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Exercise 1.1 The role of initial correlations: beyond CP maps and the
Kraus representation

In assessing the dynamics of an open quantum system, the system of interest and its envi-
ronment are often assumed to be initially in a separable tensor product state. In this case
the reduced evolution of the system is known to be described by a completely positive
(CP) map. However, as was pointed out by Pechukas1 and others, this needs not be the
case if one takes into account initial correlations between the system and its environment.
The purpose of this exercise is to convince you with a simple example that such initial
correlations play an important role in the reduced dynamics of a quantum system.

Consider two qubit systems interacting via an exchange-type Hamiltonian

H = H0 +H1

with

H0 = ~ωσ(1)
ee + ~ωσ(2)

ee

H1 = ~g(σ(1)
eg σ

(2)
ge + σ(1)

ge σ
(2)
eg )

where we have denoted σ
(i)
ab ≡ |a〉〈b|i with a, b ∈ {e, g} and |e〉i, |g〉i are respectively the

ground and the excited states of the ith qubit. In what follows, we shall always refer to
the first qubit as the system and to the second as the reservoir.

a.) Assume that the two qubits are initially in an arbitrary state ρ(0) and find the state
ρ(t) at time t. (Hint: To simplify your calculation, solve the Schrödinger equation
in the interaction picture with respect to H0, and transform the state back into the
Schrödinger picture in the end).

b.) Express your result in terms of the three following quantities: the initial reduced
density matrices ρ(1)(0), ρ(2)(0) of the system (1) and the reservoir (2), and the
initial correlations between the two (embedded in the remaining components of the
initial density matrix ρ(0) of the complete system (1+2)).

The reduced dynamics of the system after a time t can always be expressed as a linear,
homogeneous map
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1P. Pechukas, Phys. Rev. Lett. 73, 1060 (1994).



where here A is a 4×4 matrix. One can show2 that the action of the map A on the initial
density matrix can be written as

ρ(1)(t) =
∑
i

λiMiρ
(1)(0)M †

i

with ∑
i

λiM
†
iMi = I

where I denotes the identity matrix, λi are the (real) eigenvalues of the matrix A defined
above, and Mi are operators obtained from the spectral decomposition of the map A (their
explicit form is not important here).
We note that the above expression for the map A is very similar to the Kraus represen-
tation of CP maps. In fact, in the case where λi ≥ 0 ∀i, one may define new operators
M ′

i =
√
λiMi and recover the Kraus representation, thereby showing the map A is a CP

map. However, in general some of the λi could be negative, in which case the map is not
completely positive (NCP).

c.) Find the eigenvalues λi of the map A defined above.

d.) Examine the two cases where the two qubits are: (i) in an initial product state with
ρ(2)(0) = 1

2
I and (ii) in an initial entangled state |ψ(0)〉 = 1√

2
(|e, g〉 + eiϕ|g, e〉). In

both cases, argue on the complete positiveness of the map A.

Exercise 1.2 Error Models in the Lindblad Picture

Under certain conditions the evolution ρ(t) of an open quantum mechanical system can
be described by the Lindblad equation

dρ(t)

dt
= −i[H, ρ(t)] +
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where H denotes the ordinary system Hamiltonian, the ci are the Lindblad operators, and
the γi non-negative constants. In the following we set H ≡ 0 and solve (1) for different
scenarios.

a.) Consider one qubit and Lindblad operators σz =

(
1 0
0 −1

)
and 12 with constants

γσz = γ12 respectively. This regime corresponds to the error model ‘dephasing’, whe-
re only phase flip errors happen. Solve (1) for this case. What happens for t→∞?
Generalize your results to K qubits, where every single qubit can undergo a phase
flip error independently (total dephasing). Is there a decoherence free subspace? Is
it possible to store classical information reliably in such a system?

b.) Consider one qubit and Lindblad operators σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =(

1 0
0 −1

)
and 12 with constants γσx = γσy = γσz = γ12 respectively. This regime

2See for example A. R. Usha Devi, A. K. Rajagopal, Sudha, Phys. Rev. A 70, 052110 (2004), sect. II.



corresponds to an error model, where bit flip errors, phase flip errors or both happen.
Solve (1) for this case. What happens for t → ∞? Generalize your results to K
qubits, where every single qubit can undergo a bit flip error, a phase flip error or
both independently. Is there a decoherence free subspace? In the lecture we called
this error model total decoherence. Compare your results with the conclusion drawn
in the lecture.

c.) Consider two qubits and and Lindblad operators σx⊗12 +12⊗σx, σy⊗12 +12⊗σy,
σz ⊗ 12 + 12 ⊗ σz, and 12 ⊗ 12 with constants γσx = γσy = γσz = γ12 respectively.
This regime corresponds to an error model, where both qubits undergo the same
bit flip error, phase flip error or bit and phase flip error combined. Solve (1) for
this case. What happens for t → ∞? Is there a decoherence free subspace? This
is the simplest case of the collective decoherence. Compare your results with the
conclusion drawn in the lecture.

Exercise 1.3 Collective Decoherence

Generalize the collective decoherence model of Exercise 1.2 c.) from two to K qubits and
use the results from the lecture to compute the decoherence free subspace when K is even.


