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Exercise 4.1 Bloch sphere

The Bloch sphere is a little instrument to help us visualising the effects of quantum operations in qubit
states. Here we will see how to represent states in the three-dimensional ball. You are given the lovely
formula

ρ =
1

2
(1 + ~r · ~σ) (1)

and in part a) you only have to apply it to get a feeling for the representation of states in the Bloch sphere:
you will see what we mean by “rotating” a basis, and how the purity of a state relates to its position inside
the ball. Just remember that the Pauli matrices and identity matrix are represented in basis {| ↑〉, | ↓〉}. For
instance the matricial representations of pure states | ↑〉〈↑ | and | ↓〉〈↓ | are

| ↑〉〈↑ | =
(

1 0
0 0

)
| ↓〉〈↓ | =

(
0 0
0 1

)
.

Part b) is also fairly direct. You have to check that all reasonable Bloch vectors corresponds to valid density
operators. Just apply Eq. 1 and prove those properties.
Then in part c) you have to prove the converse, ie. that all two-level density operators can be represented
as Eq. 1 proposes. For that I suggest that you expand a general density operator ρ in the basis B given.
Remember that you can always expand an operator A in an orthonormal basis {ei}i as

A =
∑
i

(A, ei)ei,

where the inner product (A,B) is defined as Tr(A∗B). Do not forget that B is not an orthonormal basis:
you have to normalise it first. You should obtain something like

ρ =
1

2

(ρ,1)1 +
∑

i=x,y,z

riσi

 .
Given that ρ is a density operator, what is the value of (ρ,1) ?
All you need for part d) is to know what Tr(ρ2) is like for pure states, and relate that to ~r.

Exercise 4.2 Partial trace

Check my notes “mixed states and partial trace” for a long step-by-step introduction to partial trace. For
formal definitions check pages 25-26 of the script.
Here we will prove that the partial trace of a density matrix is still a density matrix.
I suggest that you begin by expanding ρAB in some basis {|ai〉 ⊗ |bj〉}i,j in HA ⊗HB,

ρAB =
∑
i,j

∑
k,l

cklij (|ai〉 ⊗ |bj〉)(〈ak| ⊗ 〈bl|)

=
∑
i,k

∑
j,l

cklij |ai〉〈ak| ⊗ |bj〉〈bl|.

Verify that the reduced density matrix given by the partial trace over system HB is given by

ρA =
∑
i,k

∑
j

ckjij |ai〉〈ak|.
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Now you are ready to solve part a). Hermicity and normalisation should be direct. I can give you a hint
for positivity. Saying that the original density operator is semi-positive definite means that 〈ψ|ρAB|ψ〉 ≥ 0
for any pure state |ψ〉 ∈ HA ⊗ HB. Choose |ψj〉 = |φ〉 ⊗ |bj〉 with an arbitrary state |φ〉 ∈ HA and prove
that

∑
j〈ψj |ρAB|ψj〉 ≥ 0 implies that ρA is positive.

Part b) is direct application of the partial trace. Check that although the original state is pure you obtain
a fully mixed state when you trace out one of the systems.
In part c) we will treat the classical counterpart of the partial trace — marginal distributions. We have a
joint probability distribution PXY = {PXY (x, y)}x,y. You know that the marginal distribution is given by

PX =
{
PX(x) =

∑
y PXY (x, y)

}
x
, and proving positivity and normalisation should not be a problem for

you. Again, applying that to the given probability distribution could not be easier.
Now you have to represent the joint probability distribution as a quantum state. Given a distribution PX
we can always represent it as a quantum state in a Hilbert space with the same dimension as the alphabet
of the probability distribution:

ρPX
=
∑
x

PX(x)|x〉〈x|

for some basis {x}x. In the case of a joint distribution this becomes a state in a composed space HX ⊗HY ,

ρPXY =
∑
x,y

PXY (x)|x〉〈x| ⊗ |y〉〈y|.

Apply that to the probability distribution given in part c.2) and then calculate the partial trace of that
state. Check that although the reduced states are the same in both cases, the original bipartite state is very
different.

Exercise 4.3 Purification

Purification is explained in detail in the script (pages 32–33). In a nutshell for every mixed state ρA ∈ HA it
is possible to find a pure state |ψ〉 in a larger system HA⊗HB such that when we trace out the purification
system HB we recover the original state: ρA = TrB|ψ〉〈ψ|.
In part a) we are given a formula for purification and have to check that it actually works. First step: any
density operator may be expanded in its eigenbasis (spectral decomposition, pages 26–27 of the script) as

ρA =
∑
x

λx|ax〉〈ax|.

We expand the operator like that and then build a pure state in HA ⊗HB as

|ψ〉 =
∑
x

√
λx|ax〉A ⊗ |bx〉B,

where {bx}x forms an orthonormal basis of HB. Note that this implies that the dimension of the purification
space HB is the same as the dimension of the original space HA. Here you only have to check that |ψ〉 is
indeed a purification of ρA, ie. that ρA = TrB|ψ〉〈ψ|.
In part b) you have to prove that any two purifications of the form given above are equivalent up to a unitary
operation. for instance suppose you had a purification |ψ′〉 =

∑
x

√
λx|ax〉A⊗|b′x〉B that was performed using

another basis {b′x}x of HB. We have to show that |ψ〉 = U |ψ′〉 for some unitary operator U . If look careful
the only real difference between |ψ〉 and |ψ′〉 is the basis in which they are expressed in system HB, so a
change of basis operation should move us from one to the other. Check that U = 1A⊗

∑
x |bx〉〈b′x| is unitary

(UU∗ = U∗U = 1B) and actually does the job here.
Let us now approach part c) of the exercise. Suppose you want to create a certain mixed state ρ′. It is
relatively easy to create pure states because you know exactly what the state should be like — things like
a spin up or a bunch of photons with a certain polarisation — but mixed states are more tricky as they are
states about which we do not have full information, i.e. we are not sure about their exact states. One way
to do it is to diagonalise ρ′ =

∑
z αz|z〉〈z| and then get a machine that produces the pure state |z〉 with

probability αz. Of course you need to be sure that the machine is genuinely random and that you have no
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access to the information “which state has been created”. The first condition in particular is hard to achieve
classically, and one may think that there has to be a neater way to do it, maybe using quantum mechanics.
Well, there is, and it involves purification.
The idea is that you prepare a special pure state in a bipartite system (easy) and then perform a measurement
in a part of that system (also easy). What is left is a mixed state in the other subsystem, and you know
which mixed state it is according to the result of your measurement. What we will now see is what pure
state and measurements we should prepare for a desired set of mixed states {ρxA}x.
The first step is to write down a mixed state that is a convex combination of {ρxA}x, ρA =

∑
x λxρ

x
A (ie. the

state ρA is decomposed in the possibly mixed states {ρxA}x). We will purify ρA, but instead of first mixing
the components {ρxA}x and then purify the resulting state ρA, we will do it the other way around, purifying
the components, then mixing the resulting pure states and finally purifying the state we get from there. We
will see that the two processes are equivalent.
We can decompose every ρxA ∈ HA in its eigenbasis

{
|axy〉

}
y

as ρxA =
∑

y α
x
y |axy〉〈axy | and then purify it as

usual using the extra Hilbert space HC ,

|φx〉 =
∑
y

√
αxy |axy〉A ⊗ |cxy〉C .

We have now a set of pure states {|φx〉}x, and we will combine them to make a mixed state using the
coefficients {λx}x used to make ρA. The state we will obtain belongs to the composed space HA ⊗HC ,

ρAC =
∑
x

λx|φx〉〈φx|.

Now we purify this state using a purifying system HD,

|φ〉 =
∑
x

√
λx|φx〉AC ⊗ |dx〉D.

This state lives in HA⊗HC⊗HD and you will see that |φ〉 is a purification of ρA in system HB = HC⊗HD.
For this you have to check that TrB(|φ〉〈φ|) = ρA.
So now we have a pure state that is a purification of ρA. The next step is to choose a measurement in the
purifying system HB such that after measuring and tracing HB out we obtain a mixed state from the set
{ρxA}x, as we wanted. Remember what we saw last week about how measurements can be represented by a
set of operators out of which one is chosen at random? You may want to test the following measurements:

MB = {Mx
B = 1C ⊗ |dx〉〈dx|D}x .

In particular, check that ρxA =
TrB[|Φ〉〈Φ|(1A⊗Mx

B)]
λx

and λx = Tr [|Φ〉〈Φ|(1A ⊗Mx
B)] .

Summary of the mixed state recipe: you have a set of mixed states {ρxA}x you would like to create (or
alternatively you have one mixed state and you would like to obtain a certain decomposition). Mix the
states in a convex combination ρA with coefficients {λx}x. Go back to your initial set of states. Purify
them. Now mix the purified states just like you did with the mixed ones before. Purify that global mixed
state. Now apply a measurement in the purifying systems that measures the element of basis of this last
purifying system and acts as the identity in the first one. Trace out both the purifying systems (the state had
collapsed there anyway). Now with probability λx you measured |dx〉 in the last purifying system and are
left with ρxA. You always know which state you have because you know the outcome of your measurement.
Simple, right?
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