Advanced Topics in Quantum Information Theory Prof. M. (Prof. A. Prof. A. Prof. 7

FS 12 Prof. M. Christandl Prof. A. Imamoglu Prof. R. Renner

Exercise 7.1 Schur–Weyl Duality

The goal of this exercise is to compute the F-matrix elements in

and thereby the action of the permutation group S_3 on the two-dimensional subspaces

$$\mathcal{H}_{m} = \operatorname{span} \left\{ \begin{array}{cc} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ j_{12} & & \\ j_{12} & & \\ \frac{1}{2}, m & & \end{array} \right\}$$

(with $m = \pm \frac{1}{2}$ arbitrary but fixed).

a) Compute the basis vectors

explicitly as vectors in $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$.

Convention: The highest weight vector

in the Clebsch–Gordan decomposition can be chosen as the unique unit vector with positive coefficient in front of $|j_1, j_1\rangle \otimes |j_2, j - j_2\rangle$, and the other weight vectors are obtained by applying lowering operators and normalizing,

b) Compute the *F*-matrix elements

c) Determine the action of the permutation $(2 \ 3) \in S_3$ on each of the two-dimensional subspaces \mathcal{H}_m $(m = \pm \frac{1}{2})$. Conclude that both representations are isomorphic to the representation of S_3 on

$$\mathcal{K} = \left\{ (x, y, z) \in \mathbb{C}^3 : x + y + z = 0 \right\}$$

by permuting coordinates.

Exercise 7.2 Fibonacci Anyons

Knots and more general links, which are finite collections of closed curves in \mathbb{R}^3 , can be represented by diagrams in the plane (Figure 1). It is well-known that two links are *isotopic*, i.e., one can be continuously deformed into the other, if and only if their link diagrams are related by a sequence of *Reidemeister moves* (Figure 2). The analog statement is true if the links are equipped with an orientation. However, checking this condition is in general a difficult problem. Similar to the case of distinguishing topological phases, one can approach this problem by finding *invariants*, i.e., functions which do not change under continuous deformation of a knot. A well-known such invariant is the *Jones polynomial* $V_{\vec{L}}(t)$ of an oriented link \vec{L} .

The goal of this exercise is to show that a quantum computer using Fibonacci anyons can be naturally used to evaluate the Jones polynomial at the fifth root of unity $t = e^{2\pi i/5}$. In particular, it can distinguish the trefoil knot from its mirror image.

For this, recall the Fibonacci model from the lecture: There are two anyon types, **1** and $\boldsymbol{\tau}$, subject to $\boldsymbol{\tau} \otimes \boldsymbol{\tau} = \mathbf{1} + \boldsymbol{\tau}$, and the braiding phases are given by

$$R_1^{\tau,\tau} = e^{4\pi i/5}, \quad R_{\tau}^{\tau,\tau} = e^{-3\pi i/5} = -e^{2\pi i/5}.$$

Moreover,

$$\tau \bigvee_{1}^{1} \tau = \phi \begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix}$$
(2)

where $\phi = (1 + \sqrt{5})/2$ is the golden ratio (ϕ is called the *quantum dimension* of τ). Let us also introduce the following notation for creation and fusion of a pair of τ anyons:

This makes sense since **1** is the trivial anyon satisfying $\mathbf{1} \otimes x = x \otimes \mathbf{1} = x$ (cf. the exercise class).

Now consider a braid B of an even number 2n of strands, and denote by \overline{B} its *plat closure*, i.e., the link diagram formed from B by connecting adjacent strand endings (Figure 3). Using the notation fixed above, the link diagram \overline{B} also defines a diagram in the Fibonacci model, which we shall denote by $\langle \overline{B} \rangle$. Since $\langle \overline{B} \rangle$ is a multiple of the identity morphism, it can be identified with a scalar. Let us call $\langle \overline{B} \rangle$ the *bracket* of the link \overline{B} .

- a) Observe that the bracket is invariant under applying Reidemeister moves of type II and III.
- b) Show that the bracket of a disjoint union of N circles is equal to ϕ^N .
- c) Show that we have the following relation in the Fibonacci model:

where $A = e^{3\pi i/5}$. Therefore, by successively eliminate crossings and applying b), we can evaluate $\langle \overline{B} \rangle$ for any braid B.

- d) Show that the effect of applying a Reidemeister move of type I to a diagram in the Fibonacci model amounts to multiplication by $-A^{\pm 3}$.
- e) Conclude that

$$(-A^{-3})^{-w(\overline{B})}\langle \overline{B}\rangle$$

is an invariant of *oriented* knots and links. Here, $w(\overline{B})$ denotes the *writhe* of an oriented link diagram, which is given as the number of positive crossings minus the number of negative crossings (Figure 4). This invariant is (up to a factor ϕ) equal to the value of the Jones polynomial $V_{\overline{B}}(t)$ evaluated at $t = A^{-4} = e^{-2\pi i/5}$.

Why did we need to choose an orientation?

f) Evaluate the Jones polynomial of the left-handed and right-handed trefoil knots (Figure 1) at $t = e^{-2\pi i/5}$ and show that the two knots are not isotopic.

(a) The left-handed trefoil knot (with a choice of orientation.)

(b) Its mirror image, the right-handed trefoil knot.

Figure 1: Trefoil knots (images from Wikipedia).

Figure 2: The Reidemeister moves (images from Wikipedia).

Figure 3: Plat closure of a braid B.

Figure 4: Positive and negative crossings in an oriented link diagram.