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Excitons

Exercise 4.1 One-Dimensional Model of a Semiconductor

Let us consider electrons moving on a one-dimensional chain. We use the so-called tight-
binding approximation. Thus, we assume that each atom has a localized electron state
and that the electrons are able to hop between neighboring atoms. This hopping process
describes the kinetic energy term.
It is most convenient to use a second-quantized language. For simplicity, we assume
spinless electrons. Let ci and c†i be the creation and annihilation operators for an electron
at site i, respectively. The overlap integral between neighboring electron states is denoted
by −t. Then, the kinetic energy operator is written as

H0 = −t
∑
i

(
c†ici+1 + c†i+1ci

)
. (1)

We assume that the chain containsN atoms and in the following we set the lattice constant
a = 1. Furthermore, we assume that two consecutive atoms are nonequivalent which is
modeled by an alternating potential of the form

V = v
∑
i

(−1)i c†ici. (2)

[a] Consider first the case v = 0. Show that the states created by

c†k =
1√
N

∑
j

e−ikjc†j (3)

are eigenstates of H0 with energy εk = −2t cos k. Here, k belongs to the first
Brillouin zone [−π, π).

[b] For v 6= 0 the eigenstates are created by

a†k = ukc
†
k + vkc

†
k+π, b†k = vkc

†
k − ukc

†
k+π (4)

where u2k + v2k = 1 for all k in the reduced Brillouin zone [−π/2, π/2). Diagonalize
the Hamilton operator and show that it can be written in the form

H0 + V =
∑

k∈[−π
2
,π
2
)

(
−Eka†kak + Ekb

†
kbk

)
, Ek =

√
ε2k + v2. (5)

[c] Consider now the ground state of the half-filled chain (N/2 electrons). What is the
difference between the cases [a] and [b]?
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Exercise 4.2 Coulomb Interaction - Excitons

In the following we consider the half-filled chain. Electrons are charged particles and
therefore they repel. We use a simplified version of the Coulomb potential, namely, we
assume that the energy of the system is increased by u whenever two electrons are on
neighboring atoms (note that due to the Pauli principle two spinless electrons can not be
on the same site.) In second quantized form the interaction term is written as follows:

U = u
∑
i

nini+1 = u
∑
i

c†ic
†
i+1ci+1ci. (6)

We assume that u� v, t. In this case, only the states with momentum in the vicinity of
±π/2 are considerably affected by the Coulomb interaction.

[a] Show that the repulsive interaction between the electrons leads to an attractive
interaction between electrons in the conduction band and holes in the valence band:

U ≈ −4u

N

∑
k,k′,q

cos(k − k′) ak+qb
†
kbk′a

†
k′+q. (7)

In deriving the above expression we have replaced all the vk’s and uk’s by v−π/2
(= vπ/2) and u−π/2 (= uπ/2).

[b] Let us now calculate the energy of an exciton. We make the following ansatz for
the wave function of an exciton with momentum q:

|ψq〉 =
∑
k

Aqkak+qb
†
k|Ω〉 (8)

where |Ω〉 is the ground state of the system without interaction (at half filling).
Since we consider a small u we expect that the electron-hole pair is only weakly
bound and that the wave function extends over a large region in real space. On
the other hand, in reciprocal space, we expect that the exciton state is strongly
localized. Therefore, we replace cos(k − k′) in Eq. (7) by 1. Show that the energies
ωq of the exciton excitations |ψq〉 are given by the solution of

1

4u
=

1

N

∑
k

1

Ek + Ek+q − ωq
. (9)

Discuss the solution graphically. How is the excitation spectrum modified by the
interaction?

[c] Show that for small q the energy of the exciton is

ωq = 2v − u2v

t2
+

q2

2(2m∗)
(10)

where m∗ = v/(4t2) is the effective mass at the conduction band minimum.

[d] In the following we will use the continuum limit by expanding Ek ≈ v+ k2

2m∗
, k ∈ R.

Show that in the real space expression for the exciton state with q = 0,

|ψ〉 =
1

Ω

∫
drdr′f(r − r′)a†(r)b(r′)|Ω〉, (11)

f(r − r′) is determined by the Fourier-transform of A0
k w.r.t. k! As the exciton is

a bound state, f(r − r′) is expected to decay exponentially as |r − r′| → ∞, i.e.
f(r − r′) ∼ exp (−|r − r′|/λ). Derive an approximate expression for λ (This gives
an estimate of the size of the exciton)!


