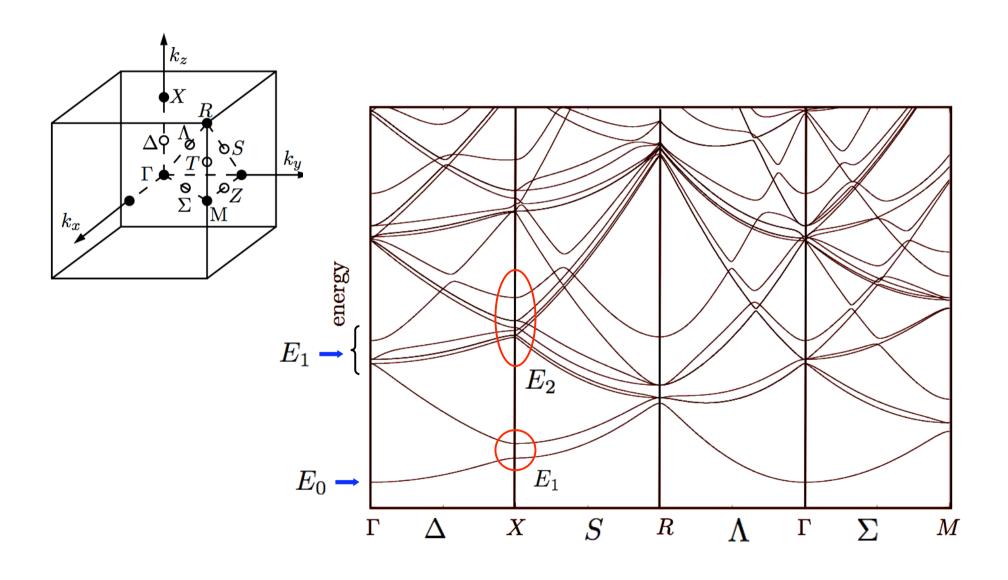


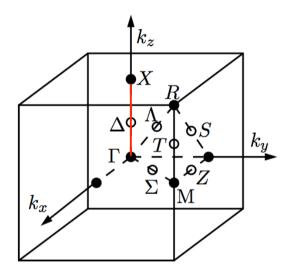
$$v = V_{2\vec{G}_n}$$
 $E_1 = \frac{\hbar^2}{2m} \left(\frac{2\pi}{a}\right)^2$ $E_1 = \frac{\hbar^2}{2m} \left(\frac{2\pi}{a}\right)^2$ $\det \begin{bmatrix} E_1 - E & v & u & u & u & u \\ v & E_1 - E & u & u & u & u \\ u & u & E_1 - E & v & u & u \\ u & u & v & E_1 - E & u & u \\ u & u & u & v & E_1 - E & v \\ u & u & u & v & E_1 - E & v \end{bmatrix} = 0$

$$u_{\vec{k}=0}(\vec{r}) = \sum_{n=1}^{6} c_n e^{i \vec{r} \cdot \vec{G}_n}$$
 $G = \frac{2\pi}{a}$

Γ	$E = \epsilon_{n\mathbf{k} = \mathbf{G}_1}$	$(c_1, c_2, c_3, c_4, c_5, c_6)$	$u_{m{k}=0}(m{r})$	$\mid d_{\Gamma} \mid$
Γ_1^+	E_1+v+4u	$(1,1,1,1,1,1)/\sqrt(6)$	$\phi_0 = \cos Gx + \cos Gy + \cos Gz$	1
Γ_3^+	E_1+v-2u	$(-1,-1,-1,-1,2,2)/2\sqrt{3}$	$\phi_{3z^2-r^2} = 2\cos Gz - \cos Gx - \cos Gy ,$	2
		(1,1,-1,-1,0,0)/2	$\phi_{\sqrt{3}(x^2-y^2)} = \sqrt{3}(\cos Gx - \cos Gy)$	
Γ_4^-	E_1-v	$(1,-1,0,0,0,0)/\sqrt{2}$	$\phi_x = \sin Gx$	3
		$(0,0,1,-1,0,0)/\sqrt{2}$	$\phi_y = \sin Gy$	
		$(0,0,0,0,1,-1)/\sqrt{2}$	$\phi_z = \sin Gz$	

even	basis function	odd	basis function
Γ_1^+	$1, x^2 + y^2 + z^2$	Γ_1^-	$xyz(x^2-y^2)(y^2-z^2)(z^2-x^2)$
Γ_2^+	$(x^2-y^2)(y^2-z^2)(z^2-x^2)$	Γ_2^-	xyz
Γ_3^+	$\{2z^2-x^2-y^2,\sqrt{3}(x^2-y^2)\}$	Γ_3^-	$xyz\{2z^2-x^2-y^2,\sqrt{3}(x^2-y^2)\}$
$\mid \Gamma_4^+ \mid$	$\{s_x,s_y,s_x\}$	Γ_4^-	$\{x,y,z\}$
Γ_5^+	$\{yz,zx,xy\}$	Γ_5^-	$xyz(x^2-y^2)(y^2-z^2)(z^2-x^2)\{yz,zx,xy\}$

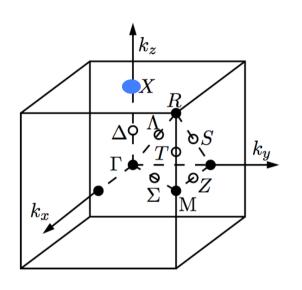




 Δ -line

O_h	C_{4v}	
Γ_1^+	Δ_1	1
$\mid \Gamma_3^{ ilde{+}} \mid$	$\Delta_1 \oplus \Delta_3$	1+1
Γ_4^-	$\Delta_1 \oplus \Delta_5$	1+2

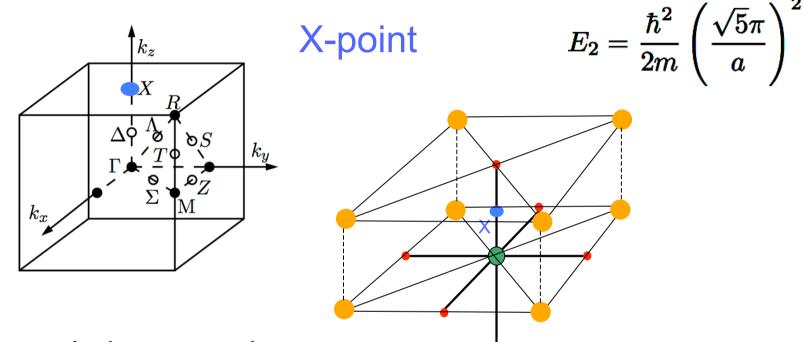
representation	base function
Δ_1	1,z
Δ_2	$xy(x^2-y^2)$
Δ_3	$x^2 - y^2$
Δ_4	xy
Δ_5	$\mid \{x,y\}$



X-point
$$E_0 = \frac{\hbar^2}{2m} \left(\frac{G}{2}\right)^2$$

parabolas around
$$ec{G}_1 = ec{0} \qquad ec{G}_2 = rac{2\pi}{a}(0,0,1)$$

$$\begin{split} X_1^+: \quad E &= \frac{\hbar^2}{2m} \left(\frac{\pi}{a}\right)^2 - |V_{\vec{G}_2}|, \quad e^{iG_2z/2} \cos\left(\frac{G_2z}{2}\right), \\ X_2^-: \quad E &= \frac{\hbar^2}{2m} \left(\frac{\pi}{a}\right)^2 + |V_{\vec{G}_2}|, \quad e^{iG_2z/2} \sin\left(\frac{G_2z}{2}\right). \end{split}$$



parabolas around

$$\vec{G}_1 = \frac{2\pi}{a}(1,0,0), \quad \vec{G}_2 = \frac{2\pi}{a}(1,0,1), \quad \vec{G}_3 = \frac{2\pi}{a}(-1,0,0), \quad \vec{G}_4 = \frac{2\pi}{a}(-1,0,1),$$

$$\vec{G}_5 = \frac{2\pi}{a}(0,1,0), \quad \vec{G}_6 = \frac{2\pi}{a}(0,1,1), \quad \vec{G}_7 = \frac{2\pi}{a}(0,-1,0), \quad \vec{G}_8 = \frac{2\pi}{a}(0,-1,1).$$

X-point
$$E_2=rac{\hbar^2}{2m}\left(rac{\sqrt{5}\pi}{a}
ight)^2$$

representation	$u_{oldsymbol{k}=\pi(0,0,1)/a}(oldsymbol{r})$	degeneracy
X_1^+	$(\cos(Gx) + \cos(Gy))e^{iGz/2}\cos(Gz/2)$	1
X_3^+	$(\cos(Gx) - \cos(Gy))e^{iGz/2}\cos(Gz/2)$	1
X_5^+	$\{\sin(Gx)e^{-iGz/2}\sin(Gz/2),\sin(Gy)e^{iGz/2}\sin(Gz/2)\}$	2
X_2^-	$(\cos(Gx) + \cos(Gy))e^{iGz/2}\sin(Gz/2)$	1
X_4^-	$(\cos(Gx) - \cos(Gy))e^{iGz/2}\sin(Gz/2)$	1
X_5^-	$\{\sin(Gx)e^{iGz/2}\cos(Gz/2),\sin(Gy)e^{iGz/2}\cos(Gz/2)\}$	2

even	base function	odd	base function
X_1^+	1	X_1^-	$xyz(x^2-y^2)$
X_2^+	$xy(x^2-y^2)$	X_2^-	z
X_3^+	x^2-y^2	X_3^-	xyz
X_4^+	xy	X_4^-	$egin{array}{c} xyz \ z(x^2-y^2) \end{array}$
X_5^+	$\{zx,zy\}$	X_5^-	$\{x,y\}$