Exercise 8.1 Measurements as unitary evolutions

Consider a measurement on a system \mathcal{H}_{A}, whose output is in \mathcal{H}_{B} that is described by the observable $O=\sum_{x \in \mathcal{X}} x P_{x}$, where $\left\{P_{x}\right\}_{x}$ are projectors. Suppose we want to apply the measurement to the state ρ_{A}. We can represent the measurement as a unitary evolution with output on a larger system, $\mathcal{H}_{B} \otimes \mathcal{H}_{R}$, followed by a partial trace over R.
a) Show that $\mathcal{E}\left(\rho_{A}\right)$ can be written as unitary followed by a partial trace over R. This task can be broken down into the following steps:
i) What is the operator-sum representation of the measurement of the operator O ?
ii) If we write the projectors as $P_{x}=\sum_{i}\left|\phi_{i}^{x}\right\rangle\left\langle\phi_{i}^{x}\right|$, what is the Choi-Jamiołkowski matrix?
iii) Give an expression for a purification of the Choi-Jamiołkowski matrix. Note that since the CJ matrix is positive semi-definite and hermitian, you can treat it like an unnormalized density operator.
$i v)$ Apply the inverse of the CJ isomorphism to the purified state in (iii), and show that it is of the form $U \rho_{A} U^{*}$, where U is a unitary. The inverse CJ isomorphism is the map that takes a state $\rho_{A^{\prime} B R}$ as input, and outputs a map \mathcal{F}. Specifically:

$$
\mathcal{F}\left(\rho_{A}\right)=\left|\mathcal{H}_{A}\right| \operatorname{Tr}_{A^{\prime}}\left(\left(\sum_{i, j}|i\rangle_{A^{\prime}}\left\langle\left. j\right|_{A} \rho_{A} \mid i\right\rangle_{A}\left\langle\left. j\right|_{A^{\prime}}\right) \otimes \mathbb{1}_{B R} \cdot \rho_{A^{\prime} B R}\right),\right.
$$

where $\{|i\rangle\}_{i}$ is an orthonormal basis for A and A^{\prime} (similarly for $\{|j\rangle\}_{j}$), and $\rho_{A^{\prime} B R}$ is the CJ matrix purified.
$v)$ Finally, show that $\operatorname{Tr}_{R}\left(\mathcal{F}\left(\rho_{A}\right)\right)$ has the same output as the measurement in (i).
b) Give an explicit expression for the map \mathcal{E} for two different measurement on a qubit state described by the POVMs:

1. $\mathcal{M}_{1}=\{|0\rangle\langle 0|,|1\rangle\langle 1|\}$.
2. $\mathcal{M}_{2}=\left\{p|0\rangle\langle 0|, p|1\rangle\langle 1|,(1-p) \mathbb{1}_{2}\right\}$. What is the physical interpretation of this POVM?

Exercise 8.2 Unambiguous State Discrimination

Suppose you are given two states, ρ, σ, of the same space \mathcal{H} and want to distinguish them with a single measurement. We have seen that, unless the states are orthogonal $(\delta(\rho, \sigma)=1)$, it is impossible to always distinguish them with certainty.
If you are willing to have a probability of making an error, you can follow the strategy that gives you the greatest possibility of guessing correctly by measuring one of the states in the eigenbasis of $\rho-\sigma$. You will be right with probability $\operatorname{Pr}_{\checkmark}=\frac{1}{2}(1+\delta(\rho, \sigma))$ and wrong in $1-\operatorname{Pr}_{\checkmark}$ of the cases.
You may want to never make an error in your distinguishing procedure: you want to perform a measurement such that sometimes you are certain whether the state was ρ or σ and sometimes will not know which state you have. You will be correct less often than if you took the risky strategy, but you will never make a mistake in distinguishing the states.
In this exercise we will see how to construct such a measurement in the case where the two states are pure, $\rho=|\psi\rangle\langle\psi|, \sigma=$ $|\phi\rangle\langle\phi|$.
Consider a measurement described by the POVM $\left\{M_{\psi}, M_{\phi}, M_{?}\right\}$, with

$$
\begin{equation*}
M_{\psi}=\alpha\left|\phi^{\perp}\right\rangle\left\langle\phi^{\perp}\right|, \quad M_{\phi}=\alpha\left|\psi^{\perp}\right\rangle\left\langle\psi^{\perp}\right|, \quad M_{?}=\mathbb{1}-M_{\psi}-M_{\phi}, \tag{1}
\end{equation*}
$$

where $\left|x^{\perp}\right\rangle$ denotes a state orthogonal to $|x\rangle$ (ie. $\left\langle x \mid x^{\perp}\right\rangle=0$) and α depends on the trace distance between the states. For for pure sates, the trace distance is given by $\delta(|\psi\rangle,|\phi\rangle)=\sqrt{1-|\langle\psi \mid \phi\rangle|^{2}}$.
a) $\quad i$ Compute the probabilities of obtaining the outcomes M_{ψ}, M_{ϕ} and $M_{\text {? }}$ when measuring states $|\psi\rangle$ and $|\phi\rangle$. Remember that you can expand one of the states in terms of the other and a vector orthogonal to it, for instance

$$
|\psi\rangle=a|\phi\rangle+b\left|\phi^{\perp}\right\rangle, \quad\left|\psi^{\perp}\right\rangle=-b|\phi\rangle+a\left|\phi^{\perp}\right\rangle, \quad a=\langle\psi \mid \phi\rangle, \quad|a|^{2}+|b|^{2}=1 .
$$

ii) Verify that if the outcome of the measurement is M_{ϕ} the state measured could not have been $|\psi\rangle$, when it is M_{ψ} it could not have been $|\phi\rangle$ and when it is $M_{\text {? }}$ it could have been either with equal probability.
b) We want to maximise the probability of guessing correctly. This is equivalent to minimising the probability of obtaining $M_{\text {? }}$ (when we do not know which state we measured).
i) Give an expression for α that minimises the probability of obtaining $M_{\text {? }}$ when measuring one of the states at random, while still assuring that $M_{\text {? }}$ is a positive operator.
ii) What is the probability that you successfully distinguish which state you have?

Exercise 8.3 Bell inequalities and hidden variable models

Consider a setting like in exercise 6.2. Alice and Bob share a two-qubit state and are allowed to perform local measurements in their qubit.
The POVM corresponding to a measurement can be written in function of the angle α that the measurement basis makes with the $\{|0\rangle, 1\}$ basis,

$$
M^{\alpha}=\left\{|\alpha\rangle\langle\alpha|,\left|\alpha^{\perp}\right\rangle\left\langle\alpha^{\perp}\right|\right\}, \quad|\alpha\rangle=\cos \frac{\alpha}{2}|0\rangle, \sin \frac{\alpha}{2}|1\rangle, \quad\left|\alpha^{\perp}\right\rangle=\sin \frac{\alpha}{2}|0\rangle, \cos \frac{\alpha}{2}|1\rangle,
$$

where the $1 / 2$ factor comes from the Bloch sphere notation. We label the outcomes + for $|\alpha\rangle$ and - for $\left|\alpha^{\perp}\right\rangle$. Alice and Bob can choose two different bases each:

a) Suppose that Alice and Bob share the state $\left|\Psi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$. The joint probabilities $P_{X Y \mid a b}(x, y)$ of them obtaining outcomes x and y when they measure $A=a$ and $B=b$ are given by

Alice		$\mathrm{A}=0$		$\mathrm{~A}=2$	
Bob		+	-	+	-
$\mathrm{B}=1$	+	$\frac{1}{2}-\epsilon$	ϵ	$\frac{1}{2}-\epsilon$	ϵ
	-	ϵ	$\frac{1}{2}-\epsilon$	ϵ	$\frac{1}{2}-\epsilon$
$\mathrm{B}=3$	+	ϵ	$\frac{1}{2}-\epsilon$	$\frac{1}{2}-\epsilon$	ϵ
	-	$\frac{1}{2}-\epsilon$	ϵ	ϵ	$\frac{1}{2}-\epsilon$

with $\epsilon=\frac{1}{2} \sin ^{2}(\pi / 8) \approx 0.07$.

Compute

$$
I_{N}\left(P_{X Y \mid A B}\right)=P(X=Y \mid A=0, B=3)+\sum_{|a-b|=1} P(X \neq Y \mid A=a, B=b) .
$$

b) Now we introduce a PR-box, which is a joint probability distribution that cannot be created by measurements on a quantum state:

Alice		$\mathrm{A}=0$		$\mathrm{~A}=2$	
Br		+	-	+	-
$\mathrm{B}=1$	+	$\frac{1}{2}$	0	$\frac{1}{2}$	0
	-	0	$\frac{1}{2}$	0	$\frac{1}{2}$
$\mathrm{~B}=3$	+	0	$\frac{1}{2}$	$\frac{1}{2}$	0
	-	$\frac{1}{2}$	0	0	$\frac{1}{2}$

Show that the PR-box
(i) is non-signalling: $P\left(X \mid a, b_{1}\right)=P\left(X \mid a, b_{2}\right), \forall a$;
(ii) is non-local: $P_{X Y \mid a b} \neq P_{X \mid a} P_{X \mid b}$;
(iii) yields $I_{N}\left(P_{X Y \mid A B}\right)=0$.
c) Consider now that Alice and Bob get their qubits and measurement devices from Eve. Eve will try to trick them into thinking that they share a singlet and perform quantum measurements. In fact, she will give them a device that allows her to guess the results of their "measurements" with some probability.
Eve is a post-quantum adversary, limited only by non-signaling. She will give them:

- with probability $1-p$ a PR-box;
- with probability $p / 4$, one of four deterministic boxes, that always outcome,,+++--+ and -- respectively.

Find p so that the final joint probability distribution equals the one of the singlet state. What is the probability that Eve can guess the outcomes of their measurements?

Extra: Imagine that Alice and Bob are allowed to perform more measurements, with closer angles (so that the overlap between two consecutive bases is larger). What happens to p ?

