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Problem 11.1 Wolff algorithm with improved estimators on general lattices

Generalize your implementation of the Wolff algorithm from exercise 9 to work with an
arbitrary adjacency list instead of a specific lattice. We will need this in next week’s
exercise.
Implement improved estimators (Section 7.2.3 of the script) to measure the susceptibility

χ2 =
∑
n

σ0σn (1)

and the second moment
µ2 =

∑
n

σ0x
2
nσn , (2)

where xn is the minimum distance (including periodic boundary conditions) between the
two spins. In addition, measure the absolute value of the magnetization

|M | =

∣∣∣∣∣∑
i

σi

∣∣∣∣∣ . (3)

As a test for this week, construct the adjacency list for the three-dimensional cubic lat-
tice. And run simulations for this lattice with coupling J = 1 on all bonds at varying
temperatures. From your measurements of the above observables compute the connected
magnetic susceptibility

〈χ〉 =
β

N

(
N〈χ2〉 − 〈|M |〉2

)
, (4)

the inverse temperature being β = 1/kBT as usual. By plotting χ versus βJ you should
be able to show that your code gives results consistent with a critical point at Jβc =
0.2216544 ± 3 · 10−7 [Talapov, Blöte. J. Phys. A: Math. Gen. 29 5727 (1996)]. Make
sure you show reliable error bars for your data.

Problem 11.2 Improved estimator for χ4

Next week we will need to measure the connected four-point correlator

〈χ4c〉 = 〈
∑
j,k,l

σ0σjσkσl〉 − 3〈
∑
j

σ0σj〉2 = 〈χ4〉 − 3〈χ2〉2. (5)

Show that this can be achieved by measuring the improved estimator [I. Montvay, G.
Münster, U. Wolff, Nucl. Phys. B 305, 143 (1988)]
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where c, c′ run over the clusters of a Swendsen-Wang configuration and the expectation
values 〈〉 are to be taken with respect to the different Swendsen-Wang cluster configura-
tions. Nc denotes the size of cluster c.


