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Definitions: von Neumann entropy

In this series we will derive some useful properties of the von Neumann entropy, the quantum version of Shannon entropy.
We will also look at the strangeness of quantum mutual information. Before we start, here are a few definitions.
The von Neumann entropy of a density operator ρ ∈ S(HA) is defined as

H(A)ρ = −Tr
(
ρ log ρ

)
= −

∑
i

λi log λi, (1)

where {λi}i are the eigenvalues of ρ.
Given a composite system HA ⊗HB ⊗HC we write H(AB)ρ to denote the entropy of the reduced state of a subsystem,
ρAB = TrC(ρABC). When the state ρ is obvious from the context we can drop the index.
The conditional von Neumann entropy may be defined as

H(A|B)ρ = H(AB)ρ −H(B)ρ. (2)

In the Alice-and-Bob picture this quantifies the uncertainty that Bob, who holds part of a quantum state, ρB , still has
about Alice’s state.
The strong sub-additivity property of the von Neumann entropy shows up a lot. It applies to a tripartite composite system
HA ⊗HB ⊗HC ,

H(A|BC)ρ ≤ H(A|B)ρ. (3)

Exercise 9.1 Some properties of von Neumann entropy

a) Prove the following general properties of the von Neumann entropy:

1. If ρAB is pure, then H(A)ρ = H(B)ρ.

2. If two systems are independent, ρAB = ρA ⊗ ρB , then H(AB)ρ = H(A)ρA +H(B)ρB .

b) Consider a bipartite state that is classical on subsystem Z: ρZA =
∑
z pz|z〉〈z|Z ⊗ ρzA for some basis {|z〉Z}z of HZ .

Show that:

1. The conditional entropy of the quantum part, A, given the classical information Z is

H(A|Z)ρ =
∑
z

pzH(A|Z = z), (4)

where H(A|Z = z) = H(A)ρzA .

2. The entropy of A is concave,

H(A)ρ ≥
∑
z

pzH(A|Z = z). (5)

3. The entropy of a classical probability distribution {pz}z cannot be negative, even if one has access to extra
quantum information, A,

H(Z|A)ρ ≥ 0. (6)

Remark: Eq (6) holds in general only for classical Z. Bell states are immediate counterexamples in the fully
quantum case.

Exercise 9.2 Upper bound on von Neumann entropy

Given a state ρ ∈ S(HA), show that
H(A)ρ ≤ log |HA|. (7)

Hints: Consider the state ρ̄ =
∫
UρU†dU , where the integral is over all unitaries U ∈ U(H) and dU is the Haar measure.

Find ρ̄ and use concavity (5) to show (7).
The Haar measure satisfies d(UV ) = d(V U) = dU , where V ∈ U(H) is any unitary.
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Exercise 9.3 Quantum mutual information

One way of quantifying correlations between two systems A and B is through their mutual information, defined as

I(A : B)ρ = H(A)ρ +H(B)ρ −H(AB)ρ (8)

= H(A)ρ −H(A|B)ρ. (9)

We can also define a conditional version of the mutual information between A and B as

I(A : B|C)ρ = H(A|C)ρ +H(B|C)ρ −H(AB|C)ρ (10)

= H(A|C)ρ −H(A|BC)ρ. (11)

a) Consider two qubits A and B in joint state ρAB .

1. Prove that the mutual information of the Bell state |Ψ+〉 = 1√
2

(|00〉+ |11〉) is maximal. This is why we say

Bell states are maximally entangled.

2. Show that I(A : B) ≤ 1 for classically correlated states, ρAB = p|0〉〈0|A ⊗ σ0
B + (1 − p)|1〉〈1|A ⊗ σ1

B (where
0 ≤ p ≤ 1).

b) Consider the so-called cat state of four qubits, A⊗B ⊗ C ⊗D, that is defined as

|,〉 =
1√
2

(|0000〉+ |1111〉) . (12)

Check how the mutual information between A and B changes with the knowledge of the remaining qubits,

1. I(A : B) = 1.

2. I(A : B|C) = 0.

3. I(A : B|CD) = 1.
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