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These scribbles are based on the lecture notes of Quantum Mechanics II at ETH Zurich. The idea is to have
an English version of the script, including all the steps and explanations that are missing from the original.
QM2 for dummies, if you will.

If you want to contribute, drop me an email: delrio@phys.ethz.ch.

Notation

�Where did that come from?� Well, from many frustrated tentatives. . .

Approximation alert
[text] Comments
OS Original script
SE Schrödinger equation
DE Di�erential equation
PT Perturbation theory
h.c. Hermitian conjugate



Chapter 1

Scattering theory

1.3 Interlude: radial potential

The goal of this section is to solve the SE for systems with spherical symmetry, i.e., with a radial potential,
V (x) = V (r). For instance, there could be a very round ion at position r = 0, or maybe a tiny sphere made out
of gelatine. It will be useful to represent this world in spherical coordinates, x = (r, θ, φ).

For a potential V (r), the SE reads

− ~2

2m
∇2Ψ(r, θ, φ) = [E − V (r)]Ψ(r, θ, φ). (1.1)

Expanding the Laplacian ∇2 in spherical coordinates, we obtain

− ~2

2m

1

r

∂2

∂r2
r − 1

r2

(
1

sinφ

∂

∂φ

(
sinφ

∂

∂φ

)
+

1

sin2

∂2

∂θ2

)
︸ ︷︷ ︸

M2(θ,φ)

Ψ(r, θ, φ) = [E − V (r)]Ψ(r, θ, φ). (1.2)

The termM2 only depends on the angles θ and φ. Its eigenfunctions are the spherical harmonics Y`,m (which
you may have seen before in Mathematical Methods for Physics or Electrodynamics),

Y`,m(θ, φ) =

√
(2`+ 1)(`−m)!

4π (`+m)!
Pm` (cos θ) eimφ, (1.3)

where ` and m are the quantum numbers corresponding to the �angular momentum� of the particle and the
z-component of that angular momentum, so they are integers such that ` ≥ 0, |m| ≤ `. Pm` are the Legendre
polynomials,

Pm` (x) =
(−1)m

2``!
(1− x2)m/2

d`+m

dx`+m
(x2 − 1)` (1.4)

(don't worry memorizing those formulas). The eigenvalue of M2 corresponding to each spherical harmonic is
given by

M2(θ, φ)Y`,m(θ, φ) = `(`+ 1)Y`,m(θ, φ). (1.5)

The spherical harmonics have some neat properties, like being all orthogonal and spanning the space of functions
on the sphere.

For now we are going to look for wave functions of the form Ψ`m = R`m(r)Y`m(θ, φ). Later on we can gener-
alize this: since the SE is a linear di�erential equation, any linear combination of solutions, Ψ =

∑
`,m c`mΨ`m,

is also a solution. So far we have

− ~2

2m

[
1

r

∂2

∂r2
r − 1

r2

(
1

sinφ

∂

∂φ

(
sinφ

∂

∂φ

)
+

1

sin2

∂2

∂θ2

)]
R`m(r)Y`m(θ, φ) = [E − V (r)]R`m(r)Y`m(θ, φ) (1.6)

− ~2

2m

[
1

r

∂2

∂r2
r − `(`+ 1)

r2

]
R`m(r)Y`m(θ, φ) = [E − V (r)]R`m(r)Y`m(θ, φ), (1.7)
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4 CHAPTER 1. SCATTERING THEORY

from which we may conclude that R(r) does not depend on m. If we �x θ and φ, we can see Y`m(θ, φ) 6= 0 as a
constant and get rid of it. We will focus on �nding the radial part R`(r) of the wave function,

− ~2

2m

[
1

r

∂2

∂r2
r − `(`+ 1)

r2

]
R`(r) = [E − V (r)]R`(r). (1.8)

The potential V (r) is still too general for us. To keep the hope of �nding an exact solution for the equation,
we will consider only step-like potentials, ,

V (r) =


V0, r ∈ [0, a0)

V1, r ∈ [a0, a1)
...

Vn, r ∈ [an−1,∞).

(1.9)

You could argue that that is not a very natural form for a physical potential, and you would be absoulutely
right. But it is a good �rst step. Our approach will be to �rst solve the SE for each region of space where the
potential is �at (r ∈ [ai−1, ai), V (r) = Vi). This will give us a set of solutions for that region, R

i,1
` , Ri,2` , etc. We

will then combine them to �nd R`(r) for the whole universe. We will do this by making sure that the global R
is still a good candidate for a wave function:

1. R`(r) is continuous (we will enforce this at the borders, r = ai);

2. ∂
∂rR`(r) is continuous if |V (r)| <∞ (we will enforce this at the borders, r = ai);

3. R`(r) can be normalized (we will discard solutions that diverge).

[Where do these conditions come from? Quite possibly from QM1, but I should investigate this further. To
check: Schumacher's book]

For now we will consider only the case where our particule's energy is larger than the potential, E > Vi,∀i
(we will get rid of this assumption in Section 1.3.2). Some examples are

Let us go back to the SE for a �at bit, V (r) = Vi,[
1

r

∂2

∂r2
r − `(`+ 1)

r2

]
R`(r) = −2m

~2
[E − Vi]R`(r). (1.10)

We will simplify this equation (and our life) by de�ning a new constant k,

k =

√
2m(E − Vi)

h
, (1.11)

so that the SE looks neater, [
1

r

∂2

∂r2
r − `(`+ 1)

r2
+ k2

]
R`(r) = 0 (1.12)

(this only works if E > Vi; we will see the other cases in Section 1.3.2). We can simplify this equation further
if we get rid of the constant k2. To do so, we de�ne a new variable,

ρ := kr, r =
ρ

k
,

∂2

∂r2
=

1

k2

∂2

∂ρ2
, (1.13)

And now the SE is simply [
k

ρ
k2 ∂

2

∂ρ2

ρ

k
− k2 `(`+ 1)

ρ2
+ k2

]
R`(ρ) = 0 (1.14)[

1

ρ

∂2

∂ρ2
ρ− `(`+ 1)

ρ2
+ 1

]
R`(ρ) = 0. (1.15)

Good. Now that we have simpli�ed our problem to turn the SE into a rather standard di�erential equation, we
can solve it.
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1.3.1 Bessel functions

This di�erential equation depends on `, so we will do the following:

1. �nd a solution for the case ` = 0, R0(`);

2. �nd a recursive solution for ` > 0, R`+1 = f(R`).

This proof is fastidious, full of miracles ( ), and not particularly enlightening. Feel free to skip it in order
to preserve your soul and enthusiasm for quantum mechanics.

Case ` = 0

When ` = 0, the DE is just

1

ρ

∂2

∂ρ2
ρR`(ρ) +R`(ρ) = 0. (1.16)

This equation could not get more textbook than this, so we can look it up and �nd that it has two solutions:

R0(ρ) =
sin ρ

ρ
, R0(ρ) =

− cos ρ

ρ
, (1.17)

where the sign of each solution is just a convention. At �rst sight, we can see that the second solution diverges
for ρ→ 0, so when later we choose the physical solutions of the SE, we will discard that one for small ρ. Later.

Case ` > 0

In this case, our DE is

1

ρ

∂2

∂ρ2
ρR`(ρ) +

[
−`(`+ 1)

ρ2
+ 1

]
R`(ρ) = 0. (1.18)

We will start with a substitution, de�ning a new function χ`(ρ) such that

R`(ρ) = ρ`χ`(ρ). (1.19)

We will omit the �(ρ)" for simplicity's sake. The second derivative of Eq. 1.18 becomes

∂2

∂ρ2
ρR`(ρ) =

∂2

∂ρ2
ρ`+1χ`

= `(`+ 1)ρ`−1χ` + 2(`+ 1)ρ`χ′` + ρ`+1χ′′` .

Back to Eq. 1.18, we get

0 = ρ
[
`(`+ 1)ρ`−1χ` + 2(`+ 1)ρ`χ′` + ρ`+1χ′′`

]
+

[
−`(`+ 1)

ρ2
+ 1

]
ρ`χ`

= `(`+ 1)ρ`−2χ` + 2(`+ 1)ρ`−1χ′` + ρ`χ′′`−`(`+ 1)ρ`−2χ` + ρ`χ`

multiply by
1

ρ
↪→ 0 = χ` +

2(`+ 1)

ρ
χ′` + χ′′` . (1.20)

This is a decent equation, but not yet the recursive solution we are looking for. Hold on.

take
∂

∂ρ
↪→ 0 = χ′` −

2(`+ 1)

ρ2
χ′` +

2(`+ 1)

ρ
χ′′` + χ′′′`

substitution: χ′` = χρ ↪→ 0 = χρ− 2(`+ 1)

ρ2
χρ+

2(`+ 1)

ρ
[χρ]′ + [χρ]′′

= χρ−2(`+ 1)

ρ
χ+

2(`+ 1)

ρ
χ+2(`+ 1)χ′ + χ′′ρ+2χ′ + 0

= χρ+2(`+ 2)χ′ + χ′′ρ

multiply by
1

ρ
↪→ 0 = χ+

2(`+ 2)

ρ
χ′ + χ′′.
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But this is exactly Eq. 1.20, when `→ `+ 1,

0 = χ`+1 +
2(`+ 2)

ρ
χ′`+1 + χ′′`+1. (1.21)

From here we can conclude that

χ′`+1 = χ =
χ′`
ρ
, (1.22)

which is precisely the kind of recursive solution we were looking for. Going back all the way `→ `−1→ · · · → 0,
we get

χ` =

(
1

ρ

∂

∂ρ

)`
χ0

−−−−−−−→
R` = ρ`χ` R`(ρ) = ρ`

(
1

ρ

∂

∂ρ

)`
R0(ρ). (1.23)

Hooray!

Bessel and Neumann functions

Remember how we had two solutions for R0? This gives origin to two families of solutions: the Bessel functions,
j`(ρ), and the Neumann functions, n`(ρ). Here follow their expression and behaviour for small and large ρ.1

Again, the minus signs are just a practical convention.

Bessel functions Neumann functions

` = 0 j0(ρ) = sin ρ
ρ n0(ρ) = − cos ρ

ρ

general j`(ρ) = (−1)`ρ`
(

1
ρ
∂
∂ρ

)`
sin ρ
ρ n`(ρ) = (−1)`+1ρ`

(
1
ρ
∂
∂ρ

)`
cos ρ
ρ

ρ→ 0 j`(ρ) ≈ ρ`

(2`+1)!! n`(ρ) ≈ (2`−1)!!
ρ`+1

(large ` : j`(ρ)→ 0 quickly) (diverges)

ρ→∞ j`(ρ) ≈ 1
ρ sin

(
ρ− π`

2

)
n`(ρ) ≈ − 1

ρ cos
(
ρ− π`

2

)

Hankel functions

We found two families of solutions for our DE. Remember that any linear combination of solutions of a linear
di�erential equations is a solution (it might not be a physical solution, but we will get to that in a moment).
Well, there are two linear combinations of Bessel and Neumann functions that will be especially useful for
scattering problems. So useful indeed, they get their own name: the Hankel functions.

h` (or h
(1)
` ) h∗` (or h

(2)
` )

de�nition h`(ρ) = j`(ρ) + in`(ρ) h∗` (ρ) = j`(ρ)− in`(ρ)

general h`(ρ) = −i (−1)`ρ`
(

1
ρ
∂
∂ρ

)`
eiρ

ρ h∗` (ρ) = i (−1)`ρ`
(

1
ρ
∂
∂ρ

)`
e−iρ

ρ

ρ→∞ h`(ρ) ≈ − i
ρ e

i(ρ−π`2 ) h∗` (ρ) ≈ i
ρe
−i(ρ−π`2 )

Now we are �nally ready to look at some concrete, if contrived, physical systems.

1For a proof of the asymptotic behaviour, see Exercise 2 of the 1st series.
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1.3.2 Bound states

In this �rst example, our poor particle
is trapped in a deep well, and appar-
ently it does not have enough energy to
escape!

V (r) =

{
−V0, r < a

0, r ≥ a,

−∞ < −V0 < E < 0.

We will solve the SE inside and outside the well, and then look at the border (the wall, r = a), and see what
happens.

We are sticking to the notation of the original script, where V0 > 0 and V = −V0, regardless of what we
think of it, just because it might be easier to compare these notes with the script that way.

Inside the well

Inside the potential well, the SE reads[
1

r

∂2

∂r2
r − `(`+ 1)

r2

]
Rin
` (r) = −2m

~2
[E + V0]Rin

` (r), E + V0 > 0. (1.24)

We can use the same substitution as before,

q =

√
2m(E + V0)

~
, (1.25)

and get the two families of solutions, j`(qr) and n`(qr). This region includes the point r = 0, so we cannot have
solutions that diverge for qr → 0: we can discard all the Neumann functions, which means that the physical
solution inside the well is simply a multiple of j`:

Rin
` (r) = A` j`(qr). (1.26)

We will determine the coe�cient A` later.
Note: Let us go over this again, slowly. How can we be sure that the solution is a multiple of j`? The

solution has to be a linear combination of solutions, and it cannot diverge. Now, j` and n` form an orthogonal
basis, so any solution has the form a j`(qr) + b n`(qr). If |b| > 0, the solution diverges, and if b = 0 the solution
converges. Yes, we could expand the solution in a di�erent basis (e.g. c h`(qr)d h` ∗ (qr)), but then both basis
elements (h` and h`∗) would diverge in di�erent directions, so it would not be easy to �nd the coe�cients. . . and
we would end up with a multiple of j` anyway.

Outside the well

Outside, the potential is zero, and the SE becomes[
1

r

∂2

∂r2
r − `(`+ 1)

r2

]
Rout
` (r) = −2m

~2
ERout

` (r), E < 0. (1.27)

Now we have a small problem. We cannot de�ne k =
√

2mE/~ if we want k to be real. Let us use instead

k =

√
2m(−E)

~
, (1.28)

which turns the SE into [
1

r

∂2

∂r2
r − `(`+ 1)

r2
− k2

]
Rout
` (r) = 0. (1.29)

Now, this is slightly di�erent from our familiar Eq. 1.12. If we want to end up with something that looks like
Eq. 1.15, we need to de�ne the variable ρ to be

ρ := ikr, r =
1

ik
ρ,

∂2

∂r2
=
−1

k2

∂2

∂ρ2
, (1.30)

and then we have [
ik

ρ
−k2 ∂

2

∂ρ2

ρ

ik
−k2 `(`+ 1)

ρ2
−k2

]
Rout
` (ρ) = 0 (1.31)[

1

ρ

∂2

∂ρ2
ρ− `(`+ 1)

ρ2
+ 1

]
Rout
` (ρ) = 0. (1.32)
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This is precisely the same equation as before, and therefore has the same (mathematical) solutions, j`(ikr) and
n`(ikr). To pick the physical solution, let us look at the asymptotic behaviour of these functions when r →∞.

j`(ikr) ≈
1

ikr
sin

(
ikr − π`

2

)
sinx =

− i

2

(
eix − e−ix

)
↪→ =

(
− i

kr

)(
− i

2

)(
ei(ikr−

π`
2 ) − e−i(ikr−

π`
2 )
)

=
−1

2kr

(
e−kr︸︷︷︸
→0

e−i
π`
2 − ekr︸︷︷︸

→∞

ei
π`
2

)
,

which diverges. The same is true for n`(ikr),

n`(ikr) ≈
1

ikr
cos

(
ikr − π`

2

)
cosx =

1

2

(
eix + e−ix

)
↪→ =

i

kr

1

2

(
ei(ikr−

π`
2 ) + e−i(ikr−

π`
2 )
)

=
i

2kr

(
e−kr︸︷︷︸
→0

e−i
π`
2 + ekr︸︷︷︸

→∞

ei
π`
2

)
.

Fortunately for us, not all solutions diverge. We just have to look for a di�erent basis in which to expand our
general solution. For instance, we can try the Hankel functions,

h`(ikr) ≈ −
i

ikr
ei(ikr−

π`
2 ) =

−1

kr
e−kr︸︷︷︸
→0

ei
π`
2 , (1.33)

h∗` (ikr) ≈
i

ikr
e−i(ikr−

π`
2 ) =

1

kr
ekr︸︷︷︸
→∞

e−i
π`
2 . (1.34)

This is great: h∗` (ikr) diverges, h`(ikr) does not, so the physical solution outside the well is just a multiple of
the latter,

Rout
` (r) = B` h`(ikr). (1.35)

Continuity at the wall

[Auf der Mauer, auf der Lauer sitzt 'ne kleine Welle.]
Now we can look for the coe�cients A` and B`. Since V0 < 0, we know three things:

1. The wave function is continuous, so

Rin
` (a) = Rout

` (a)⇔
⇔ A` j`(qa) = B` h`(ika). (1.36)

From here we will be able to get the ratio A`/B`.

2. The �rst derivative of the wave function is continuous, so

∂

∂r
Rin
` (r)

∣∣∣∣
r=a

=
∂

∂r
Rout
` (r)

∣∣∣∣
r=a

⇔

⇔ A`q j
′
`(qa) = ikB` h

′
`(ika). (1.37)

3. The wave function is normalized. This applies to the total wave function, Ψ =
∑
`m c`mR`(a)Y`m(θ, φ).

Depending on the coe�cients {c`m}, we may �x A`, and get B` from the �rst condition.

From the �rst condition, we get

A` j`(qa) = B` h`(ika)

A`
B`

=
h`(ika)

j`(qa)

=
−i (−1)`(ikr)`

(
1
ikr

∂
∂(ikr)

)`
ei(ikr)

ikr

(−1)`(qr)`
(

1
qr

∂
∂(qr)

)`
sin(qr)
qr

∣∣∣∣∣∣∣
r=a

.



1.3. INTERLUDE: RADIAL POTENTIAL 9

Now, this might be doable, but it is more than a little ugly, and overall not that interesting. Anyway, as an
example, let us solve it for ` = 0,

A0

B0
=
−i e

i(ikr)

ikr
sin(qr)
qr

∣∣∣∣∣
r=a

= − q
k

e−ka

sin(qa)
. (1.38)

Now A0 will depend on the coe�cients c`m. But there is something more interesting we can do with these
continuity conditions.

[it would be cute to have a drawing of |R0(r)|]

How deep is the well?

We saw that the wave function vanishes quickly outside the well (it goes approximately with e−kr/r). This is
because the energy of the particle is smaller than the potential outside the well (E < V = 0). The only place
where the wave function is stable is inside the well, which is why we call it a bound state: the wave is bound to
the well. It turns out that if the well is not deep enough, there will be no wave function anywhere: we will �nd
a condition for the minimum depth the well such that if V0 < Vmin ⇒ A0 = B0 = 0 ⇒ R0(r) = 0∀r. This can
be generalized for arbitrary `, but you will get the idea from here.

First a few mathematical tricks. The factor 1/ρ in the expressions of Rin
0 (r) and Rout

0 (r) makes the derivatives
a little annoying. It would be lovely to get rid of it, and here is how we do it. We want R0(r) ∈ C1

(i.e. both R0 and its �rst derivative are continuous). In general, if we have two functions f(r), g(r) ∈ C1, then
f(r) g(r) ∈ C1. Well, take f(r) = r, g(r) = R0(r), and the condition for continuity of R0 implies

C1 3 r R0(r) =

{
A0 sin(qr), r < a

B0 e
−kr, r > a

, (1.39)

which is much more treatable. Now we have

A0 sin(qa) = B0 e
−ka ∧ qA0 cos(qa) = −kB0 e

−ka. (1.40)

Dividing the latter by the former, we get

qA0 cos(qa)

A0 sin(qa)
= −kB0 e

−ka

B0 e−ka
⇒ tan(qa) = − q

k
∨ A0 = B0 = 0. (1.41)

For now we leave the case A0 = B0 = 0, and try to solve the �rst case for V0. Remember that k and q were
given by

k =

√
2m(−E)

~
, q =

√
2m(E + V0)

~
, (1.42)

so we have

tan

(
a
√

2m

~
√
E + V0

)
= −

√
2m(E + V0)

~
~√

2m(−E)
(1.43)

= −
√
−E

E + V0
. (1.44)

We can simplify this with two subsitutions, C = a
√

2m
~ > 0 and

x = C
√
E + V0 > 0, to get

x tanx = −C
√
−E︸ ︷︷ ︸

D>0

(1.45)

The plot of solutions is on the left. If x,D > 0, there are no
solutions for x below a threshold, where x tanx = 0.

Let us �nd

the smallest x for which there are solutions. We know that

(x tanx < 0 ∧ x > 0)⇒ x ∈
[
2nπ +

π

2
, 2nπ + π

]
∪
[
2nπ +

3π

2
, 2nπ

]
, 0 ≤ n ∈ Z, (1.46)
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The smallest n possible is zero, so we need x > π/2. Returning to the original variables, we have

a
√

2m

~
√
E + V0 >

π

2
(1.47)

V0 >
π2~2

8a2m
− E =

π2~2

8a2m︸ ︷︷ ︸
Vmin

+|E|. (E < 0) (1.48)

In other words, if V0 < Vmin + |E|, then we cannot have tan(qa) = −q/k, and so, due to Eq. 1.41 we need
A0 = B0 = 0, which means that R0(r) = 0,∀r.

1.3.3 Scattering potential

Now the particle has positive energy: the wave function is disturbed by the scattering centre, but should
approximate a plave wave for large r.

V (r) =

{
−V0, r < a

0, r ≥ a,

E > 0, E > −V0.

Inside the well

As before,

Rin
` (r) = A`j`(qr), q =

√
2m(E + V0)

~
(1.49)

Note that, again, n`(qr)
r→0−−−→ −∞ and thus n` cannot appear as part of the wave function.

Outside the well

The general solution has the form

R`(r) = B`j`(kr) + C`n`(kr), k =

√
2mE

~
(1.50)

Since in this case r → 0 is not included in the domain, n` can be part of the wave function.
Our goal in this analysis is to �nd the constants A`, B` and C`. Let us start by looking at the ratio C`

B`
.

Asymptotic behaviour r →∞ of R`(r)

For large enough r, we can approximate

R`(r) ≈
B`
kr

sin

(
kr − `π

2

)
− c

kr
cos

(
kr − `π

2

)
(1.51)

=
B

kr

(
sin

(
kr − `π

2

)
− C

B
cos

(
kr − `π

2

))
(1.52)

We de�ne

tan δ` =
C

B
(1.53)

With this de�nition, we have

R`(r) =
B

kr

(
sin

(
kr − `π

2

)
+ tan δ` cos

(
kr − `π

2

))
(1.54)

Using

cos(x) sin(y) + sin(x) cos(y) = sin(x+ y) (1.55)
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we �nally get

R`(r) =
B

kr

1

cos δ`
sin

(
kr − `π

2
+ δ`

)
. (1.56)

Remember that this is only true for large r. We can �nd for instance δ0,

δ0 = tan−1

(
k

q
tan (qa)

)
− ka. (1.57)

[For further physical interpretation, check the original script and suggested books (I was getting a bit tired
of this kind of problems when I got here).]

1.3.4 Hard sphere

Allow me to introduce the hard sphere, a crude approximation of solid objects. In what follows, keep in
mind that not even a hard sphere (like a marble) is a hard sphere in the strict sense meant here.

The hard sphere consists of an in�nitely high potential barrier,

V (r) =

{
∞, r ≤ a
0, r > a.

The wave function Ψ is thus 0 inside the sphere. On the outside, we can expand R` in the basis of the Hankel

functions h` := h
(1)
` and h∗` := h

(2)
` :

R`(r) = Ah∗` (kr) +Bh`(kr), k =

√
smE

~
(1.58)

= A

[
h∗` (kr) +

B

A
h`(kr)

]
. (1.59)

For now we are only interested in the fraction B
A between the two components. Up to a global phase and

normalization (which will come later), we can write

R`(r) ∝ h∗` (kr) + S`(k)h`(kr) (1.60)

Now we can reuse the notion of probability �ux j, introduced in the beginning of the chapter (see original
script). Since no particles are created or destroyed in the scattering process, the radial component jr(r) = 0∀r
. We have

0 = jr(r) =
~

2im

(
R∗` (r)

∂

∂r
R`(r)−R`(r)

∂

∂r
R∗` (r)

)
=

~
8im

(
(h` + S∗` h

∗
` )
(
h∗`
′ + S`h

′
`

)
− (h∗` + S∗` h`)

(
h′` + S`h

∗
`
′))

=
~

8im

(
h`h
∗
`
′ + h`S`h

′
` + S∗` h

∗
`h
∗
`
′ + |S`|2h∗`h′` − h∗`h′` − h∗`S∗` h∗`

′ − S`h`h′` − |S`|2h`h∗`
′)

=
~

8im

(
h`h
∗
`
′ − h∗`h′` + |S`|2h∗`h′` − |S`|2h`h∗`

′)
=

~
8im

(
h`h
∗
`
′ − h∗`h′`

) (
1− |S`|2

)
.

Since this has to hold for all r and h` is r-dependent, we can conclude that

|S`|2 = 1, (1.61)

which means that S` is a phase,and therefore we can de�ne δ` such that

S` = e2iδ` . (1.62)

We will �nd δ` by looking at the asymptotic behaviour of R`(r).
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Asymptotic behaviour of R`(r) for r →∞

Using

h`(ρ) = − i
ρ
ei(ρ−

`π
2 ) h∗` (ρ) = − i

ρ
e−i(ρ−

`π
2 ), (1.63)

we get

R`(r) ∝
i

kr

(
e−i(kr−

`π
2 ) − e2iδ`ei(kr−

`π
2 )
)

(1.64)

= − i

kr
eiδ`

(
eiδ`ei(kr−

`π
2 )
)

(1.65)

= −2ei(δ`−
π
2 )

kr
sin

(
kr − `π

2
+ δ`

)
(1.66)

[Check it yourself: normalization gives a global factor of 1
2 .] Inside the sphere the wave-function is zero,

R`(r) = 0, r ≤ a,∀`. At the border,

0 = R`(a) ∝ h∗` (ka) + e2iδ`h`(ka) (1.67)

and thus

e2iδ` = −h
∗
` (ka)

h`(ka)
(1.68)

= −j`(ka)− in`(ka)

j`(ka) + in`(ka)
. (1.69)

We can express this relation using a the tangent [this was in one of the exercise series],

tan δ` =
j`(ka)

n`(ka)
(1.70)

For small energies, k → 0, the Bessel and Neumann functions become

j`(ka) ≈ (ka)`

(2`+ 1)!!
(1.71)

n`(ka) ≈ (2`− 1)!!

(ka)`+1
(1.72)

which leads to

tan δ` ≈
(ka)2`+1

(2`+ 1)[(2`− 1)!!]2
. (1.73)

For ` ≥ 1, this decays rapidly. When computing the cross section σ, we have to sum over all `. In a �rst
approximation, this allows us to only consider ` = 0. [More about this in the exercise series.]

1.3.5 Plane waves

We now want to take a closer look at plane waves (V = 0). For this purpose, we expand them in spherical
coordinates (note that Y`m form a basis for functions on the sphere):

eikx =

∞∑
`=0

∑̀
m=−`

c`m(k)j`(kr)Y`m(θ, φ) (1.74)

Note that n` cannot be part of this expression since it would diverge at r = 0.
We will consider k ‖ ˆ̀

z. In the exercises, the addition theorem will be proven which allows us to proof that it
works for any k.

Remember that

Y`m =

√
2`+ 1

4π
eimφPm` (cos θ) (1.75)
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Since we are considering the rotationally symmetric case with kx = kx cos θ, φ cannot be part of the expression.
Thus only the m = 0 terms will remain. We use the simpli�ed notation

P`(x) := P 0
` (x) (1.76)

Remember that the Legendre polynomials are given by

P`(x) =
1

2``!

d`

dx`
(x2 − 1)` (1.77)

and satis�e the orthogonality relation ∫ 1

−1

dxP`(x)P`′(x) =
2δ``′

2`+ 1
(1.78)

De�ning A` := c`0, we thus have

eikr cos θ =

∞∑
`′=0

√
2`′ + 1

4π
A`′j`′(kr)P`′(cos θ) (1.79)

To �nd A`j`(kr), we project eikr cos θ onto P`(cos θ), which basically means that we multiply both sides of
the expression by P`(cos θ) and integrate over d cos θ. Using the orthogonality relation (1.78) of the Legendre
polynomials, we thus get (setting z := cos θ in the integral)

A`j`(kr) =

√
4π(2`+ 1)

2

∫ 1

−1

dzP`(z)e
ikrz. (1.80)

Let us expand eikrz around z = 0 in a Taylor series:

eikrz =
∑
`

(ikrz)`

`!
(1.81)

Looking at the leading order term in the Legendre Polynomial from (1.77)

P`(z) =
(2`)!

2`(`!)2
z` +O

(
z`−1

)
(1.82)

which, after solving for z` and plugging it back into the expansion for eikrz we get

A`j`(kr) =

√
4π(2`+ 1)

2

∫ 1

−1

dzP`(z)

(∑
`′

(2`)!

2``!
(ikr)` −O

(
(kr)`−1

))
(1.83)

Using again the orthogonality relation of the Legendre polynomials (1.78), we then �nd

A`j`(kr) =

√
4π(2`+ 1)

2
(ikr)`

2`+1`!

(2`+ 1)!
+O

(
(kr)`−1

)
(1.84)

Looking at small kr and using

j`(kr) ≈
2``!

(2`+ 1)!
(kr)` (1.85)

we �nally �nd

A` = i`
√

4π(2`+ 1) (1.86)

which gives us our low energy expression for plane waves

eikr cos θ =

∞∑
`=0

i`(2`+ 1)j`(kr)P`(cos θ). (1.87)



Chapter 2

Interaction between light and matter

2.6 Light scattering reloaded

Our setting is simply a particle in an EM �eld (light). We want to �nd out how light is scattered by the paricle.
If you shoot a light beam in the direction of the particle, will it change direction? Colour? Will it excite the
particle? What is the probability of each process? So far (in previous lectures and original script) we looked at
one particular scattering process. We will now look at few more possibilities. First, recap.

Structure of the Hilbert space

The Hilbert space of the particle is Hp the one of the EM �eld is HEM . The global Hilbert space is, naturally,

H = Hp ⊗HEM . (2.1)

We quantized the EM �eld. Fist, we drew an imaginary cubic box of side L (Fig. 2.1). Then we imposed
boundary conditions: we said that wave functions had to be zero at the borders of the box. We can do this by
making our box larger than the universe (and assuming that nothing exists outside the universe).

Figure 2.1: Giant box in real space, and some of the possible waves that ful�l the boundary
conditions from Eq. 2.2.

So now we have the conditions

ψk
EM (0, 0, 0) = ψk

EM (L, y, z) = ψk
EM (x, L, z) = ψk

EM (x, y, L) = 0. (2.2)

This implies that the wave function of the EM �eld is a linear combination of plane waves with k vectors of the
form

k =
2π

L

 nx
ny
nz

 , ni ∈ Z. (2.3)

The allowed states in momentum space form an in�nite lattice of spacing 2π
L . Photon's polarization, λ, is

independent of momentum. We can write the Hilbert space of the EM �eld as a tensor product of the spaces of
all the allowed momenta and polarizarion, HEM =

⊗
k,λHk,λ.

To describe a particular EM �eld (i.e., a particular state of this Hilbert space), we populate the allowed sites
in momentum space with actual photons. We denote the vacuum (a state where there are no photons) by |0〉,
and then act on this state with creation operators. For instance, â†kλ|0〉 is a state with exactly one photon with
momentum k and polarization λ. Here is another example: we have an initial �eld |ψ〉 with lots of photons.
Now it su�ers a proccess that should change the momentum of a photon with polarization λ from k to k′. The
new state is â†k′λâkλ|ψ〉. First we have an anihilation operator that destroys the photon with momentum k, and
we create a photon with momentum k′.

14
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The anihilation operator âkλ acts only on the Hilbert space Hk,λ; explicitly, we have

âk,λ = 1k1,λ1 ⊗ 1k1,λ2 ⊗ · · · ⊗ âk,λ ⊗ 1⊗ . . . . (2.4)

These operators, sometimes referred to as ladder operators, commute as

[âk,λ, â
†
k′,λ′ ] = δk,k′δλ,λ′ , (2.5)

and are otherwise characterized early in the original script. [If you are not comfortable with these operators,
go back to where they are introduced and solve some of the earlier exercise series until you feel you understand
them well.] Note that this way of organizing the Hilbert space of the EM �eld is very di�erent from the way
we describe the particle's space. There we act on the Hilbert space with operators like r̂ and p̂, whereas here
everything is done in terms of ladder operators. For instance, to measure the average energy of the �eld, we
de�ne the operator

Ê =
∑
kλ

Ek â
†
k,λâk,λ, 〈E〉ψ = 〈ψ|Ê|ψ〉, Ek = ~k. (2.6)

This operator simply counts the number of photons in each mode (a pair (k, λ)), and multiplies it by the mode's
energy. Compare this with the usual way of computing the average energy of a free particle in state |φ〉,

〈E〉φ = 〈φ| p̂
2

2m
|φ〉.

There we have to act with the operator p̂ (e�ectively a gradient) on the wave-function, which is usually harder
than counting photons in a given mode.

We denote the di�erent states of the particle by |0〉, |1〉, . . . , |n〉, etc., in increasing order of energy. We denote
the states of the EM �eld by the number of photons of each mode, like this: |Nk1,λ1

, . . . , Nk,λ, . . .〉. Sometimes
we are only interested in one or two modes, for instance, if we are looking for processes that change the number
of photons in those modes (like photon absorption or de�ection). In that case we may label the state only by the
relevant modes: for instance, if a process takes one photon from mode (k, λ) to mode (k′, λ′), we can represent
this as |Nk,λ, Nk′,λ′〉 −→ |Nk,λ − 1, Nk′,λ′ + 1〉. All the other modes are implicitly left unchanged.

Later on (Chapter 4) we will express the Hilbert space of particles in this new formalism too (second
quantization). For now, here is a table with some characteristics of the two spaces.

Particle EM �eld
Hilbert space Hp HEM =

⊗
k,λHk,λ

Operators r̂, p̂ âk,λ, â
†
k,λ,

N̂k,λ = â†k,λâk,λ
Typical states |n〉 |Nk1,λ1

, . . . , Nk,λ, . . .〉
(labelled by energy) (labelled by # photons/mode)

Global Hamiltonian

The total Hamiltonian was derived earlier in the original script. It can be written as

Ĥ := Ĥp︸︷︷︸
∈End(Hp)

+ ĤEM︸ ︷︷ ︸
∈End(HEM )

+ Ĥint︸︷︷︸
∈End(Hp⊗HEM )

, (2.7)

where the particle Hamiltonian is

Ĥp :=
p̂2

2m︸︷︷︸
free particle

+ V̂0(r̂)︸ ︷︷ ︸
e.g. atom

, (2.8)

and the free-�eld Hamiltonian is

ĤEM :=
1

8π

∫
(Ê2 + B̂2)d3r =

∑
k,λ

~ωk(N̂k,λ +
1

2
) (2.9)
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(see for instance Series 5, exercise 1). The interaction term that couples the particle and the radiation is again
given by three terms,

Ĥint = Ĥint,1 + Ĥint,2 + Ĥint,3,

Ĥint,1 = −
∫
e

c
ĵ(r̂) Â(r̂) d3r (2.10)

Ĥint,2 =

∫
e

2mc2
Â2(r̂) ρ̂(r̂) d3r (2.11)

Ĥint,3 =

∫
e ρ̂(r̂) φ(r̂, t) d3r. (2.12)

We will only treat the case φ = 0, so Ĥint,3.

Goal

In general we are interested in scattering processes that excite the particle and change the EM �eld in some
way,

|0〉p ⊗ |Nk1,λ1 , . . . , Nk,λ, . . .〉EM︸ ︷︷ ︸
=:|i〉

=⇒ |n〉p ⊗ |N ′k1,λ1
, . . . , N ′k,λ, . . .〉EM︸ ︷︷ ︸
=:|f〉

. (2.13)

We want to know which of these transitions processes are allowed, and their probability of hapenning. Ideally
we would solve the SE for the global system, but that is too hard with this complex Hamiltonian. We can
however �nd the most likely transitions if we apply perturbation theory to each of the interaction terms of the
Hamiltonian. Our plan is the following:

1. quantize the interaction terms of the Hamiltonian;

2. apply perturbation theory to �rst order to each term;

3. apply perturbation theory to second order to the �rst term.

Why don't we apply second order to all the terms? As far as I can see, it is because it would be a long,
tedious calculation that would not bring us any new transitions or insights.

2.6.1 Perturbation theory to �rst order

How does it work?

Perturbation theory to �rst order results in Fermi's Golden Rule. There is a summary of the derivation of
the rule in the QM1 OS, pages 127�130. Short summary: we write the SE as a function of the interaction
Hamiltonian, Hint, and Taylor-expand it on time. Then we consider only the �rst-order terms and compute the
probability of a transition from state |i〉 to state |f〉. This is called Fermi's Golden Rule, and the probability is
given by

Γi→f =
2π

~
|〈f |Hint|i〉|2 ρ(Ef ), (2.14)

where ρ(Ef ) is the density of states of the �nal state (usually something like δ(Ef −Ei)). We will explain how
perturbation theory works in detail in Section 2.6.2, when we introduce the second-order terms.

First interaction term

We quantized the of the interaction Hamiltonian in previous lectures (Eq. 2.4.17 of the OS),

Ĥint,1 = − e√
L3

∑
k,λ

√
2π~
ωk

(
ĵ(−k) · e(k, λ)⊗ âk,λ + ĵ(k) · e(k, λ)∗ ⊗ â†k,λ

)
(2.15)

We applied Fermi's Golden Rule and found the transition probability Γi→f for the transition

|0〉p ⊗ |Nk,λ〉EM =⇒ |n〉p ⊗ |Nk,λ − 1〉EM . (2.16)

What is happening in this transition? The particle is absorbing one photon in mode (k, λ) and using its energy
to go to the excited state |n〉 (see Fig. 2.2a). This process can be represented as a Feynman diagram (introduced
in Fig. 2.2b).
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k, λ |0〉 |n〉

(a) Left (before the interaction) , we have a pho-
ton about to hit the photon �hits� the particle.
On the right, the photon was absorbed by the
particle, which is now in an excited state.

t

x

e− : |0〉

γ : k, λ

|n〉

(b) Photon absorption described as a Feynman diagram.
Time �ows from left to right. The vertical axis di�erentiates
between the two Hilbert spaces: EM �eld on top, particle
on bottom. The wobbly line represents the photon, and the
straight line the particle (an electron). [Note: sometimes
Feynman diagrams are rotated by 90°(e.g., in the script).]

Figure 2.2: A particle absorbs a single photon in mode (k, λ), going from state |0〉 to |n〉. Here are
two di�erent pictorial representations of the transition.

Second interaction term

Now we are going to write the second interaction term of the Hamiltonian in our new formalism. The original
form of this term is

Ĥint,2 =
e

2mc2

∫
d3r ρ̂(r̂) Â2(r̂) =

e

2mc2

∫
d3r ρ̂(r̂)⊗ Â2(r̂),

because the operator Â(r) = 1̂p ⊗ Â(r)EM acts only on HEM , and ρ̂(r) = ρ̂(r)p ⊗ 1̂EM acts only on Hp.
Remember that the vector potential Â is de�ned as

Â(r)EM :=
1√
L3

∑
k,λ

√
2π~c2
ωk

(
âk,λe(k, λ)eik·r + â†k,λe

∗(k, λ)e−ik·r
)
. (2.17)

We saw earlier in the OS that this de�nition satis�es B̂ = ∇∧ Â. Squaring the vector potential, we obtain

Â2(r) =
2π~c2

L3

∑
k,λ,k′,λ′

1
√
ωkωk′

(
âk,λe(k, λ)eik·r + h.c.

) (
âk′,λ′e(k′, λ′)eik

′·r + h.c.
)
. (2.18)

Now we can write the second interaction term as

Ĥint,2 =
e

2mc2
2π~c2

L3

∫
d3rρ̂p(r̂) ⊗

∑
k,λ,k′,λ′

1
√
ωkωk′

(
âk,λe(k, λ)eik·r + h.c.

) (
âk′,λ′e(k′, λ′)eik

′·r + h.c.
)
.

(2.19)

We are ready to apply Fermi's Golden Rule. But what initial and �nal states should we consider? Right
now it is not obvious, but the calculations ahead will show us that this interaction term leads to a transtion
where the particle absorbs a photon, goes to an excited state, and emits a di�erent photon (see Figs. 2.3a
and 2.3b),

|0〉p ⊗ | . . . , Nk,λ, . . . , Nk′,λ′ = 0, . . .〉EM =⇒ |n〉p ⊗ | . . . , Nk,λ − 1, . . . , Nk′,λ′ = 1, . . .〉EM . (2.20)

Initial state: particle in ground state, no photons in mode (k′, λ′) [for simplicity], Nk,λ photons in mode (k, λ)
and whatever in other modes. Final state: particle in excited state |n〉, one photon in mode (k′, λ′) and one
less photon in mode (k, λ). The other modes are not a�ected. In short notation,

|i〉 = |0〉p ⊗ |Nk,λ︸︷︷︸
(k,λ)

, 0︸︷︷︸
(k′,λ′)

〉, |f〉 = |n〉p ⊗ |Nk,λ − 1︸ ︷︷ ︸
(k,λ)

, 1︸︷︷︸
(k′,λ′)

〉. (2.21)

We will see for what values of n, k and k′ this transition is allowed, and with what probability.
The matrix element from Fermi's Golden Rule (Eq. 2.14) comes

〈f |Ĥint,2|i〉 = 〈n|〈Nk,λ − 1, 1|
(∫

d3r
e

2mc2
ρ̂(r̂)⊗ Â2(r̂)

)
|0〉|Nk,λ, 0〉

=
e

2mc2

∫
d3r〈n|ρ̂(r̂)|0〉 〈Nk,λ − 1, 1|Â2(r̂)|Nk,λ, 0〉. (2.22)
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k, λ |0〉 |n〉

k′, λ′

(a) On the left (before), the particle absorbs a
photon. On the right (after) the particle is in a
excited state and emitted a photon.

t

x

|0〉 |n〉

k′, λ′k, λ

(b) The same interaction described as a Feyn-
man diagram. Above, HEM ; below, Hp.

Figure 2.3: A particle, originally in state |0〉, absorbs a photon with momentum k. It goes to
excited state |n〉 and emits a photon with energy εk′ = E(n)− E(0)− εk.

The last term inside that integral expands as

〈Nk,λ − 1, 1|Â2(r̂)|Nk,λ, 0〉

=
2π~c2

L3
〈Nk,λ − 1, 1|

∑
q,µ,q′,µ′

1
√
ωqωq′

(
âq,µe(q, µ)eiq·r + â†q,µe

∗(q, µ)e−iq·r
)

(
âq′,µ′e(q′, µ′)eiq

′·r + â†q′,µ′e
∗(q′, µ′)e−iq

′·r
)
|Nk,λ, 0〉.

You can check that only two terms of that sum are non-vanishing: those with operators âk,λâ
†
k′,λ′ and â

†
k′,λ′ âk,λ

(in other words, operators that create a photon in mode (k′, λ′) and destroy one in mode (k, λ)). In the end,
we are left with

〈Nk,λ − 1, 1|Â2(r̂)|Nk,λ, 0〉 =
1

L3

2π~c2
√
ωkωk′

2e(k, λ) · e∗(k′, λ′)ei(k−k
′)r
√
Nk,λ.

Plugging this in the matrix element of Fermi's Golden Rule, we obtain

〈f |Ĥint,2|i〉 = r0︸︷︷︸
e2

mc2

2π~c2

L3
√
ωkωk′

√
Nk,λ e(k, λ) · e∗(k′, λ′) 〈n|

(∫
d3r ρ̂(r) ei(k−k

′)r

)
|0〉

= r0
2π~c2

L3
√
ωkωk′

√
Nk,λ e(k, λ) · e∗(k′, λ′) 〈n|ρ̂k′−k|0〉. (2.23)

Here, r0 is the constant historically known as the electron radius, and ρ̂k′−k is the Fourier transform of ρ̂(r).
Finally, we use the Golden Rule (Eq. 2.14) to obtain the transition probability,

Γ0→n,(k,λ)→(k′,λ′) =
2π

~
|〈f |Hint,2|i〉|2 ρ(εf )

=
2π

~

(
2π~c2r0

L3
√
ωkωk′

)2

Nk,λ |e(k, λ) · e∗(k′, λ′)|2 |〈n|ρ̂k′−k|0〉|2 δ(En + ~ωk′ − (E0 + ~ωk)).

(2.24)

This is Eq. 2.6.7 in the OS.

Now we want to relate Γ, the transition probability, to something that can be measured in the laboratory, as
to check the accuracy of this approximation. One good candidate is the cross-section (Fig. 2.4). This measures
the percentage of emitted photons that are detected at a given angle,

dσ

dΩk′
=

1

jinc

∑
n

∑
k′∈dΩk′

Γ0→n,(k,λ)→(k′,λ′). (2.25)

Here, jinc is the �ux of incoming photons: the photons that we send in mode (k, λ) to excite the particle. We
have Nk,λ photons moving at the speed of light in a box of side L, so the �ux is jinc = cNk

L3 . We sum over all
the photons with momentum compatible with the small section dΩk′ (photons going in the same direction but
with di�erent |k|). Assume that the detectors know which λ′ hit them.
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k, λ |0〉 |n〉

k′, λ′

Figure 2.4: We place many small detectors in a circle around the particle. The photon emitted
with momentum k′ will hit the detector at section dΩk′ . We repeat the experiment many times,
and �nd the statistics of photons detected for each angle.

Using Eq. 2.24, we obtain

dσ

dΩk′
=
∑
n

L3

cNk

∑
k′∈dΩk′

Γ0→n,(k,λ)→(k′,λ′)

=
∑
n

8π3~r2
0c

3

L3ωk

∑
k′∈dΩk′

1

ωk′
|e(k, λ) · e∗(k′, λ′)|2 |〈n|ρ̂k′−k|0〉|2 δ(En + ~ωk′ − (E0 + ~ωk))

We need to compute the sum over all k′ ∈ dΩk′ . We will approximate the sum (in general discrete
values) by an integral [Riemann sum from calculus]

∑
k′

f(k′) ≈
(
L

2π

)3 ∫
d3k′f(k′). (2.26)

Remember that k′ = 2π
L (nx, ny, nz). For large L, neighbouring k

′s are very close together, so this approximation
is reasonable. Now we can transform the Cartesian coordinates to spherical coordinates, easier to relate to our
section,

d3k′ = |k′|2 dΩk′d |k′| =
ω2
k′

c3
dΩk′dωk′ ,

so we have ∑
k′∈dΩk′

f(k′) ≈ L3

8π3c3

∫ ∞
0

dωk′ ω
2
k′ f(k′). (2.27)

Applying this to the cross section, we obtain

dσ

dΩk′
=
∑
n

8π3~r2
0c

3

L3ωk

L3

8π3c3

∫ ∞
0

dωk′ ω
2
k′

1

ωk′
|e(k, λ) · e∗(k′, λ′)|2 |〈n|ρ̂k′−k|0〉|2 δ (En + ~ωk′ − E0 − ~ωk)︸ ︷︷ ︸

1
~ δ(ωk′+

En−E0
~ −ωk)

=
∑
n

~r2
0

ωk

∫ ∞
0

dωk′ ωk′ |e(k, λ) · e∗(k′, λ′)|2 |〈n|ρ̂k′−k|0〉|2
1

~
δ

(
ωk′ +

En − E0

~
− ωk

)
︸ ︷︷ ︸

delta function

=
∑
n

r2
0

ωk′

ωk
|e(k, λ) · e∗(k′, λ′)|2 |〈n|ρ̂k′−k|0〉|2 δ~ωk′+En,E0+~ωk︸ ︷︷ ︸

Kronecker delta

.

We are almost done. All that is left to calculate is the term |〈n|ρ̂k′−k|0〉|2. This depends on the properties
of the particle, namely on states {|n〉p}. We will compute it for a speci�c case.

Example Suppose that the particle is a free electron, such that each state is described by a plane wave,
|n〉 = 1√

L3
eiqnr . We know that ρ̂(r) = δ(r− r̂). The Fourier transform of this delta function is

ρ̂k′−k =

∫
L3

d3rδ(r− r̂)e−i(k
′−k)·r = e−i(k

′−k)·r̂. (2.28)
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The matrix element 〈n|ρ̂k′−k|0〉 comes

〈n|ρ̂k′−k|0〉 =
1

L3

∫
L3

d3r e−iqnr ei(k−k
′)r̂ eiq0r

=
1

L3

∫
L3

d3re−ir(q0+k−qn−k′)

= δk+q0,k′+qn .

This corresponds to momentum conservation (Eq. 2.6.9 in the OS). Finally, the cross-section comes

dσq0→qn

dΩk′
=
∑
n

r2
0

ωk′

ωk
|e(k, λ) · e∗(k′, λ′)|2 δ~ωk′+En,−E0+~ωk

δk+q0,k′+qn

= r2
0

ωk′

ωk
|e(k, λ) · e∗(k′, λ′)|2. (2.29)

2.6.2 Perturbation theory to second order

How does it work?

What follows is a general description of perturbation theory to second order in time. Later we will apply this
to our concrete problem. A good reference (in German) is Manfred Sigrist's QM2 lecture notes, pages 117�124.

We start from a time-dependent Hamiltonian

Ĥ(t) = Ĥ0 + V̂ (t). (2.30)

Here, Ĥ0 is the initial time-independent Hamiltonian (imagine something simple, like a free particle or a hydro-
gen atom). V̂ (t) is a small perturbation, compared with Ĥ0 (e.g. the EM-�eld), which is "swiched on" at time
t = t0 and o� again at time t = τ ,

V̂ (t) = Θ(t0)[1−Θ(τ)] V̂ .

Assume that we know the stationary solution of the initial Hamiltonian,

Ĥ0|m〉 = εm|m〉, (2.31)

with the time-dependent wave function

|m(t)〉 = e−
iεmt

~ |m〉, (2.32)

for time t < t0 (this can be generalized for
∑
m cm|m(t)〉, but let's keep things simple for now). Knowing that

the system starts in state |m(t)〉, we want to �nd an approximate solution of the full SE, including the potential
V̂ . In particular, we want to compute transition probabilities, e.g. the probability of transition from state |m〉
to state |n〉.

Summary of assumptions: (τ − t0) small, ||V̂ || � ||Ĥ0||, solution for Ĥ0 known, initial state |m(t)〉.

We de�ne the interaction potential

V̂i(t) := e
iĤ0t

~ V̂ (t)e−
iĤ0t

~ ⇒ V̂ (t) = e−
iĤ0t

~ V̂i(t)e
iĤ0t

~ (2.33)

and interaction states

|ψ̃(t)〉 := e
iĤ0t

~ |ψ(t)〉 ⇒ |ψ(t)〉 = e−
iĤ0t

~ |ψ̃(t)〉, (2.34)

where |ψ(t)〉 is the actual state of the system (the solution of the SE). In particular, just before we turn on V̂
(at t = t0), the interaction state is

|ψ̃(t0)〉 = e
iĤ0t0

~ |m(t0)〉 = |m〉. (2.35)

Now we can write the SE in the so-called interaction picture,

i~
∂

∂t
|ψ(t)〉 = (Ĥ0 + V̂ (t))|ψ(t)〉

i~
∂

∂t

(
e−

iĤ0t
~ |ψ̃(t)〉

)
=

(
Ĥ0 + e−

iĤ0t
~ V̂i(t)e

iĤ0t
~

)
e−

iĤ0t
~ |ψ̃(t)〉

i~

(
− iĤ0

~

)
e−

iĤ0t
~ |ψ̃(t)〉+ i~e−

iĤ0t
~

∂

∂t
|ψ̃(t)〉 = Ĥ0e

− iĤ0t
~ |ψ̃(t)〉+ e−

iĤ0t
~ V̂i(t)|ψ̃(t)〉

i~
∂

∂t
|ψ̃(t)〉 = V̂i(t) |ψ̃(t)〉. (2.36)
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Integrating the SE leads to

|ψ̃(t)〉 =
(
T̂te
− i

~
∫ t
t0
dt′V̂i(t

′)
)
|ψ̃(t0)〉︸ ︷︷ ︸
|m〉

, (2.37)

where T̂t is the time-ordering operator. Now we expand the exponential, obtaining

|ψ̃(t)〉 =

(
1̂+

1

i~

[∫ t

t0

dt′V̂i(t
′)

]
+

1

(i~)2

[∫ t

t0

dt′
∫ t′

t0

dt′′V̂i(t
′)V̂i(t

′′)

]
+O(V̂ 3)

)
|m〉. (2.38)

This means that the �nal solution is a linear combination of terms |ψ̃(t)〉 =
∑
j |ψ̃j(t)〉, where |ψ̃j(t)〉 is the

solution for the jth term of the expansion. Remember that we are looking for the probability of transition from
state |m〉 to state |n〉:

Prob(|m〉 → |n〉) = |〈n(t)|ψ(t)〉|2

=
∣∣∣〈n|ψ̃(t)〉

∣∣∣2
=

∣∣∣∣∣∣〈n|
∑
j

|ψ̃j(t)〉

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∑
j

〈n|ψ̃j(t)〉

∣∣∣∣∣∣
2

. (2.39)

The contribution from

� the 0th-order term, |ψ̃0(t)〉 = 1̂|m〉, is trivial;

� the �rst-order term, |ψ̃1(t)〉 = 1
i~
∫ t
t0
dt′V̂i(t

′) |m〉, results in Fermi's Golden Rule;

� the second-order term, |ψ̃2(t)〉 = 1
(i~)2

∫ t
t0
dt′
∫ t′
t0
dt′′V̂i(t

′)V̂i(t
′′) |m〉, will be examined here;

� higher-order terms, |ψ̃3+(t)〉 = O(V̂ 3) |m〉, is dismissed (see assumptions) .

A quick note about taking only the second-order term. When we apply this to our problem of light-matter
interaction, we will see that the contribution from the 0th- and �rst-order terms is zero for the relevant transition
and interaction potential. In general,

Prob(2)(|m〉 → |n〉) :=
∣∣∣〈n|ψ̃2(t)〉

∣∣∣2︸ ︷︷ ︸
contribution from 2nd term

{
= Prob(|m〉 → |n〉) if 〈n|ψ̃j(t)〉 = 0, ∀j 6= 2

≈ Prob(|m〉 → |n〉) if 〈n|ψ̃0(t)〉 = 〈n|ψ̃1(t)〉 = 0 and ||V̂ || small.
(2.40)

The matrix element in Eq. 2.40 is

〈n|ψ̃2(t)〉 =
1

(i~)2
〈n|

(∫ t

t0

dt′
∫ t′

t0

dt′′V̂i(t
′)V̂i(t

′′)

)
|m〉

=
1

(i~)2

∫ t

t0

dt′
∫ t′

t0

dt′′〈n|V̂i(t′)V̂i(t′′)|m〉, (2.41)

since |n〉, |m〉 are time-independent. We will use two tricks to solve this integral .

Sort of a dirty trick. We assume V̂ (t > t0) = V̂ eηt, where η = limx→0 x =: 0+. This will make our
integrals converge and it does not really change V̂ by much, because η and t are very small (remember that we
turn o� V̂ quickly); in addition V̂ should be time-independent. It follows that

V̂i(t) := e
iĤ0t

~ V̂ (t)e−
iĤ0t

~ = e
iĤ0t

~ V̂ eηte−
iĤ0t

~ , (2.42)

where V̂ is time-independent. The matrix element becomes

〈n|V̂i(t)|l〉 = 〈n|e
iĤ0t

~ V̂ eηte−
iĤ0t

~ |l〉

= 〈n|e
iεnt
~ V̂ eηte−

iεlt

~ |l〉

= exp

[
i

~
(εn − εl)t+ ηt

]
〈n|V̂ |l〉︸ ︷︷ ︸

time-independent

. (2.43)

We will use this soon.
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Quite a clever, elegant trick. In Eq. 2.41, the term 〈n|V̂i(t′)V̂i(t′′)|m〉 is hard to compute directly (in

general we may not know how to write V̂i
2
). So we insert an identity operator between the two V̂i's. We can

write the identity as 1̂ =
∑
` |`〉〈`| for any orthonormal basis (〈`|`′〉 = δ`,`′) of our Hilbert space. We will choose

this basis to be the eigenvalues of Ĥ0 (our stationary solutions),
{
|`〉 ∈ H : Ĥ0|`〉 = ε`|`〉

}
. The matrix element

becomes

〈n|V̂i(t′)1V̂i(t′′)|m〉 = 〈n|V̂i(t′)

(∑
`

|`〉〈`|

)
V̂i(t

′′)|m〉

=
∑
`

〈n|V̂i(t′)|`〉 〈`|V̂i(t′′)|m〉, (2.44)

which is easier to calculate, because now we only have matrix elements of a single operator.
Using both tricks, and setting t0 = 0 for simplicity, we can compute the total matrix element in Eq. 2.41,

〈n|ψ̃2(t)〉 =
1

(i~)2

∑
`

〈n|V̂ |`〉〈`|V̂ |m〉
∫ t

t0

dt′ exp

[
i

~
(εn − ε`)t′ + ηt′

] ∫ t′

t0

dt′′ exp

[
i

~
(ε` − εm)t′′ + ηt′′

]

= e
i
~ (εm−εn)t e2ηt

εm − εn + 2i~η
∑
`

〈n|V̂ |`〉〈`|V̂ |m〉
εm − ε` + i~η

.

So, the probability of transition at time t (at least the contribution from the second-order term) is

Prob(2)(|m〉 → |n〉) =
∣∣∣e i~ (εm−εn)t

∣∣∣2 e4ηt

|εm − εn + 2i~η|2

∣∣∣∣∣∑
`

〈n|V̂ |`〉〈`|V̂ |m〉
εm − ε` + i~η

∣∣∣∣∣
2

︸ ︷︷ ︸
=:A

. (2.45)

In general, we are more interested in the transition rate

Γm→n =
d

dt
Prob(|m〉 → |n〉)

=
d

dt

e4ηt

|εm − εn + 2i~η|2
A

=
4ηe4ηt

|εm − εn + 2i~η|2
A

≈ A 4ηe4ηt

(εm − εn)2 + (2i~η)2
since η → 0

=
A

~2
lim
η→0+

η

( εm−εn2~ )2 + η2

=
A

~2
δ

(
εm − εn

2~

)
=

2A

~
δ (εm − εn)

=
2

~

∣∣∣∣∣∑
`

〈n|V̂ |`〉〈`|V̂ |m〉
εm − ε` + i~η

∣∣∣∣∣ δ (εm − εn) . (2.46)

We are �nished. What can we conclude? What do those terms with |`〉 mean? Here are a couple of ways to
think about it:

1. Our system goes from |m〉 to |n〉 through intermediate states |`〉.
The |`〉's that more likely occur are the ones with energy close to that of |m〉 due to the term

1

εm − ε` + i~η
, (2.47)

but energy violations are possible from |m〉 to |`〉. You might hear in particle physics something along the
lines of:

�but that's ok, because of the energy-time uncertainty relation and we can never detect |`〉 in
the laboratory anyway. . . �
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or as we say back home

�rebebebeu pardais ao ninho.�

This interpretation makes it easy to visualise the transition going through the intermediate states, and
you can think about it like that, so long as you remember it is all in your mind.

2. The |`〉's are a nice mathematical trick we inserted to solve a huge integral, which is anyway only the
second-order term of the exact expression of the propagator. They are an extremely useful tool, and we
will use Feynman diagrams to represent them, but they do not mean anything �real�, in the sense that
there is no way to determine whether the system actually goes through |`〉.
I like this interpretation.

3. What is reality anyway?

I like you. Try taking Quantum information Theory in the next semester. I promise you will learn more
about the meaning of reality there than in any philosophy class.

First interaction term

Now we are going to apply this elegant theory to the case of light-matter interaction (Section 2.6.2 in the OS).
By the way, the OS' approximations are not so obvious, so we will do it in a slightly di�erent way.

In Section 2.6.1 we applied PT to �rst order in time to the �rst and second interaction terms of our
Hamiltonian. Now, we will apply PT to second order to the �rst term (Eq. 2.15),

V̂ = Ĥint,1 = − e√
L3

∑
k,λ

√
2π~
ωk

(
ĵ(−k) · e(k, λ)⊗ âk,λ + ĵ(k) · e∗(k, λ)⊗ â†k,λ

)
.

Again, we are looking for transitions of the form

|i〉 = |0〉p|Nk,λ︸︷︷︸
(k,λ)

, 0︸︷︷︸
(k,λ)

〉EM ⇒ |f〉 = |n〉p|Nk,λ − 1, 1〉EM . (2.48)

We already know that PT to �rst order on this term does not give us any of these transitions, Γ
(1)
i→f = 0, so

all the contributions to the transition rate will come from the second-order term (and higher, but we dismiss
those). From Eq. 2.46, we have

Γi→f ≈ Γ
(2)
i→f =

2

~

∣∣∣∣∣∑
`

〈f |V̂ |`〉〈`|V̂ |i〉
E(i)− E(`) + i~η

∣∣∣∣∣
2

δE(i)− E(f). (2.49)

The intermediate states |`〉 have the form |`〉p ⊗ |Ñk,λ, . . .〉 [sorry, I am running out of symbols here. . . ]. Let us
focus on the term

〈f |V̂ |`〉〈`|V̂ |i〉 = 〈n|〈Nk,λ − 1, 1| V̂ |`〉|Ñk,λ, . . .〉〈`|〈Ñk,λ, . . . | V̂ |0〉|Nk,λ, 0〉

=− e
√

2π~
c
√
L3

∑
q̃,µ

1
√
ωq

(
〈n|̂j(−q) · e(q, µ)|`〉〈Nk,λ − 1, 1|âq,µ|Ñk,λ, . . .〉+ 〈n|̂j(q) · e∗(q, µ)|`〉〈Nk,λ − 1, 1|â†q,µ|Ñk,λ, . . .〉

)
∑
q′,µ′

1
√
ωq′

(
〈`|̂j(−q′) · e(q′, µ′)|0〉〈Ñk,λ, . . . |âq′,µ′ |Nk,λ, 0〉+ 〈`|̂j(q′) · e∗(q′, µ′)|0〉〈Ñk,λ, . . . |â†q′,µ′ |Nk,λ, 0〉

)
=− e

√
2π~

c
√
L3

∑
q,µ

∑
q′,µ′

1
√
ωq ωq′

〈n|̂j(−q) · e(q, µ)|`〉 〈`|̂j(−q′) · e(q′, µ′)|0〉 〈Nk,λ − 1, 1|âq,µ|Ñk,λ, . . .〉 〈Ñk,λ, . . . |âq′,µ′ |Nk,λ, 0〉
+ 〈n|̂j(−q) · e(q, µ)|`〉 〈`|̂j(q′) · e∗(q′, µ′)|0〉 〈Nk,λ − 1, 1|âq,µ|Ñk,λ, . . .〉 〈Ñk,λ, . . . |â†q′,µ′ |Nk,λ, 0〉
+ 〈n|̂j(q) · e∗(q, µ)|`〉 〈`|̂j(−q′) · e(q′, µ′)|0〉 〈Nk,λ − 1, 1|â†q,µ|Ñk,λ, . . .〉 〈Ñk,λ, . . . |âq′,µ′ |Nk,λ, 0〉
+ 〈n|̂j(q) · e∗(q, µ)|`〉 〈`|̂j(q′) · e∗(q′, µ′)|0〉 〈Nk,λ − 1, 1|â†q,µ|Ñk,λ, . . .〉 〈Ñk,λ, . . . |â†q′,µ′ |Nk,λ, 0〉

 .

Now, remember that to go from |Nk,λ, 0〉 to Nk,λ − 1, 1 we need to add a photon in mode (k′, λ′) and destroy

a photon in mode (k, λ). In other words, we need an operator â†k′,λ′ and an operator âk,λ. We only have one
operator between initial and intermediate states, and again one operator between intermediate and �nal states.
This implies that those intermediate states must represent one step of the process: either we already have a
photon in mode (k′, λ′), with |Nk,λ, 1〉, or we already took one photon from mode (k, λ), with |Nk,λ − 1, 0〉.
This also means that, out of those four terms in our ginourmous equation above, only two will survive:
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� 〈Nk,λ−1, 1|âq,µ|Ñk,λ, . . .〉〈Ñk,λ, . . . |âq′,µ′ |Nk,λ, 0〉 = 0, because we cannot destroy two photons to go from
the initial to the �nal state.

� 〈Nk,λ − 1, 1|âq,µ|Ñk,λ, . . .〉〈Ñk,λ, . . . |â†q′,µ′ |Nk,λ, 0〉 =
√
Nk,λ if |Ñk,λ, . . .〉 = |Nk,λ, 1〉, (q′, µ′) = (k′, λ′),

and (q, µ) = (k, λ) ; and 0 otherwise. Here, �rst we create a photon in mode (k′, λ′) and then destroy a
photon from mode (k, λ).

� 〈Nk,λ− 1, 1|â†q,µ|Ñk,λ, . . .〉〈Ñk,λ, . . . |âq′,µ′ |Nk,λ, 0〉 =
√
Nk,λ if |Ñk,λ, . . .〉 = |Nk,λ− 1, 0〉, (q′, µ′) = (k, λ),

and (q, µ) = (k′, λ′) ; and 0 otherwise. Here, �rst we destroy a photon from mode (k, λ) and then create
a photon in mode (k′, λ′).

� 〈Nk,λ − 1, 1|â†q,µ|Ñk,λ, . . .〉〈Ñk,λ, . . . |â†q′,µ′ |Nk,λ, 0〉 = 0, because we cannot create two photons to go from
the initial to the �nal state.

Note that we impose no restrictions on the intermediate state of the particle, |`〉p Our equation has become
much more managable,

〈f |V̂ |`〉〈`|V̂ |i〉 = −e
√

2π~
c
√
L3

√
Nk,λ

ωk ωk′(
〈n|̂j(−k) · e(k, λ)|`〉 〈`|̂j(k′) · e∗(k′, λ′)|0〉 δ(|Ñk,λ, . . .〉, |Nk,λ, 1〉)

+ 〈n|̂j(k′) · e∗(k′, λ′)|`〉 〈`|̂j(−k) · e(k, λ)|0〉 δ(|Ñk,λ, . . .〉, |Nk,λ − 1, 0〉)

)
,

(2.50)

The transition rate comes

Γi→f ≈ Γ
(2)
i→f =

2

~

∣∣∣∣∣∑
`

〈f |V̂ |`〉〈`|V̂ |i〉
E(i)− E(`) + i~η

∣∣∣∣∣
2

δ(E(i)− E(f))

=
4πe2

c2L3

Nk,λ

ωk ωk′
δ(~ωk′ + En − E0 − ~ωk)∣∣∣∣∣∣∣∣∣

∑
`

〈n|̂j(−k) · e(k, λ)|`〉〈`|̂j(k′) · e∗(k′, λ′)|0〉
E0 − E` − ~ωk′ + i~η︸ ︷︷ ︸
|Ñk,λ,...〉=|Nk,λ,1〉

+
〈n|̂j(k′) · e∗(k′, λ′)|`〉〈`|̂j(−k) · e(k, λ)|0〉

E0 − E` + ~ωk + i~η︸ ︷︷ ︸
|Ñk,λ,...〉=|Nk,λ−1,0〉

∣∣∣∣∣∣∣∣∣
2

.

(2.51)

Now you can calculate the cross-section. [sorry, running out of time] The total rate of photons detected at a
given angle, by the way, is the sum of the the cross-sections given by all interaction terms, with PT going as far
as we �nd reasonable.

The Feynman diagram for this transition is represented in Fig. 2.5b. You get two diagrams, representing the
two terms inside that sum: one diagram for the �rst term, where the intermediate state has one less photon in
mode (k, λ), and one diagram for the second term, where the intermediate state has one more photon in mode
(k′, λ′).

Very Important Note: Feynman diagrams represent the matrix elements that appear when we apply PT to
an interaction. They are a simple way to visualize all the ugly maths behind the �nal result for transition rates
and cross-sections. They do not represent what happens �in reality�. As we see in Fig. 2.5a, all that we can
observe in the lab is that the particle absorbed a photon and emitted a di�erent photon, going to an excited
state, just like in the previous case (Section 2.6.1). Intermediate states are only in our mind.
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k, λ |0〉 |n〉

k′, λ′

(a) On the left (before), the particle absorbs a
photon. On the right (after) the particle is in a
excited state and emitted a photon in a di�erent
mode.

(b) Feynman diagrams for the interaction. On
the left, a particle goes to state |`〉, emmiting
a photon in mode (k′, λ′), and later absorbs a
photon in mode (k, λ), going to the �nal state
|n〉. On the right, �rst the particle absorbs the
photon in mode (k, λ) and goes to state |`〉, and
later emits a photon in mode (k′, λ′), going to
the �nal state.

Figure 2.5: Transition obtained from PT to second order on time, applied to the �rst interaction
term.



Chapter 6

Atoms (and the periodic table)

[This chapter is a teaser for quantum chemistry, and a motivation for computational physics.]

The goal: To understand the behaviour of atoms and ions with several electrons.

The problem: Interaction between the electrons makes things horribly complicated. There is no known analytical solution
for two or more electrons. Current numerical simulations are quite good, matching experimental results,
but we won't go there. Instead, we will look at a few approximations and attempts to solve them.

Notation: Z is number of protons in the nucleus, N the number of electrons. They are the same for atoms, di�erent
for ions.

The atom's Hamiltonian is

H =

N∑
i=1

p̂i
2m
−

N∑
i=1

Ze2

|x̂i|
+
∑
i>j

e2

|x̂i − x̂j |
, (6.1)

where e is the electron's charge, and all coordinates are relative to the nucleus. The �rst term is just the
kinetic energy of every electron, and the second term is the Coulomb attraction to the protons in the nucleus.

This Hamiltonian is already an approximation: we implicitly assume a point-like nucleus with charge Ze,
instead of considering Z protons with their own wave functions (to say nothing of neutrons). In the last term,
we have the interaction between electrons. We sum over j, i > j to avoid double-counting of pairs. This term
was not present in the hydrogen atom, and makes it impossible to �nd an exact analytical solution for the
Hamiltonian (think of the three-body problem in classical mechanics). We will go over some approximations
now, but you have been warned: it ain't pretty.

6.1 Thomas-Fermi approximation

This is a very old approximation that we keep learning mostly out of historical interest. It is crude and classical,
and doesn't really allow us to compute anything very interesting or correct. However, some of the techniques
used pop up again and again in solid-state physics, for example, so it is worth a look.

We assume,

1. N � 1 very large;

2. electrons independent;

3. the electrons create a classical density of charge eρ(r);

4. the density of electrons has spherical symmetry, ρ(r) = ρ(r) (this does not happen in reality: some
spherical harmonics do not have this symmetry);

5. there are no electrons near the nucleus, so ρ(r → 0) = 0 (this comes naturally if you do a full QM analysis
of the problem, but has to be forced by hand in a classical approximation);

6. the electrons only feel ρ(r) and not the other individual electrons (mean-�eld approximation; see solid-state
physics)

26
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We can normalize the charge density,

N =

∫
d3r ρ(r) = 4π

∫ ∞
0

dr r2 ρ(r). (6.2)

Now we assume that each electron only feels the scalar potential created by this charge density, and not the
individual electrons. This is the so-called mean-�eld approximation. The next step is to use Maxwell's equations
to �nd the total potential,

−∇2φ(r) =

{
4π(−e)ρ(r), |r| > 0

Ze, |r| → 0,
(6.3)

which tells us that the potential also has spherical symmetry. We can write the classical Hamiltonian of each
individual electron as

Hi =
pi
2m
− eφ(ri). (6.4)

We are looking for the ground state of the global Hamiltonian Ĥ =
∑
i Ĥi =

∑
i

pi
2m − eϕ(ri). In quantum

mechanics we build the ground state of the hydrogen atom by putting two electrons of opposite spin per state,
starting at the state with the lowest energy continuing until we ran out of electrons. The energy of the last
occupied state is called the Fermi level, EF .

In this classical approximation, we do something analogous: we populate the states of phase-space (r,p, s)
with a uniform density of electrons, up to EF . We assume that the energy is degenerate in spin (which
is not true), so we can forget about the degree of freedom s if we multiply the density of (r,p) by two. The
volume of a minimal cell of phase space is (2π~)3, so we get an electron density in phase space of

ρ̃(r,p) =

{
2

(2π~)3 , EF > E(r,p) := p
2m − eφ(r)

0 EF < E(r,p).
(6.5)

To obtain the density of electrons in space, we integrate over all p,

ρ(r) =

∫
d3pρ̃(r,p) (6.6)

=
2

(2π~)3

∫
E<EF

d3p

=
2

(2π~)3

∫ 2π

0

dφ

∫ π

0

dθ sin θ

∫ √2m(EF+eφ(r))

0

dp p2

=
8π

(2π~)3

1

3
(2m[EF + eφ(r)])

3/2
. (6.7)

Here we used the fact that φ(r) ≥ 0,∀r > 0 (the potential is negative only in the centre where the protons are,
but there ρ = 0).

Now we found ourselves a system of di�erential equations,

ρ(r) =

{
0, r → 0
(2m[EF+eφ(r)])3/2

3π2~3 , r > 0
(6.8)

∇2φ(r) =

{
−Ze, r → 0,

4πeρ(r), r > 0,
(6.9)

which people in the twenties had moderate fun solving.1 We will not do that because with all those classical
assumptions and approximations, the �nal density of electrons has little to do with the real wave-function
density in an atom.

Nevertheless, this approximation was used to try to estimate the size of an atom for the �rst time. �Size"
was de�ned as the radius of a ball that contains most of the electron density (sort of like the half-life time for
radioactive elements). They obtained two results: when the percentage of charge inside this ball was set to be
a constant, say 98%, then the radius grew with Z−1/3. When the percentage changed with Z, like (Z − 1)/Z,
meaning �all the electrons except one are inside the ball", then the radius was constant [there is a mistake in
the original script here!]. In other words: depending on how you measure it, the size of the atom decreases or
stays the same as you increase the number of electrons. This is not complete nonsense, because we are also
increasing the number of protons, and therefore the attraction to the nucleus. But it should be a warning that
we seriously misestimated the interaction between electrons.

1If you want to solve this, add the normalization condition, 6.2, and �nd an expression for EF .
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ρ
R

Figure 6.1: [Example: the atom is has 98% of the total electron density inside a radius of R.]

6.2 Hartree approximation

This is the �rst quantum-mechanical approximation. Assumptions:

1. The electrons are independent, distinguishable particles; in other words, the global wave function of all
the electrons is a product state

|ψ〉1,2,...,N = |ψ1〉1|ψ2〉2 . . . |ψN 〉N , (6.10)

where |ψj〉i is the ket corresponding to the wave function ψj , living in Hilbert space Hi.

2. The Pauli principle is introduced by hand by saying that we cannot have more than one electron with the
same wave function ψj .

The next step is to solve the SE under these assumptions, to �nd the e�ective potential and the density of
particles. However, as you may imagine, the results are not very accurate, since we stipulated that electrons
are not fermions.

6.3 Hartree-Fock approximation

This is a more reasonable approximation, and we will study it in detail. It is widely used both in solid-state
physics and in quantum chemistry.

Assumptions:

1. The electrons are non-interacting fermions; in other words, the global wave function is the anti-permutation
of a product state,

|ψ〉1,2,...,N =
1√
N !

∑
P∈SN

(−1)|P ||ψP (1)〉1|ψP (2)〉2 . . . |ψP (N)〉N (6.11)

= a†N . . . a
†
2a
†
1|0〉, (6.12)

where |ψj〉i is the ket corresponding to the wave function of particle i (includes the spatial wave function
φj(x) and spin sj). Important remark: In general, the global wave function is the anti-permutation of
an arbitrary state. With this restriction, we are excluding many possible correlations between electrons.

Our primary goal is to �nd the atom's ground state. However, in general the ground state may have
correlated electrons, so we will settle for the state of non-interacting electrons (of the form of Eq. 6.12) that
minimizes the atom's energy. Formally, we want to �nd the single-particle wave-functions {|ψi〉} that minimize
〈ψ|H|ψ〉 (where |ψ〉 is given by Eq. 6.12). This optimization is subject to a normalization constraint on the
single-particle wave-functions, 〈ψ|ψ〉 − 1 = 0,∀i. We will solve this using the method of Lagrange multipliers:
we de�ne the Lagrange function

Λ(|ψ1〉, . . . , |ψN 〉, λ1, . . . , λN︸ ︷︷ ︸
Lagrange multipliers

) = 〈ψ|H|ψ〉 −
∑
i

λi (〈ψi|ψi〉 − 1), (6.13)

and try to minimize it, ie, �nd the arguments of ∇Λ = 0. Before we do it, though, we have to write the term
〈ψ|H|ψ〉 as a function of the single-particle wave functions. This will require us to write both H and |ψ〉 in the
second quantization formalism. The state is easy,

|ψ〉 = a†N . . . a
†
2a
†
1|0〉, (6.14)

where |0〉 is the vacuum. Now the Hamiltonian. Recall that, in general, we can create a many-fermion operator
from a single-particle operator M ,

M1-part −→
∑
i,j

a†i 〈ψi|M |ψj〉 aj , (6.15)
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for some basis {|ψi〉}i of the single-particle Hilbert space. Note that the operators
{
aj , a

†
i

}
act on the global

fermionic state, while M and {|ψi〉} refer to a single particle. This new operator has the following physical
interpretation: we see if M takes state |ψj〉 to state |ψi〉 (the weight of this transtion is given by 〈ψi|M |ψj〉). If
that happens, we destroy a particle in state |ψj〉 and create a particle in state |ψi〉, using the fermionic operators.
For two-particle operators, this generalizes to

M2-part −→
∑
i,j,k,m

a†ia
†
j 〈ψi|〈ψj |M |ψk〉|ψm〉 akam. (6.16)

Applying this to our Hamiltonian, we obtain

H =
∑
ij

a†i 〈ψi|
p̂2

2m
|ψj〉 aj −

∑
ij

a†i 〈ψi|
Ze2

|x̂j |
|ψj〉 aj +

1

2

∑
ijkm

a†ia
†
j 〈ψi|〈ψj |

e2

|x̂k − x̂m|
|ψk〉|ψm〉 akam. (6.17)

Now we can compute the energy of this state, 〈ψ|H|ψ〉, one term at the time.
For the two �rst terms, with one-particle operators, we have

〈ψ|

∑
ij

a†i 〈ψi|M |ψj〉 aj

 |ψ〉 =
∑
ij

〈ψi|M |ψj〉 〈ψ|a†iaj |ψ〉︸ ︷︷ ︸
=δijΘ(N−i)

=

M∑
i=1

〈ψi|M |ψi〉 (6.18)

For two-particle operators, we have

〈ψ|

∑
ijkm

a†ia
†
j 〈ψi|〈ψj |M |ψk〉|ψm〉 akam

 |ψ〉
=
∑
ijkm

〈ψi|〈ψj |M |ψk〉|ψm〉 〈ψ|a†ia
†
jakam|ψ〉

=

N∑
i,j=1

〈ψi|〈ψj |M |ψi〉|ψj〉 〈ψ|a†ia
†
jaiaj |ψ〉︸ ︷︷ ︸

i=k,j=m

+〈ψi|〈ψj |M |ψj〉|ψi〉 〈ψ|a†ia
†
jajai|ψ〉︸ ︷︷ ︸

i=k,j=m

=

N∑
i,j=1

−〈ψi|〈ψj |M |ψi〉|ψj〉 〈ψ|a†iaia
†
jaj |ψ〉︸ ︷︷ ︸

=1

+〈ψi|〈ψj |M |ψj〉|ψi〉 〈ψ|a†iaia
†
jaj |ψ〉︸ ︷︷ ︸

=1

=

N∑
i,j=1

−〈ψi|〈ψj |M |ψi〉|ψj〉+ 〈ψi|〈ψj |M |ψj〉|ψi〉.

Applying these results to our Hamiltonian, we obtain

〈ψ|H|ψ〉 =

N∑
i=1

〈ψi|
−~2∇2

2m
|ψi〉 −

N∑
i=1

〈ψi|
Ze2

|x̂i|
|ψi〉 −

N∑
i,j=1

〈ψi|〈ψj |
e2

|x̂i − x̂j |
|ψi〉|ψj〉+

N∑
i,j=1

〈ψi|〈ψj |
e2

|x̂j − x̂i|
|ψj〉|ψi〉.

(6.19)

6.3.1 Minimizing the Lagrange function

Remember that the Lagrange function was de�ned as Λ = 〈ψ|H|ψ〉 −
∑
i λi (〈ψi|ψi〉 − 1). Using the reults

above, it becomes

Λ(|ψ1〉, . . . , |ψN 〉, λ1, . . . , λN ) = −
N∑
i=1

(
~2

2m
〈ψi|∇2|ψi〉+ Ze2〈ψi|

1

|x̂i|
|ψi〉

+ e2
N∑
j=1

〈ψj |〈ψi|
1

|x̂j − x̂i|
|ψj〉|ψi〉 − e2

N∑
j=1

〈ψi|〈ψj |
e2

|x̂i − x̂j |
|ψj〉|ψi〉

+ λi (〈ψi|ψi〉 − 1)

)
, (6.20)

where we rearranged the indices of the two-particle terms for later convenience. We are looking for the arguments
(|ψ1〉, . . . , |ψN 〉, λ1, . . . , λN ) that minimize it. We can split the minimization condition in two parts:
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1. Derivatives in order to all scalar multipliers {λi} must be zero, giving us∧
i

∂

∂λi
Λ = 0⇔ ∀i 〈ψi|ψi〉 = 1, (6.21)

2. All the {|ψi〉} must also be local minima. Let us see what that implies in a more general case. Say we
want to �nd a local minimum |φ0〉 of a matrix element of the form 〈φ|A|φ〉, where A is any Hermitian
operator. This means that if you change the function φ0 even a tiny bit, the value of the matrix element
will increase. We can express that in the following way: if instead of |φ0〉 we have |φ0〉+ t|η〉, where η is
any other function and t is very small, then the matrix element increases. In other words, the derivative
in order to t of the above expression must be zero for t tiny,

∂

∂t

(
〈φ0|+ t〈η|

)
A
(
|φ0〉+ t|η〉

)∣∣∣
t=0

= 0, ∀|η〉. (6.22)

This will give us a very nice expression in the end. Stick by as we compute it,

∂

∂t

(
〈φ0|A|φ0〉+ t〈η|A|φ0〉+ t〈φ0|A|η〉+ t2〈η|A|η〉

)∣∣∣
t=0

= 0, ∀|η〉

⇔
(

0 + 〈η|A|φ0〉+ 〈φ0|A|η〉+ 2t〈η|A|η〉
)∣∣∣
t=0

= 0, ∀|η〉

⇔ 〈η|A|φ0〉+ 〈φ0|A|η〉 = 0, ∀|η〉.

In particular, this is true for |η′〉 = i|η〉, so we get

∀|η〉 〈η|A|φ0〉+ 〈φ0|A|η〉 = 0 ∧ −i〈η|A|φ0〉+ i〈φ0|A|η〉 = 0

⇔ ∀|η〉 〈η|A|φ0〉+ 〈φ0|A|η〉 = 0 ∧ −〈η|A|φ0〉+ 〈φ0|A|η〉 = 0

⇔ ∀|η〉 〈η|A|φ0〉 = 〈φ0|A|η〉 = 0

⇒ A|φ0〉 = 〈φ0|A = 0.

[This is slightly di�erent from the way I did it in the lecture. This version is more rigorous, and works for
�nite-dimensional Hilbert spaces. If we have in�nitely many dimensions, the calculation becomes more
delicate (though the result is similar). We won't treat that case here.]

Now we have to reduce our problem to the minimization of terms of the form 〈ψ|A|ψ〉. That is fairly direct,
as

Λ = −
N∑
i=1

〈ψi|


~2

2m∇
2 + Ze2 1

|x̂i|
+e2

∑N
j=1(〈ψj | ⊗ I) 1

|x̂j−x̂i| (|ψj〉 ⊗ I)

−e2
∑N
j=1(I ⊗ 〈ψj |) e2

|x̂i−x̂j | (|ψj〉 ⊗ I)

+λi


︸ ︷︷ ︸

A

|ψi〉 − λi. (6.23)

All the {|ψi〉} and {λi} count as independent variables, so for each |ψi〉 we have to minimize 〈ψi|A|ψi〉 (the �nal
λi is a constant). This gives us the minimization condition

0 = A|ψi〉

⇔ λi |ψi〉 = − ~2

2m
∇2|ψi〉 − Ze2 1

|x̂i|
|ψi〉 − e2

N∑
j=1

〈ψj |
1

|x̂i − x̂j |
|ψj〉|ψi〉+ e2

N∑
j=1

〈ψj |
e2

|x̂j − x̂i|
|ψi〉|ψj〉.

We can expand the inner products of the last two terms. Remember that the single-particle wave-functions
included the spatial wave function and spin, |ψi〉 = |φi〉|si〉, where φi(x) depends on the position. We obtain

λi |φi〉|si〉 = −
(

~2

2m
∇2
i + Ze2 1

|x̂i|

)
|φi〉|si〉

− e2
N∑
j=1

[∫
d3xjφ

∗
j (xj)

1

|x̂i − xj |
φj(xj)

]
〈sj |sj〉︸ ︷︷ ︸

=1

|φi〉|si〉

+ e2
N∑
j=1

[∫
d3xjφ

∗
j (xj)

1

|x̂i − xj |
φi(xj)

]
〈sj |si〉︸ ︷︷ ︸
=δsisj

|φj〉|si〉.
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The spin component is not doing much there (since none of those operators acts on it). Without it, the equation
looks like

λi |φi〉 = −
(

~2

2m
∇2
i + Ze2 1

|x̂i|

)
|φi〉

− e2
N∑
j=1

(∫
d3yφ∗j (y)

1

|x̂− y|
φj(y)

)
|φi〉

+ e2
N∑
j=1

(∫
d3yφ∗j (y)

1

|x̂− y|
φi(y)

)
|φj〉 δsisj .

If we are interested in the spatial wave function at a particular point x, we get, using y := xj inside the
integrals for simplicity,

λi φi(x) = −
(

~2

2m
∇2
x + Ze2 1

|x|

)
φi(x)

− e2
N∑
j=1

∫
d3yφ∗j (y)

1

|x− y|
φj(y)φi(x) + e2

N∑
j=1

∫
d3yφ∗j (y)

1

|x− y|
φi(y)φi(x) δsisj .

= −
(

~2

2m
∇2
x + Ze2 1

|x|

)
φi(x)︸ ︷︷ ︸

single particle

+e2
N∑
j=1

∫
d3y

1

|x− y|

−φ∗j (y)φj(y)φi(x)︸ ︷︷ ︸
Hartree term

+ δsisj φ
∗
j (y)φi(y)φi(x)︸ ︷︷ ︸
Fock term

 .
This equation looks a lot like a SE, where λi acts almost as an energy eigenvalue. Now we have a system of DE
which can be solved numerically, for instance using as initial {λi, |ψi〉}i the energy eigenvalues and eigenstates
of a single-electron atom. Once we have the non-correlated state that minimizes the Hamiltonian, we can apply
small numerical perturbations to that state and see if the energy decreases. The perturbated state will in general
have correlations between electrons.

[See in the script/wikipedia the accuracy of this approximation.]



Chapter 7

Statistical quantum mechanics

I am going to review some basic concepts of quantum mechanics. Bear with me, it will become interesting very
soon. For more details, see the Quantum Information Theory script, by Profs. Renato Renner and Matthias
Christandl,
http://www.itp.phys.ethz.ch/education/lectures_hs11/qit/resources/script

(beginning of chapter 4).

7.1 Pure states: evolution and measurements

Say you have a quantum state |ψ〉 on a Hilbert space H. We saw in QM1 that quantum states evolve under
unitary operators, |ψ(t)〉 = Ut|ψ(0)〉, with Ut = e−iHt.

There are a few conventions to describe measurements performed on quantum states. A special case is a
measurement where your device can distinguish all the elements of a basis of H. For instance, you measure a
qubit in the computational basis, and your machine gives you two outcomes: �0� when it measures |0〉, and �1�
when it measures |1〉. The probability of obtaining outcome �x� is given by

Pr[x]ψ = |〈ψ|x〉|2 = 〈ψ|x〉〈x|ψ〉, (7.1)

which we can rewrite with the help of the matrix trace as

Pr[x]ψ = Tr(|x〉〈x| |ψ〉〈ψ|). (7.2)

To see this, recall that the trace is the sum of the diagonal elements of a matrix, with respect to any basis {|i〉}i,
Tr(A) =

∑
i〈i|A|i〉. We have

Tr(|x〉〈x| |ψ〉〈ψ|) =
∑
i

〈i|x〉〈x|ψ〉〈ψ|i〉

= 〈x|ψ〉
∑
i

〈ψ|i〉〈i|x〉

= 〈x|ψ〉|ψ〉

(∑
i

|i〉〈i|

)
︸ ︷︷ ︸

1

〈x|

= 〈x|ψ〉〈ψ|x〉.

Recap: trace. The trace is linear, αTr(A) + βTr(B) = Tr(αA + βB), cyclic, Tr(ABC) = Tr(CAB), and
invariant under unitary transformations, i.e., basis-independent, Tr(A) = Tr(UAU†).

After a measurement with outcome x, the state of the system collapses to |x〉. 1 We call the operator |x〉〈x|
the projector onto state |x〉. We will generalise it in the next section. Before that, a word about vectors and
matrices in �nite-dimensional systems.

7.1.1 Finite systems: kets and bras as vectors

If the Hilbert space H is �nite (e.g. a qubit), you can use vectors to represent kets and bras, and matrices for
operators. This is probably explained in detail in QM1, but I will repeat it here for the sake of completeness.

1Again, for more about this, come to QIT!

32
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Pick a basis {φi}Ni=1 of your Hilbert space. We identify kets with the elements of the Hilbert space, for
instance |i〉 : c 7→ xφi. Now any ket |ψ〉 can be expanded in this basis:

|ψ〉 =
∑
i

〈φi, ψ〉 |i〉, (7.3)

where 〈ψ, φi〉 is the inner product. We represent this as a vertical vector,

|ψ〉 =


〈φ0, ψ〉
〈φ1, ψ〉

...
〈φN , ψ〉

 , (7.4)

such that row i corresponds to ket |i〉. What about bras? They are simply horizontal vectors,

〈τ | = (〈τ, ψ0〉, 〈τ, φ1〉, · · · , 〈τ, φN 〉) (7.5)

This is compatible with our previous de�nition of bra as a function that takes a wave function and returns an
inner product. In fact,

〈τ | |ψ〉 = (〈τ, ψ0〉, 〈τ, φ1〉, · · · , 〈τ, φN 〉)


〈φ0, ψ〉
〈φ1, ψ〉

...
〈φN , ψ〉


=
∑
i

〈τ, φi〉 〈φi, ψ〉

= 〈τ, ψ〉,

hence we can write inner products as contractions between bras and kets, 〈τ, ψ〉 = 〈τ | |ψ〉 =: 〈τ |ψ〉. Similarly,
operators that act on the Hilbert space (endomorphisms on H) can be represented as matrices,

A =

(∑
i

|i〉〈i|

)
︸ ︷︷ ︸

1

A

∑
j

|j〉〈j|


︸ ︷︷ ︸

1

=
∑
i,j

〈i|A|j〉︸ ︷︷ ︸
〈φi,Aφj〉

|i〉〈j|

=


a11 a12 · · · a1N

a21 a22

...
. . .

aN1 aNN

 , aij = 〈i|A|j〉. (7.6)

Examples. Say that H is the Hilbert space of a qubit. Here go a few quick examples of kets, bras, and
operators in the computational basis, {|0〉, |1〉}.

|0〉 =

(
1
0

)
, |1〉 =

(
0
1

)
, |1〉〈1| =

(
0 0
0 1

)
, |0〉〈1| =

(
0 1
0 0

)
,

|−〉 =
|0〉 − |1〉√

2
=

1√
2

(
1
−1

)
, |−〉〈−| =

(
|0〉 − |1〉√

2

)(
〈0| − 〈1|√

2

)
=

1

2

(
1 −1
−1 1

)

Pr[1]|−〉 = Tr
[
|1〉〈1| |−〉〈−|

]
= Tr

[(
0 0
0 1

)
1

2

(
1 −1
−1 1

)]
= Tr

[
1

2

(
0 0
−1 1

)]
=

1

2
.

7.2 Density operator

Imagine that you are given a quantum state to play with. The only problem is that you are not sure what state.
For instance, you may have a �awed source of quantum states, which was supposed to produce state |ψ〉, but
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will produce state |τ〉 instead with probability p. What is the probability of obtaining |x〉 when you measure
your unknown state in that basis? Well, it has to be [probability of having |ψ〉] ∗ [probability of measuring |x〉
on |ψ〉 ] + [probability of having |τ〉] ∗ [probability of measuring |x〉 on |τ〉 ],

Pr(x) = (1− p) Pr(x)ψ + p Pr(x)τ

= (1− p)Tr(|x〉〈x| |ψ〉〈ψ|) + p Tr(|x〉〈x| |τ〉〈τ |)
= Tr

(
(1− p)|x〉〈x| |ψ〉〈ψ|+ p |x〉〈x| |τ〉〈τ |

)
= Tr

(
|x〉〈x|

[
(1− p) |ψ〉〈ψ|+ p |τ〉〈τ |

]
︸ ︷︷ ︸

=:ρ

)
= Tr(|x〉〈x| ρ). (7.7)

Here, we de�ned the density operator ρ = (1− p) |ψ〉〈ψ|+ p |τ〉〈τ |. This is a mathematical object that re�ects
our ignorance about the actual state of the system. For in�nite dimensions, it becomes a matrix (the density
matrix). For instance, if |ψ〉 = |1〉 and |τ〉 = |−〉, we have

ρ = (1− p) |1〉〈1|+ p |−〉〈−|

= (1− p)
(

0 0
0 1

)
+ p

1

2

(
1 −1
−1 1

)
=

(
p
2 −p2
−p2 1− p

2

)
.

The probability of obtaining a �1� when measuring this state in the computational basis is

Pr(1)ρ = Tr[|1〉〈1| ρ]

= Tr

[(
0 0
0 1

)(
p
2 −p2
−p2 1− p

2

)]
= Tr

[(
0 0
−p2 1− p

2

)]
= 1− p

2
.

Note that we could also have computed this quantity the old way,

Pr(1)ρ = (1− p) Pr(1)|1〉 + p Pr(1)|−〉

= (1− p) 1 + p
1

2
= 1− p

2
.

It practice, however, it is generally more convenient to use density matrices. Now let us look at time evolution
of density operators. At time t, the state is either Ut|ψ〉, with probability 1 − p, or Ut|τ〉, with probability p.
The probability of measuring �x� at time t is therefore

Pr(x) = Tr
[
|x〉〈x| ( (1− p) Ut|ψ〉〈ψ|U†t + p Ut|τ〉〈τ |U†t )

]
= Tr

[
|x〉〈x| Ut (

ρ0

(1− p) |ψ〉〈ψ|+ p |τ〉〈τ |︸ ︷︷ ︸) U†t
]

= Tr

|x〉〈x| Ut ρ0 U
†
t︸ ︷︷ ︸

=:ρ(t)

 . (7.8)

We have just showed that the time evolution of a density operator is simply given by

ρ(t) = Ut ρ(0) U†t . (7.9)

Now, this is more relevant than it might appear at �rst sight. Think about what you can do in a lab: you can
let systems evolve, by manipulating Hamiltonians, and you can measure them. You have showed that both time
evolution and measurement statistics of a system depend only on the density operator (and the Hamiltonian).
This implies that it is impossible to distinguish two systems with the same density operator, even if they were
produced in di�erent ways. Let me give you a somewhat trivial example: suppose that your friend Alice has
two machines that produce polarized photons. The only problem is that those machines are not reliable at all:
machine A produces state |0〉 with probability 1/2 and state |1〉 with probability 1/2, while machine B produces
B produces state |+〉 with probability 1/2 and state |−〉 with probability 1/2. The density operators of a state
coming from each machine are

ρA =
1

2
|0〉〈0|+ 1

2
|1〉〈1| = 1

2

(
1 0
0 0

)
+

1

2

(
0 0
0 1

)
=
1

2
,

ρB =
1

2
|+〉〈+|+ 1

2
|+〉〈+| = 1

2

(
1
2

1
2

1
2

1
2

)
+

1

2

(
1
2 − 1

2
− 1

2
1
2

)
=
1

2
.
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Now imagine that Alice gives you a million photons, and tells you that she used the same machine to produce all
of them. But she won't tell you which machine. You would think that it would be easy to �nd out, right? Here
are a million photons, either half are |0〉 and half are |1〉 or half are |+〉 and half are |−〉. You can do whatever
you want to your photons: rotate the states, measure them, let them evolve under convoluted Hamiltonians,
make them interact with an external system, let your local soothsayer examine them. And yet you will never be
able to determine which machine was used, because photons from A and from B have the same density matrix.
The origins of a quantum state do not matter.2

7.2.1 Properties and terminology of density operators

� In general,

ρ =
∑
i

pi |ψi〉〈ψi|, (7.10)

where the {pi} form a probability distribution (meaning ∀pi ≥ 0 and
∑
i pi = 1), and the {|ψi〉} are

quantum states. This has the following physical interpretation: the system is in state |ψi〉 with probability
pi.

� Density operators are endomorphisms on the system's Hilbert space, ρ : H → H.

� By de�nition, the {pi} are the eigenvalues of ρ, therefore Tr(ρ) =
∑
i pi = 1, ρ is positive semi-de�nite,

and Hermitian.

� A system is said to be in a pure state if the corresponding density operator only has one non-zero eigenvalue,
{pi} = {1, 0, , 0 . . .}, and therefore ρ = |ψ〉〈ψ|. Otherwise a state is considered mixed (meaning that there
is more than one possibility for the exact state of the system).

� If ρ = 1/N , where N is the dimension of the Hilbert space of interest, it is called fully mixed.

7.2.2 Superposition vs mixture

It is easy to confuse mixtures of quantum states with quantum superpositions in the begininning. For instance,
you may be wondering about the di�erence between states

|+〉 =
|0〉+ |1〉√

2
and ρ =

|0〉〈0|+ |1〉〈1|
2

.

In a nutshell, the di�erence is that the former is a pure state (you know that the system is in that exact state),
while the latter is a probabilistic mixture of two possible states. To clarify things, we can write the density
matrices corresponding to both states, in two di�erent bases:

σ : = |+〉〈+|

=
|0〉+ |1〉√

2

〈0|+ 〈1|√
2

=
|0〉〈0|+ |0〉〈1|+ |1〉〈0|+ |1〉〈1|

2

ρ =
|0〉〈0|+ |1〉〈1|

2

=
1

2

( |+〉+|−〉√
2

〈+|+〈−|√
2

+ |+〉−|−〉√
2

〈+|−〈−|√
2

)

=
|+〉〈+|+ |−〉〈−|

2

basis {|0〉, |1〉} {|+〉, |−〉}

σ

(
1
2

1
2

1
2

1
2

) (
1 0
0 0

)

ρ

(
1
2 0
0 1

2

) (
1
2 0
0 1

2

)
There, completely di�erent matrices. But does that have any operational meaning? For instance, would we

get di�erent results if we measured the two states? Let's check. If you measure each state in basis {|0〉, |1〉},
the probability of obtaining |0〉 would be

Pr(0)σ = Tr[ |0〉〈0| σ] = Tr

[(
1 0
0 0

)(
1
2

1
2

1
2

1
2

)]
=

1

2
,

Pr(0)ρ = Tr[ |0〉〈0| ρ] = Tr

[(
1 0
0 0

)(
1
2 0
0 1

2

)]
=

1

2
.

This does not look very promising: we could not distinguish the two states solely from the statistics of this
measurement. But what happens if instead we measure them in basis {|+〉, |−〉}? The probability of obtaining

2This proves particularly handy in quantum cryptography.
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|+〉 is, for each of them,

Pr(+)σ = Tr[ |+〉〈+| σ] = Tr

[(
1 0
0 0

)(
1 0
0 0

)]
= 1,

Pr(+)ρ = Tr[ |+〉〈+| ρ] = Tr

[(
1 0
0 0

)(
1
2 0
0 1

2

)]
=

1

2
.

The states have di�erent measurement statistics in this basis. If you have to �nd out whether you have �fty
copies of |+〉 or �fty copies of ρ, you can just measure all your systems in basis {|+〉, |−〉}. If you get at least
one outcome �−�, then you know that you had state ρ. Question for bonus points: what if you are only given
one copy of the state?

Here is another di�erence between the two states: |+〉 is a pure state, which means that you can in principle
transform it into any other pure state via unitary evolution, while ρ = 1

2 is fully mixed, and invariant under
unitary transformations. See, for instance, of happens to each state under the following change of basis,

U = |+〉〈0|+ |0〉〈+|+ |1〉〈−|+ |−〉〈1| = 1√
2

(
1 1
1 −1

)
,

U |+〉 =
1√
2

(
1 1
1 −1

)
1√
2

(
1
1

)
=

(
1
0

)
= |0〉,

UρU† =
1√
2

(
1 1
1 −1

)(
1
2 0
0 1

2

)
1√
2

(
1 1
1 −1

)
=

(
1
2 0
0 1

2

)
=
1

2
.

7.2.3 Measurements generalised

Imagine that you have a four-dimensional Hilbert space, with basis {|1〉, |2〉, |3〉, |4〉}. You also have have a
measurement device, but not a very good one: it only distinguishes the �rst two from the last two states. It has
two measurement outcomes, �<� for |1〉 and |2〉, and �>� for |3〉 and |4〉. The probability of obtaining outcome
< when measuring a state ρ is given by

Pr(<)ρ = Pr(1 ∨ 2)ρ

= Pr(1)ρ + Pr(2)ρ

= Tr(|1〉〈1| ρ) + Tr(|2〉〈2| ρ)

= Tr
(

(|1〉〈1|+ |2〉〈2|)︸ ︷︷ ︸
P<

ρ
)
.

We can represent this measurement using projectors ,

P< = |1〉〈1|+ |2〉〈2|, Pr(<)ρ = Tr(P< ρ),

P> = |3〉〈3|+ |4〉〈4|, Pr(>)ρ = Tr(P> ρ).

and, not surprisingly, people call it a projective measurement. What happens to the system after a measurement
with outcome �<�? Well, it goes to either |1〉 or |2〉, we just don't know which. In other words, it becomes a
probabilistic mixture of |1〉 and |2〉,

ρ< =
Pr(1)ρ|1〉〈1|+ Pr(2)ρ|2〉〈2|

Pr(1)ρ + Pr(2)ρ

=
Tr(|1〉〈1| ρ) |1〉〈1|+ Tr(|2〉〈2| ρ) |2〉〈2|

Tr(P<ρ)

=
〈1|ρ|1〉 |1〉〈1|+ 〈2|ρ|2〉 |2〉〈2|

Tr(P<ρ)

=
|1〉〈1|ρ|1〉〈1|+ |2〉〈2|ρ|2〉〈2|

Tr(P< ρ)

=
(|1〉〈1|+ |2〉〈2|)ρ(|1〉〈1|+ |2〉〈2|)

Tr(P<ρ)

=
P<ρP<
Tr(P<ρ)

.

This generalizes to any projective measurement with outcomes {i} and corresponding projectors {Pi},

Pr(i)ρ = Tr(Pr
i
ρ), ρi =

PiρPi
Tr(Pri ρ)

.

For further generalizations. . . I can't emphasize it enough, come to the Quantum Information Theory next
semester!


