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Exercise 11.1 Entanglement and Teleportation

This exercise introduces a rather spectacular result of quantum information: if two parties, Alice and Bob,
share an entangled state, than they can teleport a state from one side to the other at the cost of the
entanglement between them.
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Figure 1: Quantum teleportation: in the beginning, Alice has a a qubit S in pure state |ψ〉 and a qubit A
that is entangled with a qubit on Bob’s side in a Bell state. By the end of the protocol, Alice’s two qubits,
S and A, will be entangled in a Bell state (not necessarily the same) and Bob’s qubit, B, will be in state
|ψ〉. The entanglement between Alice and Bob is broken when |ψ〉 is “teleported”.

The setting is illustrated in Fig. 1. In her lab, Alice has a a qubit S in pure state |ψ〉 and a qubit A that is
entangled with a qubit on Bob’s side in a Bell state, 1√

2
(|0A0B〉+ |1A1B〉).

|ψ〉 is an arbitrary qubit pure state, so it may be written as |ψ〉 = α|0〉 + β|1〉, with |α|2 + |β|2 = 1. The
global system, HS ⊗HA ⊗HB, is initially in state

|φ0〉 = (α|0〉S + β|1〉S)⊗ 1√
2

(|0A0B〉+ |1A1B〉) . (1)

Now Alice measures her two qubits in the Bell basis,

{
|sak〉

}
k

=


1√
2

(|0S0A〉+ |1S1A〉) , 1√
2

(|0S0A〉 − |1S1A〉) ,

1√
2

(|0S1A〉+ |1S0A〉) , 1√
2

(|0S1A〉 − |1S0A〉)

 , (2)

obtaining outcomes 1, 2, 3 and 4 for each of the states |sak〉 respectively. We will see that after her
measurement Bob’s qubit “collapses” to a sate very close to |ψ〉.
The first thing you should notice is that the projectors of that measurement include the identity on B,
because she is not measuring anything on that system. For instance, the projector for the first state of the
Bell basis, |sa1〉, is

P1 =
1

2

[
(|0S0A〉+ |1S1A〉) (〈0S0A|+ 〈1S1A|)

]
⊗ 1B. (3)

Let us see what happens when Alice measures that state on her qubits, i.e. obtains outcome 1. From the
foundations of quantum mechanics (page 30 of the script) you know that the final state of the global system
is

|φ1〉 =
P1|φ0〉√

Pr1
, (4)

where Pr1 is the probability that the outcome of her measurement is 1. You can check that for this basis
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all outcomes are equally likely, Prk = 1
4 ,∀k. We obtain

|φ1〉 =
1√
2

[
(|0S0A〉+ |1S1A〉) (〈0S0A|+ 〈1S1A|)⊗ 1B

][
(α|0〉S + β|1〉S)⊗ (|0A0B〉+ |1A1B〉)

]

=
1√
2

(|0S0A〉+ |1S1A〉)⊗


〈0S0A| ⊗ 1B

[ (
α|0〉S + β|1〉S

)
⊗
(
|0A0B〉+ |1A1B〉

) ]
+〈1S1A| ⊗ 1B

[ (
α|0〉S + β|1〉S

)
⊗
(
|0A0B〉+ |1A1B〉

) ]


=
1√
2

(|0S0A〉+ |1S1A〉)⊗
[
α|0〉B + β|1〉B

]
= |as1〉 ⊗ |ψ〉B.

I hope the rainbow above has not blinded you and that you managed to follow what happened there and
how we ended up with a fully correlated Bell state on S ⊗ A that is decoupled from B, where we find |ψ〉.
The key, of course, lies in the strong correlations between A and B. If you repeat this procedure to all
possible outcomes(part a) of the exercise), you should obtain the table

Alice’s outcome Alice’s state Bob’s state Bob performs

1 |as1〉 = 1√
2

(|0S0A〉+ |1S1A〉) |b1〉 = α|0〉+ β|1〉 O1

2 |as2〉 = 1√
2

(|0S0A〉 − |1S1A〉) |b2〉 = α|0〉 − β|1〉 O2 =

(
1 0
0 −1

)
3 |as3〉 = 1√

2
(|0S1A〉+ |1S0A〉) |b3〉 = β|0〉+ α|1〉 O3

4 |as4〉 = 1√
2

(|0S1A〉 − |1S0A〉) |b4〉 = β|0〉 − α|1〉 O4

Not always it happens that the state of Bob’s system is exactly |ψ〉. For instance, when Alice obtains
outcome 2, his qubit goes to state α|0〉 − β|1〉, and he would have to perform a one-qubit operation on his
system to recover |ψ〉. In this case, he would have to flip the sign of |1〉, applying the unitary represented
by O2 in the computational basis. For part b) you have to find all the other operations {Ok}k.
Of course, Bob only knows what operations to apply because he knows the state |bk〉 of his qubits, and he
knows that because Alice told him the outcome k of her measurement. What if Alice had not told him
the outcome? In that case, Bob would have to try to guess what the state of his qubit. He knows that
all measurement outcomes were equally likely, and that for each of them he would have a different state.
Fortunately, in quantum mechanics we have a way of describing probabilistic mixtures of pure states — with
density matrices. The state Bob has after Alice’s measurement is, from his point of view, ρ =

∑
k

1
4 |b

k〉〈bk|.
In part c) you have to show that when Bob does not know the outcome of the measurement, he cannot have
any idea of what his state is or how to recover |ψ〉, i.e. ρ = 1B. This tells us that the quantum teleportation
protocol can only work if Alice uses a (possibly classical) communication channel to share some information
with Bob (the outcome of her measurement).
Notice that when Alice and Bob teleport the state of one qubit, they lose their entanglement, and therefore
cannot repeat the protocol to teleport anything else. Impressive as it is, quantum teleportation comes with
a cost. So far we have only seen how to teleport a pure state. One may wonder what happens if the state
Alice tries to teleport is entangled with a reference system R that she does not control. Would the final
state on Bob’s side be entangled with R in the same way? The answer is, swimmingly, yes (Fig. 2).
In parts d) and e) of the exercise you are asked to prove that more formally. You can start by considering
that every mixed state can be expanded in its eigenbasis, ρS =

∑
i pi|i〉〈i|S , with |i〉 = αi|0〉+ βi|0〉. Check

that the protocol works for such a state. You can, for instance, show what happens when Alice measures
her two qubits in the Bell basis and obtains outcome 2. Remember that the final state of the whole system
is given by

1

Pr2

(
|as2〉〈as2| ⊗ 1B

)[
ρS ⊗

1√
2

(|0A0B〉+ |1A1B〉)
](
|as2〉〈as2| ⊗ 1B

)
. (5)
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Figure 2: Quantum teleportation preserves entanglement. If Alice teleports a mixed state ρS that is entan-
gled with a reference system R, ρS = TrR|φ〉〈φ|SR, not only the final state on Bob’s side will be ρ but it
will be entangled with R in the exact same way as before, ρB = TrR|φ〉〈φ|BR.

Verify that in order to recover ρ on his qubit, Bob only needs to apply the unitary O2 as before. Argue
that it also works for the remaining measurement outcomes. This implies, in particular, that the protocol is
linear: you did not have to use the convexity of density operators (

∑
i pi = 1) to prove this result. Now we

are ready to tackle correlations between ρS and an external system R. Try making a Schmidt decomposition
of the pure state |φ〉 of HS ⊗HR. You should get something like |φ〉SR =

∑
i pi|i〉S ⊗ |i〉R. If you call the

quantum teleportation protocol E , apply E ⊗ IR on that state and use the linearity of E you should obtain
the result we are looking for.

Exercise 11.2 One-time pad

This is a purely classical exercise about encryption whose conclusions are important for quantum cryptog-
raphy schemes. Imagine you were given a message and have to send it through a public, insecure channel.
Because your message is super secret (for instance who you think should win Eurovision), you want to
encrypt it as a ciphertext so that no one other than you, Alice, and your friend Bob can decipher it if they
happen to be spying on your channel.
There are two main kinds of encryption schemes you may use:

• Symmetric: you and Bob share a key that is used to encode and decode the message. Examples are
the one-time pad, that we will study here, and the (very insecure) shift cyphers.

• Asymmetric: you and Bob use different keys. Usually Bob shares a public key that you (or anyone
else) can use to encrypt the message, but keeps a private key for himself and uses that one to decipher
it. A well-known example is RSA, that relies on a computational hard problem to generate the keys
— it is easy to obtain the public key if you have the private one but very hard to get the private
key from the public key and thus decrypt the ciphertext. Most of the cryptography used currently in
everyday life (eg. online shopping) is based on asymmetric schemes.

Suppose that in this case you want to use a symmetric scheme. We assume that because those are the
schemes where quantum cryptography is more useful — to create, or rather expand, a shared key.
What requirements would you want your cryptographic protocol to fulfil? Well, ideally,

1. Someone who knows the encrypted message and the key, like Bob, can recover the original message
perfectly.

2. An adversary who intercepts the encrypted message but does not know the key cannot get any infor-
mation about the original message.

The first condition may be formalised using conditional entropies: you want the uncertainty about the
message of someone who already knows the ciphertextand the secret key to be zero: H(M |C,K) = 0. As for
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the second one, what we want is the encrypted and original messages to be completely decorrelated, i.e. to
share no information: I(M : C) = 0. If you work with these two propositions and use the fact that mutual
information and entropy are always positive you should obtain the condition H(K) ≥ H(M).
What does this result mean? We know that entropy may be interpreted as randomness, so that condition
would read “the randomness of the key has to be at least as large as the randomness of the message”. But
why? And how should we use the key to encrypt our message?
Maybe we should to illustrate this problem with a concreteexample to get some intuition to what is hap-
pening. Suppose that you want to encrypt two different messages,

M1 = 001111001100110000, M2 = 123789456234.

At first sight we detect a certain redundancy in both messages: in the first, all the bits are repeated; in
the second there are blocks of three consecutive numbers. The first step of our encryption protocol could
be simply to compress the original message so that as long as one knows how it was compressed recovering
the original is trivial. This is not encrypting the message yet — we are just using the patterns of a message
to decrease its size. In other words, we are eliminating all the redundancy possible and leaving only what
seems random in the messages. In this case, we may use the lossless compression algorithms

A1 : {b, b} 7→ {b} ; M ′
1 = 011010100,

A2 : {k, k + 1, k + 2} 7→ {k} ; M ′
2 = 1742.

Now the size of our messages is reduced to the essential and we can think of ways to encrypt it. Note a few
things:

1. To be lossless, a compression algorithm has to be injective, so that we can always recover the original
message from the compressed one.

2. The algorithms A1 and A1 can be made public as long as we encrypt M ′
1 as a ciphertextC1 such

that I(M ′
1 : C1) = 0, and the same for M ′

2 — if one cannot guess the compressed message from the
cyphertext, they could never guess the original message, even if they know the compression algorithms.

3. We can compress a message M until it has H(M) bits. This comes from the definition of entropy as
randomness — what is left when we eliminated all the patterns. Of course, different agents may see
different patterns in the messages. Consider for instance the message

M3 = 111122335588,

and suppose that two different agents want to compress it:

• Agent A sees only that every number is repeated twice and compresses the message to 112358.

• Agent B, who is over ten years old, notices that the message encodes a Fibonacci sequence where
every number is repeated twice, and can compress it, for instance, to 1−1−6 (where the first two
numbers stand for the initial terms of the sequence and the last number, 6, for the total number
of terms).

Clearly the same message, M3, was compressed to different sizes by the two agents. From the point of
view of agent B, the original message had less randomness than agent B thought. This example should
convince us that what we call the objective entropy of M , H(M), is in fact the subjective entropy of
the message given the knowledge of the agent that wants to compress it (for instance if they know the
Fibonacci sequence), H(M |A). Because there is usually only one agent, Alice, trying to compress the
message, and we assume that she is infinitely clever and capable of spotting every hint of a pattern,
we normally use only H(M) instead of H(M |A). However, you should keep in mind that this entropy
is subjective and agent-dependent.
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Now that Alice has a message M ′ of size H(M), she needs to find a way to encrypt it. For simplicity, we
assume that the compressed message is already written in bits. Consider M ′

1 = 011010100. One example of
a very simple encryption scheme would be to just add 1 (mod 2) to every bit,

M ′ = 011010100, K = 1 (repeated)

C = 100101011,

It is easy to understand that this scheme is very insecure - an adversary who intercepts the ciphertextC
only needs to test a one-bit key to obtain the message — they would know that they had used the right key
because the final message they obtained after reverse engineering the key and compression algorithm should
make same kind of sense, like translating to “come what may, do not vote for the UK!” or to a credit card
number. More formally, the mutual information between the cypher and the message is non-zero, which
means an adversary would not have to try very hard to recover the original message. If Alice had chosen
a two-bit long key to encrypt it, the adversary would have needed to test every one-bit and two-bit keys
before they could find a message that made sense — again, not very hard.
Now if Alice chooses a key as long as the compressed message at random and again adds every bit of it to
the message (in mod 2), something like

M ′ = 011010100

K = 101011010

C = 110001110,

an adversary that did not know the key used would have to test every string of the same size of the message
to find the right key. This is in practice the same as testing all possible messages of the size of M ′, H(M).
It means that the only information the adversary has about the message is its size, and cannot obtain the
right message by testing small keys.
In the exercise you prove formally, like Shannon did, what we have just shown in a intuitive way: that if
the key is chosen totally at random (i.e. its entropy is as large as its length, or, in bits, H(K) = log |K|), it
needs to be at least as large as the compressed message, i.e., H(K) ≥ H(M).
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