Particle Physics Phenomenology II

FS 11, Series 5
Due date: 28.03.2011, 1 pm

Exercise $1 e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$with the Z-boson revisited
In the electroweak standard model, the following two diagrams contribute to $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$ at tree level:

Use your results of Series 1 to compute the forward-backward asymmetry for this process for $m_{\mu}^{2} \ll s$. Take into account the fact that the Z-boson is unstable, therefore $p^{2}-M_{Z}^{2} \rightarrow$ $p^{2}-M_{Z}^{2}+i M_{Z} \Gamma_{Z}$ in the propagator of the Z-boson.
Proceed as follows:
i) Write the differential cross section $\frac{d \sigma}{d \Omega}$ as

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{\alpha^{2}}{4 s}\left[A_{0}\left(1+\cos ^{2} \Theta\right)+A_{1} \cos \theta\right]
$$

ii) Show that the forward-backward asymmetry is given by

$$
A=\frac{F-B}{F+B}=\frac{3 A_{1}}{8 A_{0}}
$$

where

$$
F=\int_{\cos \theta=0}^{\cos \theta=1} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega} \mathrm{~d} \Omega, \quad B=\int_{\cos \theta=-1}^{\cos \theta=0} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega} \mathrm{~d} \Omega
$$

