Definition: group ${\mathcal G}$ is a set ${\mathcal G}=\{a,b,c,\ldots\}$ with a product

$$a\in \mathcal{G}$$

$$b \in \mathcal{G}$$

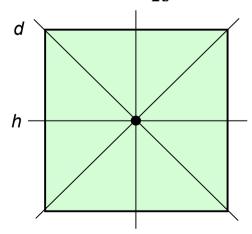
$$a \cdot b \in \mathcal{G}$$

$$a \in \mathcal{G}$$
 $b \in \mathcal{G}$ associative $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

identity $E \in \mathcal{G}$ with $E \cdot a = a \cdot E = a$

inverse
$$a \in \mathcal{G} \implies a^{-1} \in \mathcal{G}$$
 with $a^{-1} \cdot a = a \cdot a^{-1} = E$

Example: C_{4v} symmetry operation of square



$$C_{4v} = \{E, C_4, C_4^{-1}, C_2, \sigma_h, \sigma_h', \sigma_d, \sigma_d'\}$$

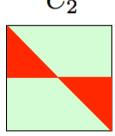
$$C_4 \cdot C_4 = C_2$$
 $\sigma_h \cdot C_4 = \sigma_d'$ $C_4 \cdot \sigma_h = \sigma_d$ $\sigma_h \cdot C_4 \neq C_4 \cdot \sigma_h$

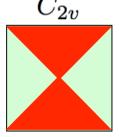
non-abelian

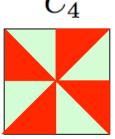
subgroup: group \mathcal{G}' subset of \mathcal{G}

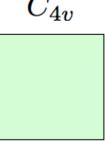
$$\mathcal{G}'\subset\mathcal{G}$$

examples:
$$C_4=\{E,C_4,C_4^{-1},C_2\}$$
 $C_{2v}=\{E,C_2,\sigma_h,\sigma_h'\}$ $\subset C_{4v}$ $C_2=\{E,C_2\}$ C_2 C_{2v} C_4









number of elements: $|\mathcal{G}'|$ devides $|\mathcal{G}|$

representations

linear transformations: consider *n*-dimensional vector space $\mathcal{V} = \{|1\rangle, |2\rangle, \dots, |n\rangle\}$ transformations on ${\cal V}$ by unitary $n \times n$ -matrices $|k'\rangle = g|k\rangle = \sum_{i} M_{k'j}(g)|j\rangle$ matrices $\,\hat{M}\,$ satisfies all properties of a group

representation

mapping (homomorphism) of group \mathcal{G} on $n \times n$ -matrices in \mathcal{V}

$$g o \hat{M}(g)$$
 conserving group structure \longrightarrow representation of \mathcal{G} $g \cdot g' = g'' o M(g)M(g') = M(g'')$ $\begin{cases} \hat{M}(g^{-1}) = \hat{M}(g)^{-1} \\ \hat{M}(E) = \hat{1}_{n \times n} \end{cases}$

equivalent representations: $\hat{M}'(g) = \hat{U}\hat{M}(g)\hat{U}^{-1}$ basis transformation \hat{U}

characters: $\chi(g) = tr \hat{M}(g)$ independent of basis

representations

irreducible representation: independent of basis $\{\hat{M}(g)\}$ connects whole \mathcal{V}

trivial representation: n = 1 $g \rightarrow \hat{M}(g) = 1$

example: C_{4v} \hat{M} transformation of $\{ec{a}_x, ec{a}_y\}$

$$\vec{a}_x = (1,0)$$

$$E \to \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} C_4 \to \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} C_4^{-1} \to \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} C_2 \to \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\sigma_h \to \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \sigma_h' \to \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \sigma_d \to \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \sigma_d' \to \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$$

character table

		\boldsymbol{E}	C_4	C_4^{-1}	C_2	σ_h	σ_h'	σ_d	$\sigma_{m{d}}'$	basis function
A	$\mathbf{I_1}$	1	1	1	1	1	1	1	1	1
A	$\mathbf{I_2}$	1	1	1	1	-1	-1	-1	-1	$xy(x^2-y^2)$
E	3 1	1	-1	-1	1	1	1		-1	0 0
E	$\mathbf{3_2}$	1	-1	-1	1	-1	-1	1	1	xy
1	E	2	0	0	-2	0	0	0	0	$\{x,y\}$

representations & quantum mechanics

symmetry operations of Hamiltonian form a group $\mathcal{G}=\{\hat{S}_1,\ldots\}$ Hilbertspace is vector space $\{|\psi_1
angle,\ldots\}$

stationary states:
$$\mathcal{H}|\phi_n\rangle=\epsilon_n|\phi_n\rangle$$

$$[\hat{S},\mathcal{H}]=0 \quad \longrightarrow \quad \mathcal{H}\hat{S}|\phi_n\rangle=\hat{S}\mathcal{H}|\phi_n\rangle=\epsilon_n\hat{S}|\phi_n\rangle$$
 $|\phi_n\rangle \quad \text{and} \quad |\phi_n'\rangle=\hat{S}|\phi_n\rangle \quad \text{degenerate}$

degenerate states form a vector space with an irred. representation of $\, \, \mathcal{G} \,$

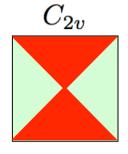
$$\{|\phi_1
angle,\ldots,|\phi_m
angle\}$$
 with $\hat{S}|\phi_k
angle=\sum_{k'=1}^m M_{kk'}|\phi_{k'}
angle$

dimension *m* of representation corresponds to the degeneracy of eigenvalues

representations & quantum mechanics

symmetry lowering

$$C_{4v} \rightarrow C_{2v}$$



	E	C_2	σ_h	σ_h'	basis
A_1'	1	1	1	1	1
A_2'	1	-1	1	-1	\boldsymbol{x}
B_1'	1	1	-1	-1	xy
$ar{B_2'}$	1	-1	-1	1	\boldsymbol{y}

C_{4v}	C_{2v}
A_1	A_1'
A_2	B_1'
B_1	$A_1^{ar{\prime}}$
B_2	$B_1^{\overline{\prime}}$
E^{-}	$A_2'\oplus B_2'$

splitting of degeneracy through symmetry lowering

