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Problem 8.1 DFT for Helium (part 1)

We want to treat the Helium atom in density functional theory. In this exercise, you will
write a Schrödinger solver as well as a Poisson solver. In the following exercise, you will
apply these to Helium and create a self-consistent procedure.

• First, solve the radial equation in the l = 0 sector for the hydrogen atom[
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]
u(r) = Eu(r) (1)

where u(r) = rR(r), R(r) being the radial wave function. Use the Numerov algo-
rithm to find the ground-state wave function and energy and compare your result
with the analytical solution E = −0.5 a.u. and u(r) ∝ r exp(−r).

• Then, implement a solver for the Poisson equation

∇2VH(r) = −4πn(r) ,
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where VH = NU(r)/r is the Hartree potential generated by the density n(r) of
N electrons in the single-particle wave function u. A convenient choice for this
integration task is the Verlet algorithm. The solution needs to satisfy the boundary
conditions U(0) = 0 and U(rmax) = qmax, where qmax = 1 is the total charge enclosed
by a sphere of radius rmax. You can find such a solution by starting your Verlet
integration in the center with U(0) = 0, U(h) = h and integrating till rmax. Then
add the homogenous solution Uhom(r) = αr with α chosen such as to satisfy the
outer boundary condition.

Note that the wave function must be normalized before solving the Poisson equation.
The above equations assume ∫

dr u2(r) = 1 .

• Combine these parts and check the correctness by using the hydrogen atom again.
Compare your numerical solution for the potential with the analytical result

U(r) = −(r + 1) exp (−2r) + 1 . (3)



Problem 8.2 DFT for Helium (part 2)

In the previous exercise, you have programmed a solver for the radial Schrödinger and
Poisson equations.

• Apply these to the Helium atom, i.e. change the nuclear potential appropriately and
add the Hartree potential term. Furthermore, include the following parameteriza-
tion of the exchange potential

Vx(r) = −
(
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2π2r2

) 1
3

. (4)

Repeat these steps iteratively until you reach a self-consistent solution.

• You should obtain the following eigenvalue and energy respectively:

ε = −0.52 a.u. (5)

E = −2.72 a.u. (6)

where the relationship between these two reads

E = 2ε−
∫

dr VH(r)u2(r)− 1

2

∫
dr u2(r)Vx(r). (7)

Decrease your step size and/or increase the cutoff radius to check where your results
are not heavily depending on these constants any more.

• In this simple case, you should not encounter convergence problems when using
sensible values for step sizes, cutoff radius, etc. However, if it doesn’t converge, you
can damp your solution by using the following potential update

un+1 = δ un + (1− δ) vn, (8)

where un is the effective potential in the n-th step and vn denotes the solution of
the Poisson equation.


