
Chapter 9

Quantum Monte Carlo for fermions

In this final chapter we will discuss an algorithm for the simulation of fermions by
quantum Monte Carlo (QMC). The world line representations employed previously for
fermions and spins are not suitable for fermions since they will give a horrible sign
problem: any exchange of fermions during the propagation from imaginary time 0 to β
will give a minus sign in the action.1 One thus uses a different representation, where
the sign problem is not as severe and absent at least for non-interacting fermions. In
this chapter we will give an introduction to modern continuous time quantum Monte
Carlo (CT-QMC) methods for fermions.

The specific model we will consider here is the Hubbard model with Hamiltonian

H = −t
∑

〈i,j〉

∑

σ=↑,↓

(

c†i,σcj,σ + c†j,σci,σ
)

+ U
∑

i

ni,↑ni,↓, (9.1)

where c†i,σ creates a fermion on site i with spin σ and ni,σ = c†i,σci,σ. This chapter closely
follows a recent review2 and we refer the interested student to this review for details on
how to simulate other models.

9.1 Diagrammatic Monte Carlo

9.1.1 QMC as sampling of time-dependent perturbation ex-
pansions

As already mentioned in Sec. 7.2.2, the world line representation used for spins is just
a time-dependent perturbation expansion of the operator exp(−βH). Continuous time
QMC methods (CT-QMC) methods stochastically sample time-dependent perturbation
theory. One splits the Hamiltonian H = Ha + Hb into two parts, writes the partition
function Z = Tre−βH in the interaction representation with respect to Ha and expands

1The exception are purely one-dimensional systems where fermions cannot exchange.
2E. Gull, et al., Rev. Mod. Phys. 83, 349 (2011)
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in powers of Hb, thus (Tτ is the time ordering operator)

Z =Tr Tτe
−βHa exp

[

−
∫ β

0

dτHb(τ)

]

(9.2)

=
∑

k

(−1)k
∫ β

0

dτ1 . . .

∫ β

τk−1

dτkTr
[

e−βHaHb(τk)Hb(τk−1) . . .Hb(τ1)
]

,

where Hb(τ) = exp(+τHa)Hb exp(−τHa) is Hb in the interaction representation. Note
that the usual factor 1/k! is absorbed by the time ordering.

The trace evaluates to a number and diagrammatic Monte Carlo methods enable a
sampling over all orders k, all topologies of the paths/diagrams and all times τ1, · · · , τk
in the same calculation. Because the method is formulated in continuous time from
the beginning, time discretization errors do not arise and therefore do not have to be
controlled. Provided the spectrum of the perturbation term is bounded from above
the contributions of very large orders are exponentially suppressed by the factor 1

k!
originating from the expansion of an exponential. Thus the sampling process does
not run off to infinite order and no truncation of the diagram order is needed. For
bosons one chooses the interaction as the unperturbed term Ha and the hopping as the
perturbation Hb. For spins one chooses the Ising coupling (Jz) and the magnetic field
as Ha and the off-diagonal exchange (Jxy) as perturbation Hb. One then sees that the
continuous time weight (7.21) is just our equation (9.2).

For fermions we will follow the opposite approach and treat the hopping term and
chemical potential

Ha = −t
∑

〈i,j〉

∑

σ=↑,↓

(

c†i,σcj,σ + c†j,σci,σ
)

− µ
∑

i,σ

ni,σ (9.3)

as the unperturbed Hamiltonian and the interaction

Hb = U
∑

i

ni,↑ni,↓ (9.4)

as the perturbation. The expansion of the partition function in powers of U then reads

Z/Z0 = 1 +
(−U)

1!

∑

$r1

∫ β

0

dτ1〈n$r1,↑(τ1)n$r1,↓(τ1)〉0 (9.5)

+
(−U)2

2!

∑

$r1,$r2

∫∫ β

0

dτ1dτ2〈n$r1,↑(τ1)n$r1,↓(τ1)n$r2,↑(τ2)n$r2,↓(τ2)〉0 + · · · ,

where the notation 〈. . .〉0 = 1
Z0
Tr(e−βHa [. . .]) denotes an average in the non-interacting

ensemble with quadratic action S0 and Z0 = Tre−βHa . Employing Wick’s theorem
we may express the expectation value in terms of determinants of the non-interacting
Green’s function

G0("ri − "rj , τi − τj) = −〈Tc$ri(τi)c
†
$rj
(τj)〉0 (9.6)

and obtain

〈n$r1,↑(τ1)n$r1,↓(τ1)n$r2,↑(τ2)n$r2,↓(τ2) · · ·n$rk,↑(τk)n$rk,↓(τk)〉0 = detD↑
k detD

↓
k, (9.7)
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where the matrix elements of the k × k matrices Dσ
k are given by

(Dσ
k)ij = G0

σ(!ri − !rj, τi − τj). (9.8)

Summing the contractions into a determinant instead of sampling them individually
avoids a sign problem coming from the fermionic exchange .

We thus arrive at the following series for the partition function:

Z/Z0 =
∞
∑

k=0

(−U)k

k!

∑

"r1,...,"rk

∫ β

0

dτ1 . . . dτk

(

∏

σ

detDσ
k

)

. (9.9)

9.1.2 The non-interacting Green’s function

To calculate the weights we still need to obtain the Green’s function G0(!r, τ) of the non-
interacting problem. This Green’s function is best calculated by Fourier-transformation,
as we had done in Sec. 6.5.1 and in the homework exercises for the tight binding model.
After Fourier-transformation the non-interacting model becomes

H =
∑

"k,σ

(

ε"k − µ
)

n"k,σ. (9.10)

To calculate Green’s functions we have to Fourier transform also in time. Since the
Green’s function is an anti-periodic function in time (the minus sign coming from per-
mutation of fermion operators), the Fourier transform needs half-integer frequencies, the
so-called Matsubara frequencies ωn = 2π

β (n+1/2). With these, the Green’s function as
a function of momentum and frequency is

G0(!k,ωn) =
1

iωn − (ε"k − µ)
(9.11)

The Green’s function G0(!r, τ) is obtained by Fourier transformation in space and imag-
inary time

G0(!r, τ) =
V

(2π)d

∫

d!k
1

β

∑

n

exp(i!k!r − iωnτ)

iωn − (ε"k − µ)
. (9.12)

Instead of performing an expensive Fourier transform for every update, G0(!r, τ) is best
tabulated on an imaginary-time mesh, and then interpolated to the time τ required in
a simulation.

9.2 Sign problem

Two “sign problems” may potentially occur in this expansion: an “intrinsic” sign prob-
lem arising from fermion exchange because the determinants might become negative
and an “interaction” sign problem, arising for U > 0 from the (−U)k factor.

For attractive fermions, U < 0, and the second sign problem is absent. The deter-
minants might have a sign problem, but in the absence of a magnetic field the Green’s
function for up and down fermions is the same. The two determinants are the same
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and the weight is a square of a determinant, which is always positive. In the presence
of a magnetic field we will, however, get a sign problem.

For repulsive fermions, which is the usual case in electronic problems, we can avoid
the sign problem by doing a particle-hole transformation on one of the spin species and
introduce new operators:

c̃i,↑ = ci,↑

c̃†i,↑ = c†i,↑

c̃i,↓ = c†i,↓

c̃†i,↓ = c†i,↓ (9.13)

As a consequence we have for the densities

ñi,↑ = ni,↑

ñi,↓ = 1− ni,↓. (9.14)

This transformation does not change the hopping term but it changes the sign of the
interaction term, and thus removes the sign problem due to the interaction:

Uni,↑ni,↓ = Uñi,↑(1− ñi,↓) = −Uñi,↑ñi,↓ + Uñi,↓. (9.15)

The second term on the right hand side of above equation is just a shift in the chem-
ical potentials of the down fermions. Let us thus look in more detail at the chemical
potentials, considering both the chemical potential −µ(ni,↑ + ni,↓) and the magnetic
field −h

2 (ni,↑ − ni,↓). We find that after the transformation the chemical potential for
up-fermions

µ↑ = µ̃↑ = µ+ h/2 (9.16)

is unchanged, but that for down-fermions µ↓ = µ − h/2 changes sign and acquires the
above shift:

µ̃↓ = −µ↓ − U = −µ+ h/2− U (9.17)

It is now non-trivial to make the two determinants equal. The Green’s functions agree
only if the chemical potentials are the same: µ̃↑ = µ̃↓, which implies µ = −U/2, or
equivalently the same densities ñi,↑ = ñi,↓. Expressed in the original densities this
means ni,↑ = 1 − ni,↓ or ni,↑ + ni,↓ = 1. At this special density of half band filling we
will thus have no sign problem,but the sign problem will reappear immediately when
we change the filling.

9.3 Monte Carlo updates

The partition function Eq. (9.2) may be expressed as a sum of integrals originating from
a diagrammatic expansion:

Z =
∞
∑

k=0

∑

!r1,...,!rk

∫ β

0

dτ1 . . .

∫ β

τk−1

dτkw(k,"r1, τ1, . . . ,"rk, τk), (9.18)
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a)

0 β

b)

0 β
τ1

c)

0 β
τ1 τ2

d)

0 β
τ1 τ2 τ3

Figure 9.1: Diagrammatic representation of configurations for a simplified model with
only a single site. Shown are examples with orders k = 0, 1, 2, 3 and vertices (represented
by dots) at times τ1, . . . , τ3.

0 β
τ1 τ2

0 β
τ1 τ3 τ2

rem
ove

insert

Figure 9.2: An insertion update (top to bottom) inserting a vertex at time τ3 and the
corresponding removal update (bottom to top), removing the vertex at time τ3.

The individual configurations are of the form

x ≡ (k,"c) ≡ (k, ("r1, τ1, . . . ,"rk, τk)). (9.19)

A configuration has a weight

w(k,"r1, τ1, . . . ,"rk, τk)dτ1 · · · dτk, (9.20)

which we will assume to be non-negative for now. In the following we will always assume
time-ordering τ1 ≤ τ2 ≤ . . . ≤ τk and visualize the configurations using a diagrammatic
representation as in Fig. 9.1.

Although these weights are well-defined probability densities they involve infinites-
imals dτ , which one might worry could cause difficulties with proposal and acceptance
probabilities in the random walk in configuration space, but as we will show below this
is not the case.

There are two types of Monte Carlo updates: (i) updates that increase the order
k by inserting an additional vertex at a position "r and time τ and (ii) updates that
decrease the order k by removing a vertex τj . These insertion and removal updates
are necessary to satisfy the ergodicity requirement and are already sufficient: we can
reach any configuration from another one by removing all the existing vertices and then
inserting new ones.

In the following we will focus on the insertion and removal updates, illustrated in
Fig. 9.2. For the insertion let us start from a configuration (k,"c) = (k,"r1, τ1, . . . ,"rk, τk)
of order k. We propose to insert a new vertex at a time τ uniformly chosen in
the interval [0, β), to obtain a new time-ordered configuration (k + 1,"c′) = (k +
1,"r1, τ1, . . . ,"r, τ, . . . ,"rk, τk) ≡ (k + 1,"r′1, τ

′
1, . . . ,"r

′
k+1, τ

′
k+1). The proposal rate for this
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insertion is given by the probability density

W prop
(k,!c),(k+1,!c′) =

1

Ns

dτ

β
, (9.21)

where Ns is the number of sites.
The reverse move is the removal of a randomly chosen vertex. The probability of

removing a particular vertex to go back from (k + 1,#c′) to (k,#c) is just one over the
number of available vertices:

W prop
(k+1,!c′),(k,!c) =

1

k + 1
. (9.22)

To obtain the acceptance rates we first calculate the acceptance ratio

R(k,!c),(k+1,!c′) =
p((k + 1,#c′))

p((k,#c))

W prop
(k+1,!c′),(k,!c)

W prop
(k,!c),(k+1,!c′)

(9.23)

=
w(k + 1,#c′)dτ ′1 · · · dτ ′k+1

w(k,#c)dτ1 · · ·dτk
1/(k + 1)

dτ/Nsβ
=

w(k + 1,#c′)

w(k,#c)

Nsβ

k + 1
.

Observe that all infinitesimals cancel: the additional infinitesimal in the weight p((k +
1,#c′)) is canceled by the infinitesimal of the proposal rate for insertions.

Equation (9.23) implies that the acceptance rates W acc are well defined finite num-
bers given by

W acc
(k,!c),(k+1,!c′) = min

[

1, R(k,!c),(k+1,!c′)

]

, (9.24)

W acc
(k+1,!c′),(k,!c) = min

[

1, 1/R(k,!c),(k+1,!c′)

]

. (9.25)

Plugging in the explicit form of the weights we get

R =
NsβU

(k + 1)

∏

σ

detDσ
k+1

detDσ
k

. (9.26)

The complexity for this is näıvely O(k3), but fast update formulas exist that reduce
the complexity to O(k2). Since k ∼ Nsβ and we need to update each vertex on average
once per sweep, the complexity is still O((Nsβ)3), much worse than the almost linear
scaling for bosons and spins. However this difference is small compared to the additional
O(exp(Nsβ)) factor in case of a sign problem.
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