Particle Physics Phenomenology II

FS 11, Series 4
Due date: $21.03 .2011,1 \mathrm{pm}$

Exercise 1 Electroweak charges and currents
Define the left handed $\operatorname{SU}(2)$ isospin doublet $\chi_{L}=\binom{\nu_{L}}{e_{L}}$.
The weak current may then be expressed as $j_{i}^{\mu}=\bar{\chi}_{L} \gamma^{\mu} \tau_{i} \chi_{L}$ where the τ_{i} shall denote Pauli matrices.
i) Show that the current is conserved, i.e. $\partial_{\mu} j_{i}^{\mu}=0$.

Hint: You may just assume a globally invariant free massless $\mathrm{SU}(2)$ doublet χ_{L} which satisfies Diracs equation $\not \partial \chi_{L}=0$.
ii) Show that the conserved charge related to this current is given by

$$
Q_{i}=\int d^{3} x \chi_{L}^{\dagger} \tau_{i} \chi .
$$

iii) Further show that these charges satisfy

$$
\left[Q_{i}, Q_{j}\right]=i \epsilon_{i j k} Q_{k}
$$

and that they are therefore generators of $\mathrm{SU}(2)$.
Hint: Use the equal time anti-commutation relations of χ_{L},

$$
\left\{\chi_{L}^{\dagger}(\mathbf{x}, t)_{l}, \chi_{L}(\mathbf{y}, t)_{k}\right\}=\delta_{l k} \delta^{3}(\mathbf{x}-\mathbf{y}), \quad\left\{\chi_{L}(\mathbf{x}, t)_{l}, \chi_{L}(\mathbf{y}, t)_{k}\right\}=0=\left\{\chi_{L}^{\dagger}(\mathbf{x}, t)_{l}, \chi_{L}^{\dagger}(\mathbf{y}, t)_{k}\right\} .
$$

iv) Compute the conserved charges corresponding to

$$
j_{ \pm}^{\mu}=\bar{\chi}_{L} \gamma^{\mu} \tau_{ \pm} \chi_{L}, \quad j_{3}^{\mu}=\bar{\chi}_{L} \gamma^{\mu} \tau_{3} \chi_{L} .
$$

where $\tau^{ \pm}=\tau_{1} \pm i \tau_{2}$. Do their charges also generate $\mathrm{SU}(2)$?

Exercise 2 Higgs couplings in the standard model
The Higgs part of the Standard model Lagrange density may be written as

$$
\mathcal{L}=\left(D_{\mu} \phi\right)^{+}\left(D^{\mu} \phi\right)-V(\phi)
$$

where

$$
D_{\mu}=\partial_{\mu}-i g T^{a} W_{\mu}^{a}-i g^{\prime} \frac{Y}{2} B_{\mu}, \quad V(\phi)=\mu^{2} \phi^{2}-\frac{\lambda}{4} \phi^{4}
$$

The electroweak symmetry is broken by expanding the Higgs field around its vacuum expectation value v, i.e. let

$$
\phi=\frac{1}{\sqrt{2}}\binom{0}{v+h(x)} .
$$

In what follows You will explicitely work out the gauge boson mass terms and the $h W W, h h W W, h Z Z$ and $h h Z Z$ interaction terms.
i) You may start by substituting $Y=1, T^{a}=\frac{1}{2} \tau^{a}$ and the explicit pauli matrices into the kinetic term.
ii) Diagonalise the quadratic terms by introducing the physical fields

$$
\begin{align*}
W_{\mu}^{+} & =\frac{1}{\sqrt{2}}\left(W_{\mu}^{1}-i W_{\mu}^{2}\right)=\left(W_{\mu}^{-}\right)^{\dagger} \tag{1}\\
Z_{\mu} & =\frac{g W_{\mu}^{3}-g^{\prime} B_{\mu}}{\sqrt{g^{2}+g^{\prime 2}}} \tag{2}\\
A_{\mu} & =\frac{g^{\prime} W_{\mu}^{3}+g B_{\mu}}{\sqrt{g^{2}+{g^{\prime 2}}^{2}}} \tag{3}
\end{align*}
$$

iii) Identify the coefficients of mass and interaction terms in the following expansion

$$
\begin{aligned}
\left(D_{\mu} \phi\right)^{\dagger}\left(D_{\mu} \phi\right)= & \left(\partial_{\mu} h\right)^{2}+M_{W}^{2} W_{\mu}^{+} W^{-\mu}+\frac{1}{2} M_{Z}^{2} Z_{\mu} Z^{\mu}-i V_{h W W} h W_{\mu}^{+} W^{-\mu} \\
& -i V_{h h W W h h W_{\mu}^{+} W^{-\mu}-i V_{h Z Z} h Z_{\mu} Z^{\mu}-i V_{h h Z Z} h h Z_{\mu} Z^{\mu}}
\end{aligned}
$$

and "derive" the corresponding Feynman rules.

