Solid State Theory Exercise 2

FS 11 Prof. M. Sigrist

Point groups and their representations

Exercise 2.1 Energy bands of almost free electrons on the fcc lattice

Let us consider almost free electrons on a face-centered cubic (fcc) lattice. The goal of this exercise is to compute the lowest energy bands along the Δ -line using degenerate perturbation theory and the machinery of group theory. Remember that in reciprocal space, the fcc lattice transforms into a body-centered cubic (bcc) lattice. The point group of the cubic Bravais lattices (simple cubic, fcc, bcc) is denoted by O_h (symmetry group of a cube). Its character table is given in Tab. 1.

a) We first study the Γ point $(\vec{k}=0)$. For free electrons (V=0) the lowest energy level is non-degenerate and the second one has an eight fold degeneracy. We focus on the second level and denote the eight-dimensional representation of O_h defined on this subspace by Γ . Find the irreducible representations contained in Γ . Compute the group character χ_{Γ} and use the character table of O_h to show that

$$\Gamma = \Gamma_1^+ \oplus \Gamma_2^- \oplus \Gamma_4^- \oplus \Gamma_5^+. \tag{1}$$

O_h	E	$C_{3}(8)$	$C_4^2(3)$	$C_2(6)$	$C_4(6)$	J	$JC_{3}(8)$	$JC_4^2(3)$	$JC_2(6)$	$JC_{4}(6)$
	[xyz]	[zxy]	$[\bar{x}\bar{y}z]$	$[yx\bar{z}]$	$[\bar{y}xz]$	$[\bar{x}\bar{y}\bar{z}]$	$[\bar{z}\bar{x}\bar{y}]$	$[xy\bar{z}]$	$[\bar{y}\bar{x}z]$	$[y\bar{x}\bar{z}]$
$\chi_{\Gamma_1^+}$	1	1	1	1	1	1	1	1	1	1
$\chi_{\Gamma_1^-}$	1	1	1	1	1	-1	-1	-1	-1	-1
$\chi_{\Gamma_2^+}$	1	1	1	-1	-1	1	1	1	-1	-1
$\chi_{\Gamma_2^-}$	1	1	1	-1	-1	-1	-1	-1	1	1
$\chi_{\Gamma_3^+}$	2	-1	2	0	0	2	-1	2	0	0
$\chi_{\Gamma_3^-}$	2	-1	2	0	0	2	1	-2	0	0
$\chi_{\Gamma_4^+}$	3	0	-1	-1	1	3	0	-1	-1	1
$\chi_{\Gamma_4^-}$	3	0	-1	-1	1	-3	0	1	1	-1
$\chi_{\Gamma_5^+}$	3	0	-1	1	-1	3	0	-1	1	-1
$\chi_{\Gamma_5^-}$	3	0	-1	1	-1	-3	0	1	-1	1

Table 1: The character table of the cubic point group O_h .

b) A finite periodic potential will in general split the second energy level at the Γ point. Applying degenerate perturbation theory to the Bloch equation [Eq. (1.20ff) in the lecture notes] leads to a 8×8 matrix with off-diagonal elements $u=V_{\frac{4\pi}{a}(1,1,1)},$ $v=V_{\frac{4\pi}{a}(1,0,0)}$ and $w=V_{\frac{4\pi}{a}(1,1,0)}$ (we basically follow chapter 1.3 of the lecture notes). This matrix can be diagonalized by going into the symmetry subspaces.

Show that for the energies and the wave functions one finds

$$\Gamma_{1}^{+}: E_{0} + u + 3v + 3w \qquad \cos\left(\frac{2\pi}{a}x\right)\cos\left(\frac{2\pi}{a}y\right)\cos\left(\frac{2\pi}{a}z\right);$$

$$\Gamma_{2}^{-}: E_{0} - u - 3v + 3w \qquad \sin\left(\frac{2\pi}{a}x\right)\sin\left(\frac{2\pi}{a}y\right)\sin\left(\frac{2\pi}{a}z\right);$$

$$\Gamma_{4}^{-}: E_{0} - u + v - w \qquad \left\{\sin\left(\frac{2\pi}{a}x\right)\cos\left(\frac{2\pi}{a}y\right)\cos\left(\frac{2\pi}{a}z\right), \text{cyclic}\right\};$$

$$\Gamma_{5}^{+}: E_{0} + u - v - w \qquad \left\{\cos\left(\frac{2\pi}{a}x\right)\sin\left(\frac{2\pi}{a}y\right)\sin\left(\frac{2\pi}{a}z\right), \text{cyclic}\right\};$$
where
$$E_{0} = \frac{\hbar^{2}}{2m}3(\frac{2\pi}{a})^{2}.$$

$$(2)$$

c) How do the irreducible representations split on the Δ -line? The Δ -line is defined by the points $\vec{k} = \frac{\pi}{a}(0,0,\delta), 0 \le \delta \le 1$. Use the character table of C_{4v} .

C_{4v}	E	$C_2(1)$	$C_4(2)$	$\sigma_v(2)$	$\sigma_d(2)$
		$[\bar{x}\bar{y}z]$			
χ_{Δ_1}	1	1	1	1	1
χ_{Δ_2}	1	1	1	-1	-1
χ_{Δ_3}	1	1	-1	1	-1
χ_{Δ_4}	1	1	-1	-1	1
χ_{Δ_5}	2	-2	0	0	0

Table 2: The character table of C_{4v} .

- d) Let us now consider the point $X = \frac{2\pi}{a}(0,0,1)$. The lowest level is two fold and the second four fold degenerate for V = 0. Compute the energies and the wave functions for these two levels.
- e) Finally, sketch the energy bands between the Γ and the X point. For an actual numerical calculation use the values u=-0.05, v=0.05 and w=0.1 (in units of $\frac{(2\pi\hbar)^2}{2ma^2}$).

Exercise 2.2 Lifting the degeneracy of the atomic states

Determine how the energy levels of the p, d and f orbitals of an atom lift due to a crystal field with cubic symmetry. Compute the corresponding eigenstates for the d orbitals. For this, consider the homogeneous harmonic polynomials of order 2. Alternatively, have a look at the basis functions given on page 11 of the lecture notes.

Office hour:

Monday, March 7th, 2011 - 9:00 to 11:00 am HIT K 11.3 Daniel Müller