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The aim of this exercise series is to write a quantum Monte Carlo simulation for a chain
of L Ising spins in a transverse field, that is the Hamilton operator

Ĥ = −
L∑
i=1

(
Jσzi σ

z
i+1 + Γσxi

)
, (1)

σx,zi being Pauli matrices acting on the ith spin. Periodic boundary conditions σL+1 ≡ σ1
are assumed throughout this exercise. We will achieve this by first writing a simulation
for the classical two-dimensional Ising model and then adapting this code to simulate the
quantum chain.

Problem 9.1 Monte Carlo simulation of the classical 2D Ising model with
local updates

Write a classical MC simulation of the Ising model on an L×L square lattice, defined by
the Hamiltonian

H = −J
∑
〈i,j〉

sisj, (2)

where the sum runs over pairs of nearest neighbor sites i, j and the Ising spins can take
the values si ∈ {+1,−1}. Use local updates, i.e. each simulation step proposes to flip a
random spin, which is accepted with Metropolis acceptance probability

P (x→ y) = min
{

1, e−β(H(y)−H(x))
}
.

Measure the absolute value of the magnetization 〈|m|〉 = 1
L2 |
∑

i si| and its square 〈m2〉
for different values of the inverse temperature β. Compute error bars and make sure these
are not reduced by autocorrelation effects.

Problem 9.2 Monte Carlo simulation of the classical 2D Ising model with
cluster updates

Local updates become inefficient at low temperature and close to phase transitions. There-
fore in this part you improve your simulation by implementing Wolff cluster updates.
Verify your implementation by comparing results with the simple updates of problem 1
and observe that autocorrelation effects are a lot smaller.

Problem 9.3 Monte Carlo simulation of the quantum 1D Ising model

Generalize your simulation to an anisotropic square lattice with L×M spins and coupling
constants Jx, Jτ between horizontal and vertical neighbors, respectively. Complete the
mapping to the quantum system by identifying

βclJx = ∆J, βclJτ = −1

2
log ∆Γ, (3)

where βcl is the inverse temperature of the classical system and ∆ = β/M the imaginary
time discretization of the quantum system. Note that in order to get meaningful results,



you have to take ∆ � 1 and hence the quantum mechanical model with |J/Γ| ∼ 1
corresponds to an extremely anisotropic classical Ising model.
Run your code for different ratios of the coupling constants, plot the results vs. J/Γ
and try to locate the quantum phase transition in the model. You can improve your
estimate by simulating larger and larger systems. (As for the classical model, a true
phase transition can only happen in the thermodynamic limit L,M → ∞, i.e. for the
infinite chain at zero temperature.)


