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Exercise 3.1 Smooth min-entropy in the i.i.d. limit

The smooth min-entropy of a random variable X over X is defined as

Hε
min(X)P = max

QX∈Bε(PX)
Hmin(X)Q, (1)

where the maximum is taken over all probability distributions QX that are ε-close to PX . Furthermore, we define an
i.i.d. random variable ~X = {X1, X2, . . . , Xn} on X×n with P ~X(~x) =

∏n
i=1 PX(xi).

Use the weak law of large numbers to show that the smooth min-entropy converges to the Shannon entropy H(X) in the
i.i.d. limit:

lim
ε→0

lim
n→∞

1

n
Hε

min( ~X)Pn = H(X)P . (2)

Exercise 3.2 Quantum-Telepathy Game: Introduction

a) Let’s start by looking at a simple game where two players, Alice (P1) and Bob (P2), agree on a strategy. Then, each
receive one qubit of the quantum state:

|φ〉 =
1√
2

(|+−〉+ | −+〉) , (3)

in the Hilbert space H1⊗H2, where |+〉 = (|0〉+ |1〉)/
√

2 and |−〉 = (|0〉−|1〉)/
√

2. The players cannot communicate
once they get their qubits, and they must output two bits x1 and x2. They win if x1 6= x2.

i) Find projective measurements that the players can perform so that they always get opposite outcomes x1
and x2, and therefore can use their outcomes to win the game.

ii) Explain how this game can be won without using |φ〉.

b) Now we consider a more complicated game with 3 players. Initially, each player controls one qubit of the quantum
state

|Ψ3
−〉 =

1√
2

(|000〉 − |111〉). (4)

Two of the three players, P1 and P2, will be chosen randomly and separated from the third player (and also each
other) so that they cannot communicate with one another. For simplicity of notation, assume that P1 and P2 are
Alice and Bob. The third player, Charlie (P3), will then perform a measurement on his qubit and will have one of
two outcomes. Depending on the outcome, Charlie will choose a bit b to be either 0 or 1. He then forwards b to
Alice and Bob. Finally Alice and Bob each output a bit: x1 and x2. They win if x1 6= x2.

In order to use the quantum state they share to their advantage, Alice and Bob want to perform measurements
(which dependend on the bit b they received) such that they get different outcomes.

i) First, rewrite the state |φ〉 in the computational basis ({|0〉, |1〉} for each qubit).

ii) What projective measurement should Charlie do so that after one of the outcomes (where he chooses b = 0),
the other two players are left with the state |φ〉 from part (a) (Eqn. 3)? Note that if we project onto a state
|τ〉 on system 3, then the post-measurement state, given an initial pure state |Φ〉, is given by:(

1
⊗2 ⊗ 〈τ |3

)
|Φ〉

|(1⊗2 ⊗ 〈τ |3) |Φ〉|
,

where 1 is the identity operator on a qubit space.

iii) What is the state |ψ〉 that Alice and Bob share after Charlie gets the other outcome (b = 1)? Write |ψ〉 in
the basis {| �〉 = (|0〉+ i|1〉)/

√
2, | 	〉 = (|0〉 − i|1〉)/

√
2}.

iv) What projective measurements should Alice and Bob do in order to get different results from the state |ψ〉?
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Exercise 3.3 Quantum-Telepathy Game: The Full Story

Now we consider the full quantum-telepathy game. The game starts with n collaborating players P1, P2, . . . , Pn who each
have a qubit of a large state |Ψ〉 in the Hilbert space H1 ⊗ H2 ⊗ · · · ⊗ Hn. In other words, player Pi has control of the
qubit in the space Hi.
Then two of them will be randomly selected and separated from the other players. These two players, let’s label them P1

and P2, are separated without the knowledge of which other player was selected, and they cannot communicate with any
of the players, including each other.
The remaining n − 2 players are allowed to communicate with each other, and to perform measurements on the qubits
they each control. They can then send a bit b (either 0 or 1) to the two separated players (the same bit for both). P1 and
P2 then output bits x1 and x2 respectively. They win the game if x1 6= x2.
Classically, this game is won with a probability of at most 75% for large n. Can we use quantum mechanics to improve
this result?
We know from the previous exercise that the game will always be won if the last three players share the state |Ψ3

−〉. In
particular, you should have found measurements for the third player that always give one of two post-measurement states
for the other two players:

Mb3=0
3 (|Ψ3

−〉)→ |Ψ2
−〉, Mb3=1

3 (|Ψ3
−〉)→ |Ψ2

+〉,

where Ψn
± = (|0〉⊗n±|1〉⊗n)/

√
2 andMbk

k denotes the (normalized) projector for a measurement on qubit k with outcome
bk. Now that we have n − 2 players instead of just P3, it would be sufficient if we have a measurement, M, for each of
the n− 2 players such that

Mb3
3 ◦M

b4
4 . . . ◦Mbn

n (|Ψn
±〉)→ |Ψ2

+〉 or |Ψ2
−〉, depending on {b3, . . . bn} .

a) Use the same measurement you found in 3.2 (b) (ii) to find the possible results of Mn(|Ψn
±〉). Specifically, find

M0
n(|Ψn

+〉), M1
n(|Ψn

+〉), M0
n(|Ψn

−〉), and M1
n(|Ψn

−〉).

b) Given the above results, work out a detailed quantum strategy that always wins this game.
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