Advanced Topics in Quantum Information Theory Exercise 3

Exercise 3.1 The Shor code and Stabilizers

We have seen in the previous exercise that the Shor code is useful for encoding a single qubit in 9 qubits. Now we will look at the Shor code in the stabilizer picture. The generators for stabilizer group for the Shor code has elements

g_1	Z_1Z_2
g_2	Z_2Z_3
g_3	Z_4Z_5
g_4	Z_5Z_6
g_5	$Z_{7}Z_{8}$
g_6	Z_8Z_9
g_7	$X_1 X_2 X_3 X_4 X_5 X_6$
g_8	$X_4 X_5 X_6 X_7 X_8 X_9$
\bar{Z}	$X^{\otimes 9}$
\bar{X}	$Z^{\otimes 9}$

where we also define two Pauli group elements (that are not generators) \overline{Z} and \overline{X} .

a.) Show that the generators stabilize the codewords

$$\begin{aligned} |0_L\rangle &= \frac{1}{2\sqrt{2}} \left(|000\rangle + |111\rangle \right) \otimes \left(|000\rangle + |111\rangle \right) \otimes \left(|000\rangle + |111\rangle \right) \\ |1_L\rangle &= \frac{1}{2\sqrt{2}} \left(|000\rangle - |111\rangle \right) \otimes \left(|000\rangle - |111\rangle \right) \otimes \left(|000\rangle - |111\rangle \right). \end{aligned}$$

- b.) Show that the operators \overline{Z} and \overline{X} act as logical Z and X operators on the logical bits $|0_L\rangle$ and $|1_L\rangle$. Show that \overline{Z} and \overline{X} are independent of and commute with the generators of the Shor code. Also show that \overline{Z} and \overline{X} anti-commute.
- c.) Prove that any error X_i , Z_i , and X_iZ_i can be corrected by the Shor Code, where the position of the error, i, is arbitrary.
- d.) Prove that two qubit errors of the form $X_i X_j$ can also be corrected, but $Z_i Z_j$ errors cannot $(i \neq j)$.