
Appendix A

Numerical methods

A.1 Numerical root solvers

The purpose of a root solver is to find a solution (a root) to the equation

f(x) = 0, (A.1)

or in general to a multi-dimensional equation

!f(!x) = 0. (A.2)

Numerical root solvers should be well known from the numerics courses and we will
just review three simple root solvers here. Keep in mind that in any serious calculation
it is usually best to use a well optimized and tested library function over a hand-coded
root solver.

A.1.1 The Newton and secant methods

The Newton method is one of best known root solvers, however it is not guaranteed to
converge. The key idea is to start from a guess x0, linearize the equation around that
guess

f(x0) + (x− x0)f
′(x0) = 0 (A.3)

and solve this linearized equation to obtain a better estimate x1. Iterating this procedure
we obtain the Newton method:

xn+1 = xn −
f(xn)

f ′(xn)
. (A.4)

If the derivative f ′ is not known analytically, as is the case in our shooting problems,
we can estimate it from the difference of the last two points:

f ′(xn) ≈
f(xn)− f(xn−1)

xn − xn−1
(A.5)

Substituting this into the Newton method (A.4) we obtain the secant method:

xn+1 = xn − (xn − xn−1)
f(xn)

f(xn)− f(xn−1)
. (A.6)

a

The Newton method can easily be generalized to higher dimensional equations, by
defining the matrix of derivatives

Aij(!x) =
∂fi(!x)

∂xj
(A.7)

to obtain the higher dimensional Newton method

!xn+1 = !xn − A−1 !f(!x) (A.8)

If the derivatives Aij(!x) are not known analytically they can be estimated through finite
differences:

Aij(!x) =
fi(!x+ hj!ej)− fi(!x)

hj
with hj ≈ xj

√
ε (A.9)

where ε is the machine precision (about 10−16 for double precision floating point num-
bers on most machines).

A.1.2 The bisection method and regula falsi

Both the bisection method and the regula falsi require two starting values x0 and x1

surrounding the root, with f(x0) < 0 and f(x1) > 0 so that under the assumption of a
continuous function f there exists at least one root between x0 and x1.

The bisection method performs the following iteration

1. define a mid-point xm = (x0 + x1)/2.

2. if signf(xm) = signf(x0) replace x0 ← xm otherwise replace x1 ← xm

until a root is found.
The regula falsi works in a similar fashion:

1. estimate the function f by a straight line from x0 to x1 and calculate the root of
this linearized function: x2 = (f(x0)x1 − f(x1)x0)/(f(x1)− f(x0)

2. if signf(x2) = signf(x0) replace x0 ← x2 otherwise replace x1 ← x2

In contrast to the Newton method, both of these two methods will always find a
root.

A.1.3 Optimizing a function

These root solvers can also be used for finding an extremum (minimum or maximum)
of a function f(!x), by looking a root of

∇f(!x) = 0. (A.10)

While this is efficient for one-dimensional problems, but better algorithms exist.
In the following discussion we assume, without loss of generality, that we want to

minimize a function. The simplest algorithm for a multi-dimensional optimization is

b

steepest descent, which always looks for a minimum along the direction of steepest
gradient: starting from an initial guess !xn a one-dimensional minimization is applied
to determine the value of λ which minimizes

f(!xn + λ∇f(!xn)) (A.11)

and then the next guess !xn+1 is determined as

!xn+1 = !xn + λ∇f(!xn) (A.12)

While this method is simple it can be very inefficient if the “landscape” of the
function f resembles a long and narrow valley: the one-dimensional minimization will
mainly improve the estimate transverse to the valley but takes a long time to traverse
down the valley to the minimum. A better method is the conjugate gradient algo-
rithm which approximates the function locally by a paraboloid and uses the minimum
of this paraboloid as the next guess. This algorithm can find the minimuim of a long
and narrow parabolic valley in one iteration! For this and other, even better, algorithms
we recommend the use of library functions.

One final word of warning is that all of these minimizers will only find a local
minimum. Whether this local minimum is also the global minimum can never be
decided by purely numerically. A necessary but never sufficient check is thus to start
the minimization not only from one initial guess but to try many initial points and
check for consistency in the minimum found.

A.2 The Lanczos algorithm

Sparse matrices with only O(N) non-zero elements are very common in scientific simu-
lations. We have already encountered them in the winter semester when we discretized
partial differential equations. Now we have reduced the transfer matrix of the Ising
model to a sparse matrix product. We will later see that also the quantum mechanical
Hamilton operators in lattice models are sparse.

The importance of sparsity becomes obvious when considering the cost of matrix
operations as listed in table A.1. For large N the sparsity leads to memory and time
savings of several orders of magnitude.

Here we will discuss the iterative calculation of a few of the extreme eigenvalues of
a matrix by the Lanczos algorithm. Similar methods can be used to solve sparse linear
systems of equations.

To motivate the Lanczos algorithms we will first take a look at the power method
for a matrix A. Starting from a random initial vector u1 we calculate the sequence

un+1 =
Aun

||Aun||
, (A.13)

which converges to the eigenvector of the largest eigenvalue of the matrix A. The
Lanczos algorithm optimizes this crude power method.

c

Table A.1: Time and memory complexity for operations on sparse and dense N × N
matrices
operation time memory
storage
dense matrix — N2

sparse matrix — O(N)
matrix-vector multiplication
dense matrix O(N2) O(N2)
sparse matrix O(N) O(N)
matrix-matrix multiplication
dense matrix O(N ln 7/ ln 2) O(N2)
sparse matrix O(N) . . .O(N2) O(N) . . .O(N2)
all eigen values and vectors
dense matrix O(N3) O(N2)
sparse matrix (iterative) O(N2) O(N2)
some eigen values and vectors
dense matrix (iterative) O(N2) O(N2)
sparse matrix (iterative) O(N) O(N)

Lanczos iterations

The Lanczos algorithm builds a basis {v1, v2, . . . , vM} for the Krylov-subspace KM =
span{u1, u2, . . . , uM}, which is constructed by M iterations of equation (A.13). This is
done by the following iterations:

βn+1vn+1 = Avn − αnvn − βnvn−1, (A.14)

where
αn = v†nAvn, βn = |v†nAvn−1|. (A.15)

As the orthogonality condition
v†i vj = δij (A.16)

does not determine the phases of the basis vectors, the βi can be chosen to be real and
positive. As can be seen, we only need to keep three vectors of size N in memory, which
makes the Lanczos algorithm very efficient, when compared to dense matrix eigensolvers
which require storage of order N2.

In the Krylov basis the matrix A is tridiagonal

T (n) :=

















α1 β2 0 · · · 0

β2 α2
.

...

0
. 0

...
. βn

0 · · · 0 βn αn

















. (A.17)

The eigenvalues {τ1, . . . , τM} of T are good approximations of the eigenvalues of A.
The extreme eigenvalues converge very fast. Thus M # N iterations are sufficient to
obtain the extreme eigenvalues.

d

Eigenvectors

It is no problem to compute the eigenvectors of T . They are however given in the
Krylov basis {v1, v2, . . . , vM}. To obtain the eigenvectors in the original basis we need
to perform a basis transformation.

Due to memory constraints we usually do not store all the vi, but only the last three
vectors. To transform the eigenvector to the original basis we have to do the Lanczos
iterations a second time. Starting from the same initial vector v1 we construct the
vectors vi iteratively and perform the basis transformation as we go along.

Roundoff errors and ghosts

In exact arithmetic the vectors {vi} are orthogonal and the Lanczos iterations stop after
at most N − 1 steps. The eigenvalues of T are then the exact eigenvalues of A.

Roundoff errors in finite precision cause a loss of orthogonality. There are two ways
to deal with that:

• Reorthogonalization of the vectors after every step. This requires storing all of
the vectors {vi} and is memory intensive.

• Control of the effects of roundoff.

We will discuss the second solution as it is faster and needs less memory. The main
effect of roundoff errors is that the matrix T contains extra spurious eigenvalues, called
“ghosts”. These ghosts are not real eigenvalues of A. However they converge towards
real eigenvalues of A over time and increase their multiplicities.

A simple criterion distinguishes ghosts from real eigenvalues. Ghosts are caused by
roundoff errors. Thus they do not depend on on the starting vector v1. As a consequence
these ghosts are also eigenvalues of the matrix T̃ , which can be obtained from T by
deleting the first row and column:

T̃ (n) :=

















α2 β3 0 · · · 0

β3 α3
.

...

0
. 0

...
. βn

0 · · · 0 βn αn

















. (A.18)

From these arguments we derive the following heuristic criterion to distinguish ghosts
from real eigenvalues:

• All multiple eigenvalues are real, but their multiplicities might be too large.

• All single eigenvalues of T which are not eigenvalues of T̃ are also real.

Numerically stable and efficient implementations of the Lanczos algorithm can be
obtained from netlib or fromhttp://www.comp-phys.org/software/ietl/ .

e

