Advanced Topics in

Quantum Information Theory Exercise 7

Exercise 7.1 Schur-Weyl Duality

The goal of this exercise is to compute the F-matrix elements in

and thereby the action of the permutation group S_{3} on the two-dimensional subspaces

$$
\mathcal{H}_{m}=\operatorname{span}\left\{\sum_{j_{12}}^{\frac{1}{2}, m}<j_{12}=0,1\right\}
$$

(with $m= \pm \frac{1}{2}$ arbitrary but fixed).
a) Compute the basis vectors

$\frac{1}{2}, m$
and

$\frac{1}{2}, m$
explicitely as vectors in $\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}$.
Convention: The highest weight vector

in the Clebsch-Gordan decomposition can be chosen as the unique unit vector with positive coefficient in front of $\left|j_{1}, j_{1}\right\rangle \otimes\left|j_{2}, j-j_{2}\right\rangle$, and the other weight vectors are obtained by applying lowering operators and normalizing,

b) Compute the F-matrix elements

$$
\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & j_{12} \\
\frac{1}{2} & \frac{1}{2} & j_{23}
\end{array}\right]=\left\langle\left.\left.\left.\left.\left.\right|_{\frac{1}{2}, m} ^{\frac{1}{2}}\right|_{\frac{1}{2}, m} ^{\frac{1}{2}}\right|_{j_{12}} ^{\frac{1}{2}}\right|_{2} ^{\frac{1}{2}}\right|_{2} ^{\frac{1}{2}}\right.
$$

c) Determine the action of the permutation $(23) \in S_{3}$ on each of the two-dimensional subspaces $\mathcal{H}_{m}\left(m= \pm \frac{1}{2}\right)$. Conclude that both representations are isomorphic to the representation of S_{3} on

$$
\mathcal{K}=\left\{(x, y, z) \in \mathbb{C}^{3}: x+y+z=0\right\}
$$

by permuting coordinates.

Exercise 7.2 Fibonacci Anyons

Knots and more general links, which are finite collections of closed curves in \mathbb{R}^{3}, can be represented by diagrams in the plane (Figure 1). It is well-known that two links are isotopic, i.e., one can be continuously deformed into the other, if and only if their link diagrams are related by a sequence of Reidemeister moves (Figure 2). The analog statement is true if the links are equipped with an orientation. However, checking this condition is in general a difficult problem. Similar to the case of distinguishing topological phases, one can approach this problem by finding invariants, i.e., functions which do not change under continuous deformation of a knot. A well-known such invariant is the Jones polynomial $V_{\vec{L}}(t)$ of an oriented link \vec{L}.
The goal of this exercise is to show that a quantum computer using Fibonacci anyons can be naturally used to evaluate the Jones polynomial at the fifth root of unity $t=e^{2 \pi i / 5}$. In particular, it can distinguish the trefoil knot from its mirror image.

For this, recall the Fibonacci model from the lecture: There are two anyon types, $\mathbf{1}$ and $\boldsymbol{\tau}$, subject to $\boldsymbol{\tau} \otimes \boldsymbol{\tau}=\mathbf{1}+\boldsymbol{\tau}$, and the braiding phases are given by

$$
R_{1}^{\tau, \tau}=e^{4 \pi i / 5}, \quad R_{\tau}^{\tau, \tau}=e^{-3 \pi i / 5}=-e^{2 \pi i / 5}
$$

Moreover,

where $\phi=(1+\sqrt{5}) / 2$ is the golden ratio (ϕ is called the quantum dimension of $\boldsymbol{\tau}$).
Let us also introduce the following notation for creation and fusion of a pair of $\boldsymbol{\tau}$ anyons:

This makes sense since $\mathbf{1}$ is the trivial anyon satisfying $\mathbf{1} \otimes x=x \otimes \mathbf{1}=x$ (cf. the exercise class).

Now consider a braid B of an even number $2 n$ of strands, and denote by \bar{B} its plat closure, i.e., the link diagram formed from B by connecting adjacent strand endings (Figure 3). Using the notation fixed above, the link diagram \bar{B} also defines a diagram in the Fibonacci model, which we shall denote by $\langle\bar{B}\rangle$. Since $\langle\bar{B}\rangle$ is a multiple of the identity morphism, it can be identified with a scalar. Let us call $\langle\bar{B}\rangle$ the bracket of the link \bar{B}.
a) Observe that the bracket is invariant under applying Reidemeister moves of type II and III.
b) Show that the bracket of a disjoint union of N circles is equal to ϕ^{N}.
c) Show that we have the following relation in the Fibonacci model:

where $A=e^{3 \pi i / 5}$. Therefore, by successively eliminate crossings and applying b), we can evaluate $\langle\bar{B}\rangle$ for any braid B.
d) Show that the effect of applying a Reidemeister move of type I to a diagram in the Fibonacci model amounts to multiplication by $-A^{ \pm 3}$.
e) Conclude that

$$
\left(-A^{-3}\right)^{-w(\bar{B})}\langle\bar{B}\rangle
$$

is an invariant of oriented knots and links. Here, $w(\bar{B})$ denotes the writhe of an oriented link diagram, which is given as the number of positive crossings minus the number of negative crossings (Figure 4). This invariant is (up to a factor ϕ) equal to the value of the Jones polynomial $V_{\bar{B}}(t)$ evaluated at $t=A^{-4}=e^{-2 \pi i / 5}$.
Why did we need to choose an orientation?
f) Evaluate the Jones polynomial of the left-handed and right-handed trefoil knots (Figure 1) at $t=e^{-2 \pi i / 5}$ and show that the two knots are not isotopic.

(a) The left-handed trefoil knot (with a choice of orientation.)

(b) Its mirror image, the righthanded trefoil knot.

Figure 1: Trefoil knots (images from Wikipedia).

(a) Type I

(b) Type II

(c) Type III

Figure 2: The Reidemeister moves (images from Wikipedia).

Figure 3: Plat closure of a braid B.

Figure 4: Positive and negative crossings in an oriented link diagram.

