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Exercise 6.1 Distance bounds

So far we have introduced two distance measures for quantum states: fidelity and trace distance. The
former has the nice property of being invariant under purifications, while the latter has an useful operational
meaning: it bounds the probability of distinguishing two quantum states. We can combine the two to obtain
funny results.
To solve this exercise, you should

1. think about the form of the purification of a product state (use the Schmidt decomposition);

2. use Uhlmann’s theorem (theorem 4.3.8, page 37 of the script);

3. get bounds for the trace distance in terms of fidelity (lemma 4.3.10 on page 40 of the script).

Why is this result useful? Well, in general it is easier to find a way of decoupling a system A from some
reference then to prove that A is maximally entangled with a different system A′, and one often needs
entanglement in quantum protocols. Using these bounds we only need to show the decoupling part to get
the maximum error probability of any experiment we can make on the hopefully-entangled state.
Two concrete examples are channel error estimation and work-extraction protocols. We can talk about
channels after introducing the Stinespring dilation, and about work extraction when you have time and
patience.

Recap of measurements on bipartite states

Suppose there is a state ρAB ∈ HA ⊗ HB and you want to perfom a measurement represented by the
observable OA =

∑
y yPy on subsystem A. Here {y}y are the eigenvalues of the operator and the projectors

Py have the form Py =
∑

α |yα〉〈yα|, where {|yα〉}α are the eigenvectors associated with eigenvalue y.
On the total system the measurement is represented by O = OA ⊗ 1B. The probability of obtaining the
outcome y is given by

PrO,ρ(y) = Tr([Py ⊗ 1B]ρAB)

and after the measurement (with outcome y) the state collapses to

ρB(y) =
TrA([Py ⊗ 1B]ρAB)

PrO,ρ(y)
,

where TrA is the partial trace over subsystem A.

Exercise 6.2 Bell-type Experiment

We will see later on the semester that Bell experiments show that quantum mechanics produces phenomena
that cannot be predicted using local classical probability theory — local hidden variables. For now we
will not try to compare the quantum results with what is achievable classically, but simply observe their
strangeness.
The setting goes as follows. There are two parties (usually called Alice and Bob) that prepare an entangled
two-qubit state. Alice keeps one of the qubits and Bob the other. No matter how far apart they are, their
qubits are still entangled.
Now Alice will measure her qubit in a given basis. This will cause Bob’s qubit to collapse to some state so
that when he measures his qubit the measurement statistics are different from if he had decided to measure
his qubit before Alice measured hers.
A well known example is when the state prepared is

|ψ+〉 =
1√
2

(|0〉|0〉+ |1〉|1〉)
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for a basis {|0〉, |1〉} in A and B.
We will see the simplest case, when Alice performs a measurement in that same basis.
The probability that she gets 0 is

PA(0) = Tr([|0〉〈0| ⊗ 1B]
1

2
(|0〉|0〉+ |1〉|1〉) (〈0|〈0|+ 〈1|〈1|))

=
1

2

and if she obtained 0 the whole state collapses to

ρB|A=0 = 2TrA([|0〉〈0| ⊗ 1B]
1

2
(|0〉|0〉+ |1〉|1〉) (〈0|〈0|+ 〈1|〈1|))

= |0〉〈0|,

so that if Bob now measures his qubit in that basis he will always obtain |0〉. Suppose now that Alice did
not tell Bob what she obtained in the measurement. In this case Alice knows that Bob has state ρB|A=0 but
from the point of view of Bob his state is

ρB = TrA(|ψ+〉〈ψ+|)

=
1

2
(|0〉〈0|+ |1〉〈1|).

If Alice and Bob were to bet on the outcome of a measurement on Bob’s qubit (in basis {|0〉, |1〉}), Alice
would bet on 0 and win with 100% probability, while Bob will only win with probability 1

2 , as from his point
of view both outcomes are equally likely. In this case the probability distributions on the outcomes of Bob’s
measurement are

PB|A=0 =

(
1

0

)
, PB =

(
1/2

1/2

)
.

It may seem at first sight that something is wrong – how can the same physical qubit be represented
by two different density operators and have two different probability distributions on the same physical
measurement? The answer is that that qubit is correlated to another system (Alice’s qubit) and what we
are looking at are the states (and probability distributions) conditioned / not conditioned on an event on
that system (Alice’s measurement) that is itself random: Alice is equally likely to obtain 0, in which case
Bob’s state collapses to |0〉〈0|, or 1, when get |1〉〈1| on Bob’s side.
There is one degree of freedom for Bob: he can choose the basis in which to measure his state. In basis
{|0〉, |1〉} he will always get 0, but if he chooses basis {|+〉, |−〉}, for instance, he may get either result with
equal probability. In general, as you will prove, the more distant Alice’s and Bob’s bases are the bigger the
uncertainty on Bob’s measurement after Alice performed hers.
In this exercise Alice measures her state in an arbitrary basis

{
|α〉, |α〉⊥

}
. We are dealing with a two-

state system and a new basis may be defined as a rotation of a known one by an angle α. In our case,
|α〉 := cos(α)|0〉+ sin(α)|1〉 and |α〉⊥ corresponds to |α+ π

2 〉.
To obtain the reduced state on B after the measurement on A when the outcome is known, you just have to
apply the rules given above. Then you have to calculate what Bob will obtain when measuring his qubit in
the “original” basis {|0〉, |1〉}. I suppose you know how to do it in the case of unknown outcome on Alice’s
side.

Exercise 6.3 Depolarizing channel

In this exercise we will see how to use quantum operations to define channels, which you surely remember
from the second exercise series. The essential tools here are trace preserving completely positive maps
(TCPMs). You can read all about them on pages 40 to 45 of the script. As the name suggests, TCPMs map
positive operators to positive operators and preserve their trace — in particular they map density operators
to density operators. The evolution of a system can always be represented by a TCPM: ρt1 = E(ρt0).
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Let us examine the TCPM we are given in this exercise,

Ep : ρ 7→ p

2
1 + (1− p)ρ,

where ρ is the density operator of a qubit. At first sight we notice that is redistributes the weight of the
density operator: 1− p of it stays as before but p becomes fully mixed.
For now that channel seems maybe a bit abstract and that is why in part a) of the exercise we are asked
to find a way of implementing it, ie. to express is in terms of operators qe know how to deal with — and in
the case of qubits these will be Pauli matrices.
We have fo find an operator-sum representation of Ep, meaning that we need to find operators {Ek}k such
that

p

2
1 + (1− p)ρ =

∑
k

EkρEk
∗.

My suggestion is that you start by using the Bloch sphere representation of qubits, ρ = 1
2(1 + ~r · ~σ) to

express the identity in terms of Pauli matrices and ρ. Be careful with the properties of Pauli operators such
as

σi
2 =1

[σi, σj ] :=σiσj − σjσi = 21εijkσk,

{σi, σj} :=σiσj + σjσi = 2δij1.

You should obtain 1 = 1
2(ρ+ σxρσx + σyρσy + σzρσz).

Now insert that in the definition of Ep and in the end you should get

E1 =

√
1− 3p

4
1, Ei =

√
p

2
σi, i = x, y, z.

Supposing that (eg. with a quantum computer) we know how to apply the Pauli matrices to a qubit, we
are now able to implement Ep.
In part b) they ask us what happens to the radius |~r| of the Bloch vector of a state when we apply Ep.
Remember that the pure states lied on the surface of the sphere, with |~r| = 1, while the fully mixed state
was in its centre, |~r| = 0. Check what happens to |~r| (you don’t need to use the operator-sum representation)
and see what it means in terms of the purity of the state.
We can use TCPMs to describe channels — if you recall, sets of conditional probabilities that define maps
from one probability distribution to another. In this case we will define it as

|0><0| |0><0|

|1><1| |1><1|

P0|0

P0|1

P1|0

P1|1

Figure 1: Our channel. Here Pb|a stands for PB|A=a(b).

See what happens when you apply Ep(|0〉〈0|) and Ep(|1〉〈1|). You will get the conditional probabilities that
define the channel from there if you look at the final states as ways of encoding probability distributions on
0, 1. For instance, the state you obtain from |0〉〈0| will be of the form of a classical state (pages 34-35 of the
script),

Ep(|0〉〈0|) = PB|A=0(0)|0〉〈0|+ PB|A=0(1)|1〉〈1|.

More generally, you can apply Ep to the initial classical state q|0〉〈0|+ (1− q)|1〉〈1| and take the conditional
probabilities from there.
Now that you have the channel defined in a classical way you can calculate its capacity just like in the
second exercise series. What classical channel does it resemble?
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