-most, incoming part the coefficient in front of eikx equal to 1

or find relative transmission and reflection coefficients.

Chapter 7

Question 2. Reducible and irreducible representations

Sometimes what we call “the representation of a group” seems to refer to the operators that
perform the group action (e.g. rotation), sometimes the Hilbert space they act on. What exactly
is a representation, and what exactly means reducible and irreducible here?

Answer: Let me take the simple example of SO(3). It is like this:

1. We have a group G, namely a set of items g.

2. We can represent each item of this group in different ways using linear operators. Such a function U from
the group elements to a set of operators is called a representation, the resulting elements form a set of
operators {U(g) for all g ∈ G}.

3. Actually, on a side note, the group elements themselves are defined via their fundamental representation
and associated with the resulting elements (this may seem circular; well, anyway).

4. Now, to each such representation there is also the space that these operators act on. For example, we
can represent the rotation group elements in terms of 3x3 rotation matrices, and these act on 3-D physical
space. But now the rotation operators give the space they act on structure: We can find invariant subspaces
(in this case spheres of all radii), that is subspaces whose elements are mapped onto each other and not onto
elements outside under action of the group. Or similarly, we can represent the group elements by rotation
operators acting on Hilbert space, thus rotating states or wave functions. Then again the associated space
is part of the specification of the operators and hence part of the specification of the function U, of the
representation.

5. Now if we can find invariant subspaces in the space the operators act on, we say that the representation
is reducible. This means that we can write the Hilbert space as H = H1 ⊕ H2 ⊕ ... and similarly the
representations as U = U1 ⊕ U2 ⊕ ...

6. The matrices of U can then be written in Block-diagonal form.
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Chapter 10

Question 3. EPR paradox

How can one resolve the EPR paradox?

Answer: Well, the EPR ‘paradox’ is not really a paradox, but rather captures an interesting property of
quantum mechanics: Although one can predict the outcome of a distant measurement by a local measurement on
an entangled state, this does not mean that faster-than-light signalling is possible or that faster-than-light causality
applies. The trick is: although these correlations appear paradoxical, the outcome probability distributions for
both parties stay the same regardless of what we choose to measure! It’s crucial that party A cannot control its
measurement outcome, and thus cannot control B’s measurement outcome either!

For anyone interested in this further, read the suggested reference for the next question, or check out Bell’s book:

‘Speakable and Unspeakable in Quantum Mechanics’.

Question 4. Bell inequalities

Which conclusion can we draw from Bell inequalities?

Answer: What follows from Bell inequalities is that certain quantum correlations cannot be reproduced by a
local hidden variable model. Local here means that we can factorize the joint probabilities for the measurement
outcomes in the following manner:

P (XY |AB) =

∫
dλP (λ) ∗ P (X|Aλ) ∗ P (Y |Bλ) (L.1)

As these correlations appear in nature (as backed up with experiments), this shows that nature cannot be local in
the above sense. This sense in which we observe non-local correlations must not be confused with the possibility
of signalling: indeed, Bell showed also that we cannot use these correlations to transmit signals faster than light.
This is because the outcome probabilities for either party A and B do not depend on the other party’s input:

P (X|AB) = P (X|A) (L.2)

More on Bell inequalities can be found in the HS11 Quantum Information Theory course website, denoted as

Roger Colbeck’s lecture notes”.
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