Exercise 8.1 Measurements as unitary evolutions

Consider a measurement on a system \mathcal{H}_A , whose output is in \mathcal{H}_B that is described by the observable $O = \sum_{x \in \mathcal{X}} x P_x$, where $\{P_x\}_x$ are projectors. Suppose we want to apply the measurement to the state ρ_A . We can represent the measurement as a unitary evolution with output on a larger system, $\mathcal{H}_B \otimes \mathcal{H}_R$, followed by a partial trace over R.

- a) Show that $\mathcal{E}(\rho_A)$ can be written as unitary followed by a partial trace over R. This task can be broken down into the following steps:
 - i) What is the operator-sum representation of the measurement of the operator O?
 - *ii*) If we write the projectors as $P_x = \sum_i |\phi_i^x\rangle \langle \phi_i^x|$, what is the Choi-Jamiołkowski matrix?
 - *iii*) Give an expression for a purification of the Choi-Jamiołkowski matrix. Note that since the CJ matrix is positive semi-definite and hermitian, you can treat it like an unnormalized density operator.
 - *iv*) Apply the inverse of the CJ isomorphism to the purified state in (iii), and show that it is of the form $U\rho_A U^*$, where U is a unitary. The inverse CJ isomorphism is the map that takes a state $\rho_{A'BR}$ as input, and outputs a map \mathcal{F} . Specifically:

$$\mathcal{F}(\rho_A) = |\mathcal{H}_A| \operatorname{Tr}_{A'} \left(\left(\sum_{i,j} |i\rangle_{A'} \langle j|_A \rho_A |i\rangle_A \langle j|_{A'} \right) \otimes \mathbb{1}_{BR} \cdot \rho_{A'BR} \right)$$

where $\{|i\rangle\}_i$ is an orthonormal basis for A and A' (similarly for $\{|j\rangle\}_j$), and $\rho_{A'BR}$ is the CJ matrix purified. v) Finally, show that $\operatorname{Tr}_R(\mathcal{F}(\rho_A))$ has the same output as the measurement in (i).

- b) Give an explicit expression for the map \mathcal{E} for two different measurement on a qubit state described by the POVMs:
 - 1. $\mathcal{M}_1 = \{|0\rangle\langle 0|, |1\rangle\langle 1|\}.$ 2. $\mathcal{M}_2 = \{p|0\rangle\langle 0|, p|1\rangle\langle 1|, (1-p)\mathbb{1}_2\}.$ What is the physical interpretation of this POVM?

Exercise 8.2 Unambiguous State Discrimination

Suppose you are given two states, ρ, σ , of the same space \mathcal{H} and want to distinguish them with a single measurement. We have seen that, unless the states are orthogonal ($\delta(\rho, \sigma) = 1$), it is impossible to always distinguish them with certainty. If you are willing to have a probability of making an error, you can follow the strategy that gives you the greatest possibility of guessing correctly by measuring one of the states in the eigenbasis of $\rho - \sigma$. You will be right with probability $\Pr_{\checkmark} = \frac{1}{2}(1 + \delta(\rho, \sigma))$ and wrong in $1 - \Pr_{\checkmark}$ of the cases.

You may want to never make an error in your distinguishing procedure: you want to perform a measurement such that sometimes you are certain whether the state was ρ or σ and sometimes will not know which state you have. You will be correct less often than if you took the risky strategy, but you will never make a mistake in distinguishing the states.

In this exercise we will see how to construct such a measurement in the case where the two states are pure, $\rho = |\psi\rangle\langle\psi|, \sigma = |\phi\rangle\langle\phi|$.

Consider a measurement described by the POVM $\{M_{\psi}, M_{\phi}, M_{?}\}$, with

$$M_{\psi} = \alpha |\phi^{\perp}\rangle \langle \phi^{\perp}|, \qquad M_{\phi} = \alpha |\psi^{\perp}\rangle \langle \psi^{\perp}|, \qquad M_{?} = \mathbb{1} - M_{\psi} - M_{\phi}, \tag{1}$$

where $|x^{\perp}\rangle$ denotes a state orthogonal to $|x\rangle$ (ie. $\langle x|x^{\perp}\rangle = 0$) and α depends on the trace distance between the states. For for pure sates, the trace distance is given by $\delta(|\psi\rangle, |\phi\rangle) = \sqrt{1 - |\langle \psi | \phi \rangle|^2}$.

a) (i) Compute the probabilities of obtaining the outcomes M_{ψ}, M_{ϕ} and $M_{?}$ when measuring states $|\psi\rangle$ and $|\phi\rangle$. Remember that you can expand one of the states in terms of the other and a vector orthogonal to it, for instance

$$|\psi\rangle = a|\phi\rangle + b|\phi^{\perp}\rangle, \quad |\psi^{\perp}\rangle = -b|\phi\rangle + a|\phi^{\perp}\rangle, \qquad a = \langle\psi|\phi\rangle, \quad |a|^2 + |b|^2 = 1.$$

- ii) Verify that if the outcome of the measurement is M_{ϕ} the state measured could not have been $|\psi\rangle$, when it is M_{ψ} it could not have been $|\phi\rangle$ and when it is $M_{?}$ it could have been either with equal probability.
- b) We want to maximise the probability of guessing correctly. This is equivalent to minimising the probability of obtaining $M_{?}$ (when we do not know which state we measured).
 - i) Give an expression for α that minimises the probability of obtaining $M_{?}$ when measuring one of the states at random, while still assuring that $M_{?}$ is a positive operator.
 - ii) What is the probability that you successfully distinguish which state you have?

Exercise 8.3 Bell inequalities and hidden variable models

Consider a setting like in exercise 6.2. Alice and Bob share a two-qubit state and are allowed to perform local measurements in their qubit.

The POVM corresponding to a measurement can be written in function of the angle α that the measurement basis makes with the $\{|0\rangle, 1\}$ basis,

$$M^{\alpha} = \left\{ |\alpha\rangle\langle\alpha|, |\alpha^{\perp}\rangle\langle\alpha^{\perp}| \right\}, \qquad \qquad |\alpha\rangle = \cos\frac{\alpha}{2} |0\rangle, \\ \sin\frac{\alpha}{2} |1\rangle, \qquad \qquad |\alpha^{\perp}\rangle = \sin\frac{\alpha}{2} |0\rangle, \\ \cos\frac{\alpha}{2} |1\rangle, \qquad \qquad |\alpha^{\perp}\rangle = \sin\frac{\alpha}{2} |0\rangle, \\ \cos\frac{\alpha}{2} |1\rangle, \qquad \qquad |\alpha^{\perp}\rangle = \sin\frac{\alpha}{2} |0\rangle, \\ \cos\frac{\alpha}{2} |1\rangle, \qquad \qquad |\alpha^{\perp}\rangle = \sin\frac{\alpha}{2} |0\rangle, \\ \sin\frac{\alpha}{2} |1\rangle, \qquad \qquad |\alpha^{\perp}\rangle = \sin\frac{\alpha}{2} |0\rangle, \\ \sin\frac{\alpha}{2} |1\rangle, \qquad \qquad |\alpha^{\perp}\rangle = \sin\frac{\alpha}{2} |0\rangle, \\ \sin\frac{\alpha}{2} |1\rangle, \qquad \qquad |\alpha^{\perp}\rangle = \sin\frac{\alpha}{2} |0\rangle, \\ \sin\frac{\alpha}{2} |1\rangle, \qquad \qquad |\alpha^{\perp}\rangle = \sin\frac{\alpha}{2} |0\rangle, \\ \sin\frac{\alpha}{2} |1\rangle, \qquad \qquad |\alpha^{\perp}\rangle = \sin\frac{\alpha}{2} |0\rangle, \\ \sin\frac{\alpha}{2} |1\rangle, \qquad \qquad |\alpha^{\perp}\rangle = \sin\frac{\alpha}{2} |0\rangle, \\ \sin\frac{\alpha}{2} |1\rangle, \qquad \qquad |\alpha^{\perp}\rangle = \sin\frac{\alpha}{2} |0\rangle, \\ \sin\frac{\alpha}{2} |1\rangle, \qquad \qquad |\alpha^{\perp}\rangle = \sin\frac{\alpha}{2} |0\rangle, \\ \sin\frac{\alpha}{2} |1\rangle, \qquad \qquad |\alpha^{\perp}\rangle = \sin\frac{\alpha}{2} |0\rangle, \\ \sin\frac{\alpha}{2} |1\rangle, \qquad \qquad |\alpha^{\perp}\rangle = \sin\frac{\alpha}{2} |0\rangle, \\ \sin\frac{\alpha}{2} |1\rangle, \qquad \qquad |\alpha^{\perp}\rangle = \sin\frac{\alpha}{2} |0\rangle, \\ \sin\frac{\alpha}{2} |1\rangle, \qquad \qquad |\alpha^{\perp}\rangle = \sin\frac{\alpha}{2} |0\rangle, \\ \sin\frac{\alpha}{2} |1\rangle, \qquad \qquad |\alpha^{\perp}\rangle = \sin\frac{\alpha}{2} |0\rangle, \\ \sin\frac{\alpha}{2} |1\rangle, \qquad \qquad |\alpha^{\perp}\rangle = \sin\frac{\alpha}{2} |0\rangle, \\ \sin\frac{\alpha}{2} |1\rangle, \qquad \qquad |\alpha^{\perp}\rangle = \sin\frac{\alpha}{2} |0\rangle, \\ \sin\frac{\alpha}{2} |1\rangle, \qquad \qquad |\alpha^{\perp}\rangle = \sin\frac{\alpha}{2} |0\rangle, \\ \sin\frac{\alpha}{2} |1\rangle, \qquad \qquad |\alpha^{\perp}\rangle = \sin\frac{\alpha}{2} |0\rangle, \\ \a^{\perp}\rangle = \sin\frac{\alpha}{$$

where the 1/2 factor comes from the Bloch sphere notation. We label the outcomes + for $|\alpha\rangle$ and - for $|\alpha^{\perp}\rangle$. Alice and Bob can choose two different bases each:

a) Suppose that Alice and Bob share the state $|\Psi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$. The joint probabilities $P_{XY|ab}(x, y)$ of them obtaining outcomes x and y when they measure A = a and B = b are given by

Alice		A = 0		A = 2		
Bob		+	_	+	—	
B=1	+ -	$\frac{\frac{1}{2}-\epsilon}{\epsilon}$	$\frac{\epsilon}{\frac{1}{2}-\epsilon}$	$\frac{\frac{1}{2}}{\epsilon} - \epsilon$	$\frac{\epsilon}{\frac{1}{2}-\epsilon}$	with $\epsilon = \frac{1}{2} \sin^2(\pi/8) \approx 0.07.$
B=3	+ -	$\frac{\epsilon}{\frac{1}{2}-\epsilon}$	$\frac{1}{2} - \epsilon \epsilon$	$\frac{1}{2} - \epsilon$ ϵ	$\frac{\epsilon}{\frac{1}{2}-\epsilon}$	

Compute

$$I_N(P_{XY|AB}) = P(X = Y|A = 0, B = 3) + \sum_{|a-b|=1} P(X \neq Y|A = a, B = b).$$

b) Now we introduce a PR-box, which is a joint probability distribution that cannot be created by measurements on a quantum state:

А	Α	=0	A = 2		
Bob		+	—	+	—
B=1	+ -	$ \frac{1}{2} $ 0	$\begin{array}{c} 0\\ \frac{1}{2} \end{array}$	$ \frac{1}{2} $ 0	$\begin{array}{c} 0\\ \frac{1}{2} \end{array}$
B=3	+	$ \frac{1}{2} $	$\frac{1}{2}$	$\frac{1}{2}$	$ \frac{1}{2} $

Show that the PR-box

- (i) is non-signalling: $P(X|a, b_1) = P(X|a, b_2), \forall a;$
- (ii) is non-local: $P_{XY|ab} \neq P_{X|a}P_{X|b}$;
- (iii) yields $I_N(P_{XY|AB}) = 0.$
- c) Consider now that Alice and Bob get their qubits and measurement devices from Eve. Eve will try to trick them into thinking that they share a singlet and perform quantum measurements. In fact, she will give them a device that allows her to guess the results of their "measurements" with some probability.

Eve is a post-quantum adversary, limited only by non-signaling. She will give them:

- with probability 1 p a PR-box;
- with probability p/4, one of four deterministic boxes, that always outcome ++, +-, -+ and -- respectively.

Find p so that the final joint probability distribution equals the one of the singlet state. What is the probability that Eve can guess the outcomes of their measurements?

Extra: Imagine that Alice and Bob are allowed to perform more measurements, with closer angles (so that the overlap between two consecutive bases is larger). What happens to p?