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Exercise 1.1 The role of initial correlations: beyond CP maps and the
Kraus representation

See sheet handed out in the tutorials.

Exercise 1.2 Error Models in the Lindblad Picture

a.) The differential equation to solve is

d

dt

(
ρ11 ρ12
ρ21 ρ22

)
= γσz ·

(
0 −2ρ12

−2ρ21 0

)
.

Writing ρ ≡ ~ρ = (ρ11, ρ12, ρ21, ρ22)
T this becomes an ordinary differential equation

d

dt
~ρ = γσz ·


0 0 0 0
0 −2 0 0
0 0 −2 0
0 0 0 0

 ~ρ .

For ~ρ(0) = (r11, r12, r21, r22)
T the solution is

ρ(t) =

(
r11 r12 exp(−2γσzt)

r21 exp(−2γσzt) r22

)
,

and for t→∞ it becomes

lim
t→∞

ρ(t) =

(
r11 0
0 r22

)
for any γσz > 0. The generalization to K qubits is straightforward, and obviously
there can not be any decoherence free subspace. But since the diagonal elements
stay invariant under total dephasing, K qubits can be used to store K classical bits.

b.) The differential equation to solve is

d

dt

(
ρ11 ρ12
ρ21 ρ22

)
= γ ·

(
2ρ22 − 2ρ11 −4ρ12
−4ρ21 2ρ11 − 2ρ22

)
.

Writing ρ ≡ ~ρ = (ρ11, ρ12, ρ21, ρ22)
T this becomes an ordinary differential equation

d

dt
~ρ = γ ·


−2 0 0 2
0 −4 0 0
0 0 −4 0
2 0 0 −2

 ~ρ .
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For ~ρ(0) = (r11, r12, r21, r22)
T the solution is

ρ(t) =

(
1
2

[(r11 + r22) + (r11 − r22) exp(−4γt)] r12 exp(−4γt)
r21 exp(−4γt) 1

2
[(r11 + r22) + (r22 − r11) exp(−4γt)]

)
and for t→∞ it becomes

lim
t→∞

ρ(t) =

(
1
2
(r11 + r22) 0

0 1
2
(r11 + r22)

)
=

(
1
2

0
0 1

2

)
for any γ > 0. The generalization to K qubits is straightforward, and obviously
there can not be any decoherence free subspace. In the lecture we have seen that
the Lie algebra corresponding to total decoherence of K qubits is L = su(2K) and
by that, there is no decoherence free subspace.

c.) The differential equation to solve is

d

dt


ρ11 ρ12 ρ13 ρ14
ρ21 ρ22 ρ23 ρ24
ρ31 ρ32 ρ33 ρ34
ρ41 ρ42 ρ43 ρ44

 = γ · A ,

where

A11 = −4ρ11 + 2ρ22 + 2ρ23 + 2ρ33

A12 = −6ρ12 − 2ρ13 + 2ρ24 + 2ρ34

A13 = −2ρ12 − 6ρ13 + 2ρ24 + 2ρ34

A14 − 12ρ14

A21 = −6ρ21 − 2ρ31 + 2ρ42 + 2ρ43

A22 = 2ρ11 − 4ρ22 − 2ρ23 − 2ρ32 + 2ρ44

A23 = 2ρ11 − 2ρ22 − 4ρ23 − 2ρ33 + ρ44

A24 = 2ρ12 + 2ρ13 − 6ρ24 − 2ρ34

A31 = −2ρ21 − 6ρ31 + 2ρ42 + 2ρ43

A32 = 2ρ11 − 2ρ22 − 4ρ32 − 2ρ33 + 2ρ44

A33 = 2ρ11 − 2ρ23 − 2ρ32 − 4ρ33 + 2ρ44

A34 = 2ρ12 + 2ρ13 − 2ρ24 − 6ρ34

A41 = −12ρ41

A42 = 2ρ21 + 2ρ31 − 6ρ42 − 2ρ43

A43 = 2ρ21 + 2ρ31 − 2ρ42 − 6ρ43

A44 = 2ρ22 + 2ρ23 + 2ρ32 + 2ρ33 − 4ρ44

Writing

ρ ≡ ~ρ = (ρ11, ρ12, ρ13, ρ14, ρ21, ρ22, ρ23, ρ24, ρ31, ρ32, ρ33, ρ34, ρ41, ρ42, ρ43, ρ44)
T

this becomes an ordinary differential equation

d

dt
~ρ = γ ·B~ρ
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with B determined by A. For

~ρ(0) = (r11, r12, r13, r14, r21, r22, r23, r24, r31, r32, r33, r34, r41, r42, r43, r44)
T

and t→∞ the solution is (e.g. using Mathematica)

ρ11(∞) =
1

6
(2r11 + r22 + r23 + r32 + r33 + 2r44)

ρ12(∞) = ρ13(∞) = ρ14(∞) = ρ21(∞) = 0

ρ22(∞) =
1

6
(r11 + 2r22 − r23 − r32 + 2r33 + r44)

ρ23(∞) =
1

6
(r11 − r22 + 2r23 + 2r32 − r33 + r44)

ρ24(∞) = ρ31(∞) = 0

ρ32(∞) =
1

6
(r11 − r22 + 2r23 + 2r32 − r33 + r44)

ρ33(∞) =
1

6
(r11 + 2r22 − r23 − r32 + 2r33 + r44)

ρ34(∞) = ρ41(∞) = ρ42(∞) = ρ43(∞) = 0

ρ44(∞) =
1

6
(2r11 + r22 + r23 + r32 + r33 + 2r44)

Note that this is the solution written in the standard basis {|00〉, |01〉, |10〉, |11〉}. In
the basis {|00〉, |11〉, |01 + 10〉, |01− 10〉} it becomes

1−a
3

0 0 0
0 1−a

3
0 0

0 0 1−a
3

0
0 0 0 a

 ,

where a = 1
2
(r22 − r23 − r32 + r33) is the support of the initial density matrix on

the singlet subspace |01− 10〉〈01− 10|. Thus we see that the singlet subspace stays
invariant and the triplet subspace goes to a normalized identity. This is in accordance
with the results from the lecture, where we have seen that the singlet subspace is
the decoherence free subspace.

Exercise 1.3 Collective Decoherence

The Lindblad operators for collective decoherence of K qubits are given by σx ⊗ 12 ⊗
. . . ⊗ 12 + 12 ⊗ σx ⊗ 12 ⊗ . . . ⊗ 12 + . . . + 12 ⊗ . . . ⊗ 12 ⊗ σx and the same for y and
z. Instead of solving the corresponding Lindblad equation, we can use the representation
theoretic results from the lecture, which tell us that the decoherence free subspace is given
by span{π|01− 10〉⊗K

2 , π ∈ SK}.
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