
Chapter 9

Proton structure in QCD

Literature:

• Halzen/Martin [1], Chap. 8-10.

This chapter reviews the study of the proton structure, which lasted form after World
War II to the closure of HERA (DESY) in 2007. The understanding gained from those
results is of essential importance to predict cross-sections for the Tevatron (Fermilab) and
the LHC (CERN), since both of them use hadrons as colliding particles.

First, the methods used to study the proton structure are presented and the relevant
kinematic quantities are defined, starting from the similar case of e−µ−-scattering. We
then generalize to the case of a composite hadron. After that, the Bjorken scaling is
introduced. Finally, the steps leading to the discovery of the uncharged parton – the
gluon – are described.

One must remember that the link between the particle zoo and the results concerning the
proton structure was not at all obvious, as the quark model had not yet imposed itself as
a leading theory.

9.1 Probing a charge distribution & form factors

To probe a charge distribution in a target one can scatter electrons on it and measure their
angular distribution (Fig. 9.1). The measurement of the cross-section can be compared
with the expectation for a point charge distribution,

dσ

dΩ
=

(
dσ

dΩ

)

point

|F (q)|2, (9.1)

where F (q) is called the form factor, and q := ki−kf is the momentum transfer from the
probing particle to the target. The momentum transfer is also related to the resolution
power of the probe.

1



2 CHAPTER 9. PROTON STRUCTURE IN QCD
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Figure 9.1: Probing a charge distribution

When probing a point (≡ spinless & structureless) target, F (q) ≡ 1 and one gets the
Mott cross section,

(
dσ

dΩ

)

point

=
(Zα)2E2

4k4 sin4(θ/2)

(

1− k2

E2
sin2(θ/2)

)

, (9.2)

where Z is the electric charge measured in units of the elementary charge, E and k =
|ki| = |kf | are respectively the energy and the momentum of the probing particle, and θ
is the scattering angle. One typically measures θ and E of the scattered electron.

Comparing the angular dependence of the differential cross-section of eletrons scattering
off protons with the Mott cross sections, measurements show that the two distributions
do not agree at large scattering angles as shown in Fig. 9.2.

7030 110 150
Scattering Angle   (deg)

Experimental

Anomalous
Moment

Electron Scattering
from Hydrogen
188 MeV (LAB)

Mott

C
ro

s
s
 S

e
c
ti

o
n

  
(c

m
  

/s
te

ra
d

)
2

10-31

10-32

10-30

10 29

 

Figure 9.2: Mott cross section (dashed line) and compared to the experimental data form
electron-hydrogen scattering. The measurement disagrees with the point-linke cross sec-
tion at large scattering angles.
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9.2 Structure functions

Starting from the example of scattering of two different elementary spin-1
2
particles, an

ansatz is made for the general case.

9.2.1 e−µ−-scattering in the laboratory frame

In the case of the e−µ−-scattering in the laboratory frame at high energy (s � M = mµ),
the matrix element is given by,

|Mfi|2 =
e4

q4
Lµν

e−Lµ−

µν

=
8e4

q4
2M2E ′E

(

cos2(θ/2)− q2

2M2
sin2(θ/2)

)

,

where E ′ is the energy of the scattered electron, and the transferred momentum,

q2 ≈ −2k · k′ ≈ −4EE ′ sin2(θ/2),

yielding – upon inclusion of the flux factor and phase space – the differential cross section
for e−µ− in the laboratory frame,

dσ

dΩ
=

α2

4E2 sin4(θ/2)

E

E ′

(

cos2(θ/2)− q2

2M2
sin2(θ/2)

)

. (9.3)

9.2.2 e−p-scattering & the hadronic tensor

When dealing with hadrons, the possibility of inelastic scattering, i.e. scattering where
the final state contains excited states or other particles than the probe and the scattering
particle, must be taken into account, shown in the Feynman diagram,

 

p

ki kf

q

W

where W is the invariant mass of the particles in the final state (Sect. 4.4.4, p. 51). The
scattering cross-section as a function of W is shown in Fig. 9.3. One notes the elastic peak
at W = mp followed by a peak at 1232MeV corresponding to the ∆+ resonance and
produced by the reaction,

e−p → e−∆+ → e−pπ0
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Figure 9.3: Differential cross section as a function of the invariant mass W .

To calculate the e−p-scattering, one makes the substitution Lµν
µ− → W µν

p , where,

W µν
p = −W1g

µν +
W2

M2
pµpν +

W4

M2
qµqν +

W5

M2
(pµqν + qµpν), (9.4)

is the most general rank-2 tensor with functions W1, ...,W5 constructed from Lorentz
scalars 1 depending on the internal structure of the proton, constructible from the 4-
momentum of the proton (p) and the momentum transfer (q).

Imposing current conservation ∂µj
µ
p = 0, one can rewrite W4 and W5 in terms of W1 and

W2 :

W5 = −
p · q
q2

W2

W4 =

(
p · q
q2

)2

W2 +
M2

q2
W1,

Replacing W4 and W5 in Eq. (9.4) :

W µν
p = W1

(

−gµν +
qµqν

q2

)

+
W2

M2

(

pµ − p · q
q2

qµ

)(

pν − p · q
q2

qν

)

. (9.5)

W1 and W2 are the so-called the structure functions of the proton. They depend on
two independent variables,

Q2 := −q2 : the 4-momentum transfer squared,

ν =
p · q
M

: the energy transferred to the nucleon by the scattering electron,

1The “missing” W3-term is related to the axial part of the current, and is relevant when considering
the weak interaction. It is discarded in what follows.
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or their dimensionless counterparts,

x = − q2

2p · q =
Q2

2Mν
: the Bjorken scaling x-variable, 0 ≤ x ≤ 1,

y =
p · q
p · ki

, 0 ≤ y ≤ 1.

With the variables defined above, we have the following expression for the invariant mass :

W 2 = (p+ q)2 = M2 + 2Mν −Q2. (9.6)

The elastic scattering case W 2 = M2 corresponds to the value x = 1. Fig. 9.4 shows the

Figure 9.4: Allowed kinematical region of the Q2-ν-plane.

kinematic region in the Q2-ν-plane.

Using the hadron tensor, Eq. (9.5), the scattering matrix element is,

Le−

µνW
µν
p = 4EE ′

(
W2(Q

2, ν) cos2(θ/2) +W1(Q
2, ν) sin2(θ/2)

)

Including the flux and phase-space factors (Sect. 2.2.4, p. 13 & 3.2.3, p. 23) one finds the
differential cross-section in the laboratory frame,

dσ

dE ′dΩ
=

α2

4E2 sin4(θ/2)

(
W2(Q

2, ν) cos2(θ/2) +W1(Q
2, ν) sin2(θ/2)

)

Integrating over the energy of the outgoing election E ′, one gets,

dσ

dΩ
=

α2

4E2 sin4(θ/2)

E ′

E

(
W2(Q

2, ν) cos2(θ/2) +W1(Q
2, ν) sin2(θ/2)

)
.
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9.3 Parton model

The key factor for investigating the proton substructure is the wavelength of the probing
photon, which is related to the transferred momentum by,

λ ∼ 1
√

Q2
,

Therefore, large momentum transfer is equivalent to high resolution. As shown in Fig. 9.5,
for λ ≈ 1 fm, one can “see” the proton as a single particle, whereas for, λ � 1 fm, the

Figure 9.5: Relationship between resolution and transferred momentum.

probed particles are the constituents of the proton.

9.3.1 Bjorken scaling

J. Bjorken proposed in 1968 that, in the limit of infinite Q2, the structure functions
should only depend on the scaling variable x, and not on Q2 and ν independently. This
corresponds to postulating that at large Q2 the inelastic e−p-scattering is a sum of elastic
scatterings of the electron on free partons within the proton, as illustrated below.

 

p

γ∗

!

p

γ∗

Q2→∞
=⇒

In this limit, one defines then the functions,

F1(x) := lim
Q2→∞

MW1(Q
2, ν), (9.7)

F2(x) := lim
Q2→∞

νW2(Q
2, ν). (9.8)
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9.3.2 SLAC-MIT experiment

To test the hypothesis of Bjorken, a joint experiment of the SLAC and MIT groups was
performed at the SLAC laboratory. Sketches and photographs of the experiment are shown
in Fig. 9.6.

(a) (b)

TARGET 
POSITION

8 Gev SPECTROMETER

20  Gev SPECTROMETER

      1.6 Gev

SPECTROMETER

MONITORS

BEAM

 

(c)

Figure 9.6: SLAC-MIT experiment. (a), (b) Sketches showing the 1.5 GeV, 8 GeV and 20
GeV spectrometers. (c) Photograph of the experiment.

The setup measured the scattering cross-section for fixed energies of the scattered electron
and various angles. Fixing x (or ω = 1

x
) one gets different values of Q2 by varying the

angle. The experimental result is shown in Fig. 9.7. This experiment confirmed the scaling
hypothesis of Bjorken and gave a decisive piece of evidence in favour of the parton model
introduced by Feynman in 1969. This model describes the proton as composed of partons

which are the object one “sees” during an e−p-scattering. One may describe the scattering
process as shown in the following diagrams,
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Figure 9.7: Experimental evidence for Bjorken scaling as measured at the SLAC-MIT
experiment (ω = 1/x).

 

p

γ∗

!

p

γ∗

i, xp
=

∑

i

∫
dxe2

i

[ ]

The sum runs over all possible partons, each carrying an electric charge ei (in units of
the elementary charge) and a fraction x of the total momentum of the proton. This gives
us a physical interpretation of the Bjorken scaling variable x. Since the fraction of proton
momentum carried by the i-th parton is not known a priori, one needs to integrate over all
possible values of x between zero (the parton carries no momentum) and one (the parton
carries all the proton momentum).

The probability fi(x) that the struck parton carries a fraction x of the proton momentum
is called parton distribution function (PDF). The total probability must be equal to
1, in order for the proton as a whole to carry all its momentum :

∑

i

1∫

0

dx xfi(x) = 1. (9.9)

In Feynman’s parton model the structure functions are sums of the parton densities
constituting the proton,

νW2(Q
2, ν)→ F2(x) =

∑

i

e2
i xfi(x) (9.10)

MW1(Q
2, ν)→ F1(x) =

1

2x
F2(x) (9.11)
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9.3.3 Callan-Gross relation

The result,

2xF1 = F2 , (9.12)

is known asCallan-Gross relation and is a consequence of quarks being spin-1
2
particles.

It can be derived by comparing the e−p and e−µ− differential cross sections and setting
the mass of the quark to be m = xM . Remembering the definitions of F1 and F2, Eqs.
(9.7) and (9.8), one has,

F1(x)

F2(x)
=

W1(Q
2, ν)

W2(Q2, ν)

M

ν
,

and since the scattering is elastic with a point particle (the parton),

2W1(Q
2, ν) =

Q2

2m2
δ

(

ν − Q2

2m

)

W2(Q
2, ν) = δ

(

ν − Q2

2m

)

⇒ W1(Q
2, ν)

W2(Q2, ν)
=

Q2

4m2
,

and one gets the desired result, by putting in the definition of x and m = xM ,

F1(x)

F2(x)
=

Q2

4m2

M

ν
=

Q2

2Mν

1

2x2
=

1

2x

Fig. 9.8 shows the Q2-independence of the Callan-Gross relation.

Figure 9.8: Experimental evidence for the Callan-Gross relation.
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9.3.4 Parton density functions of protons and neutrons

The proton is know to be composed of two up and one down quarks (Sect. 7.3, p. 131).
These quarks are known as valence quarks and are denoted qv. They are the ones de-
termining the properties of a hadron. It can however occur (in particular at high Q2,
corresponding to a high resolution) that a valence quark radiates a gluon which then
splits in a quark-antiquark pair which is then probed by the virtual photon. These quarks
are referred to as sea quarks and are denoted qs.

In the case of e−p-scattering and e−n-scattering, writing qN instead of fN
q (x) for conve-

nience and using Eq. (9.10), we get respectively,

1

x
F ep

2 =

(
2

3

)2

(up + ūp) +

(
1

3

)2

(dp + d̄p) +

(
1

3

)2

(sp + s̄p) (9.13)

1

x
F en

2 =

(
2

3

)2

(un + ūn) +

(
1

3

)2

(dn + d̄n) +

(
1

3

)2

(sn + s̄n), (9.14)

where we have discarded the contributions of partons heavier than the strange quark.

One makes the assumption that these functions are not independent (exchanging an up
quark for a down turns basically a proton into a neutron), and defines the total PDF of
a given quark as the sum of its valence and sea components,

u := uv + us = up = dn

d := dv + ds = dp = un.

Furthermore, we assume that the three lightest quark flavours (u,d,s) occur with equal
probability in the sea:

S := us = ūs = ds = d̄s = ss = s̄s.

Combining all definitions and assumptions one obtains,

1

x
F ep

2 =
1

9
(4uv + dv) +

4

3
S (9.15)

1

x
F en

2 =
1

9
(4dv + uv) +

4

3
S. (9.16)

At small momentum fractions (x ≈ 0) the structure function is dominated by low-
momentum qq̄-pairs constituting the “sea”, and hence

F en
2

F ep
2

→ 1,

whereas for x ≈ 1 the valence quarks dominate and,

F en
2

F ep
2

→ 1

4
.

The experimental evidence is shown in Fig. 9.9.

Fig. 9.10 shows the distribution of F ep
2 that one would observe in different scenarios of

proton structure.
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Figure 9.9: Ratio of the proton and neutron structure functions as a function of the
Bjorken x-variable.

9.4 Gluons

9.4.1 Missing momentum

Summing the measured momenta of the partons cited above should give the proton mo-
mentum. However this is not the case.

1∫

0

dx x(u+ ū+ d+ d̄+ s+ s̄) = 1− εg,

where,

εq :=

1∫

0

dx x(q + q̄).

The experimental data, neglecting the contribution of strange quarks, show that,

1∫

0

dxF ep
2 =

4

9
εu +

1

9
εd = 0.18,

1∫

0

dxF en
2 =

1

9
εu +

4

9
εd = 0.12.
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Figure 9.10: Structure functions F ep
2 in different scenarios of the proton structure.

Therefore,

εu = 0.36

εd = 0.18,

and the fraction of the proton momentum not carried by quarks is,

εg = 1− εu − εd = 0.46.

Almost half of the proton momentum is carried by electrically uncharged partons. By
repeating the scattering experiments with neutrinos instead of electrons, one observes
that these uncharged partons do not interact weakly either. The parton carrying the
missing momentum is now known as the gluon, the gauge boson of QCD.
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9.4.2 Gluons and the parton model at O(ααs)

By including the gluons into the parton model, the following diagrams need to be taken
into account :

 

p

γ∗

!

p

γ∗

Looking specifically at the contribution of the first diagram, and using the kinematic
variables defined in the following diagram,

 

p

γ∗

pi = yp zpi = xp

one can show that the contribution to the proton structure function is of the form :

1

x
F γ∗q→qg

2 =
∑

i

e2
i

1∫

x

dy

y
fi(y)

[
αs

2π
Pqq(x/y) log

(
Q2

µ2

)]

, (9.17)

where µ is a cutoff to regularize soft gluon emission and,

Pqq(z) =
4

3

(
1 + z2

1− z

)

,

is called splitting function. It is the probability of a quark to emit a gluon and reduce
momentum by a fraction z. It is obviously divergent for soft gluons (z → 1).

From the form of Eq. (9.17), one sees that Q2 appear explicitely, and not divided by
2Mν. This logarithmic term is responsible for the phenomenon of scaling violations wo
be discussed in the next chapter.

Why did the SLAC-MIT experiment not see this violation? The effect of scaling violation is
only visible at extremely small x-values which were not available at this time. The scaling
violation was indeed observed in later experiments as we will discuss in the following
sections.
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9.5 Experimental techniques

The main site dedicated to the study of the proton structure is the HERA accelerator
(DESY), shown in Fig. 9.11. It was the only e−p-collider ever built and reached the beam
energies Ee = 30GeV and Ep = 900GeV for electrons and protons respectively.

Figure 9.11: Schematics of the HERA accelerator at DESY.

Fig. 9.12 shows the coverage of the Q2-x-kinematic region achieved at HERA and other
experiments. The data at low Q2 and low x allowed the observation of scaling violation
and definitively confirmed the existence of the gluon as a constituent of the proton.

Fig. 9.13 shows the sketches of the H1 and ZEUS experiments at HERA, as well as the
integrated luminosity collected by ZEUS. One can notice the asymmetrical configuration
due to the different beam energies.

A typical deep inelastic scattering (DIS) event at ZEUS is shown in Fig. 9.14. One can
observe the different properties of the final state : the quark jet deposits energy in the
hadron calorimeter, while the electron is stopped in the electromagnetic section. The
angles of the electron and hadronic system are measured in the central tracking chamber.

A “two jets” event, corresponding to the reaction,

e− + p → e− + q + q̄ +X,

where X denotes the proton remnant (whose products are visible in the forward calorime-
ter), is shown in Fig. 9.15. An interesting feature of this event is the presence of a muon
in correspondence of the jet. This muon may originate from the decay of a heavy quark.
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Figure 9.12: Coverage of the Q2-x-kinematic region at HERA.

Since scaling is no longer preserved, both Q2 and x (or y = Q2

sx
) have to be measured.

Those can be obtained by measuring the energy E ′
e and angle θe of the scattered eletron

and using,

ye = 1− E ′
e

2Ee

(1− cos θe)

Q2
e = 2EeE

′
e(1 + cos θe).

Fig. 9.16 shows the kinematic region measured at ZEUS while Fig. 9.17 shows the experi-
mental results for the structure function F2 as well as the NLO QCD fits. For low values
of x, the scaling violation appears very clearly. It is due to the inclusion of the processes
containing gluons.

Finally, Fig. 9.18 shows the measurement of the proton PDFs achieved at HERA. The
relative importance of the sea and gluon distribution can be seen to vary significantly for
Q2 between 1.9GeV2 and 10GeV2 (note the scale reduction!). One can notice similarities
with the expectation shown in Fig. 9.10.

9.6 Parton model revisited

In the following two sections we formalize the foregoing discussion and derive the expres-
sion of the QCD improved parton model for F2(x, Q2)/x given in Eq. (9.17).

As we have seen the proton is a bound state of three quarks with strong binding. “Strong
binding” says that the quark binding energy is much larger than the light quark masses:
Ebind � mq. Compare this to the weak binding of the hydrogen atom electron:Ebind � me.



16 CHAPTER 9. PROTON STRUCTURE IN QCD

(a) (b)

(c)

Figure 9.13: Experiments at HERA. (a) H1. (b) Luminosity integrated by the ZEUS during
its operation. (c) ZEUS.

We consider a proton with large momentum (| #»p | � mp):

pµ =

(√

| #»p |2 +m2
p

#»p

)

'
(

| #»p |
#»p

)

.
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Figure 9.14: DIS event recorded by the ZEUS experiment.

(a) (b)

Figure 9.15: Two jet event at ZEUS (a) Side view. (b) Transverse view.

In Sect. 7.4.2 (p. 148) we discussed asymptotic freedom, namely the fact that for Q2 �
Λ2

QCD the strong coupling constant ᾱs � 1. In this case the quarks of the proton are asymp-
totically free and therefore deep inelastic lepton-proton scattering is not an interaction
with the whole proton but with just one of its constituents. This means that coherence
and interference are lost (one of mutually exclusive scattering events is taking place) and
deep inelastic lepton-proton scattering is an incoherent sum of lepton-quark scattering



18 CHAPTER 9. PROTON STRUCTURE IN QCD

a)

ZEUS 1994

Figure 9.16: Kinematic phase-space measured by the ZEUS experiment.

processes (see Sect. 9.3.2 for diagrams) with the doubly differential cross section2

d2σ

dxdQ2
=
∑

q

1
∫

0

dξfq(ξ)
d2σ̂lq

dxdQ2
(9.18)

where

• fq(ξ) is a quark distribution function, i. e. the probability density of finding a quark
with momentum ξp inside a proton with momentum p,

• ξfq(ξ) is the corresponding momentum density,

• and the hat is used to denote quantities in the lepton-quark system (to distinguish
them from lepton-proton system quantities).

Depending on strength and nature of the binding, one expects different behaviors of the
momentum density ξfq(ξ), as is shown in Fig. 9.19 (compare also Fig. 9.10). If the proton
were pointlike the momentum density would be just a delta function, δ(1− ξ), enforcing
ξ = 1 for the one particle involved, see Fig. 9.19(a). A proton built out of three massive
and weakly coupled quarks leads to momentum densities consisting of non-ideal delta
functions located at ξ = 1/3, 1/3δ(1/3− ξ), which are insignificantly smeared out due to
the ongoing exchange of binding energy between the quarks with weak, QED like coupling:

2Note that ξ and x are not a priori identical. Their relationship under varying assumptions is discussed
below and eventually involves QCD corrections.
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Figure 9.17: Proton structure function F p

2 measured by H1 and other experiments for
various values of Q2 and x. Scaling violations appear for x < 10−2.

mp ' 3mq, see Fig. 9.19(b). If, however, the proton consisted of three light and strongly
coupled quarks, mq � 1/3mp, the peaks of ξf(ξ) would still be located around 1/3, but,
since most energy is present in the form of potential and kinetic energy, they would be
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(a) (b)

Figure 9.18: Parton distribution functions of the proton (a) Q2 = 1.9GeV2. (b) Q2 =
10GeV2. The sea and gluon PDFs are reduced by a factor 20.

smeared out significantly at any given instant of time, as shown in Fig. 9.19(c).

X Ξ

Ξ Y Z HΞL
(a) Pointlike proton.

[\ ] Ξ

Ξ ^ _ HΞL
(b) Three massive, weakly interact-
ing quarks: mp ' 3mq.

1

3

1

Ξ

Ξ fq�Ξ 

(c) Three light, strongly coupled quarks:
mq � mp/3.

Figure 9.19: Quark momentum density ξfq(ξ).
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Let us consider the kinematics of the simple parton model. The on-shell condition for the
outgoing quark (see Fig. 9.20(a)) yields

m2
q = (ξp+ q)2 ' 2p · qξ −Q2 =

Q2

x
ξ −Q2 ⇒ ξ =

(

1 +
m2

q

Q2

)

x ' x.

Therefore, given the assumptions made are valid, the Bjorken variable x is the momentum
fraction ξ of a parton inside the proton.

 

p

l(k) l(k′)

q = k − k′

q(ξp)

(a)

 

q

l

q

l

(b)

Figure 9.20: (a) Kinematics of simple parton model and (b) Feynman diagram for lepton-
quark scattering.

To determine d2σ̂lq/dxdQ2 of lepton-quark scattering, we consider the Feynman diagram
in Fig. 9.20(b) which is just a crossing of the Born level diagram for e+e− → µ+µ− (see
Sect. 5.10, p. 92). We therefore find

dσ̂lq

dt
=
2πα2e2

q

ŝ2

(
ŝ2 + û2

t̂2

)

where the Mandelstam variables read (the subscript ep emphasizes that sep refers to the
lepton-proton system)

ŝ = (xp+ k)2 = 2xpk = xsep

t̂ = −Q2 = −xysep = t

û = −ŝ− t̂ = −x(1− y)sep.

Note that t̂ = t depends only on the lepton kinematics. This leads to the lepton-quark
differential cross section

d2σ̂lq

dxdQ2
=
2πα2e2

q

Q4

(
1 + (1− y)2

)
δ(x− ξ).

Inserting this result into the parton model expression for lepton-proton scattering of
Eq. (9.18) yields

d2σ

dxdQ2
=
4πα2

xQ4

∑

q

1∫

0

dξfq(ξ)e
2
q

x

2

(
1 + (1− y)2

)
δ(x− ξ).



22 CHAPTER 9. PROTON STRUCTURE IN QCD

Upon comparison with the deep inelastic scattering structure functions we find

F2(x, Q2) =
∑

q

e2
qxfq(x)

FL(x, Q2) = F2(x, Q2)− 2xF1(x, Q2) = 0

where FL is called longitudinal structure function. We recognize that F2(x, Q) = F2(x)
ceases to be a function of two variables, but under the assumed conditions depends only
on one variable, a phenomenon generally referred to as scaling. Furthermore, FL = 0 ⇔
2xF1 = F2 is the Callan-Gross relation, a consequence of quarks having spin 1/2 familiar
from Sect. 9.3.3.

Before we go on we introduce the following notation for the distribution functions

fq(x) = q(x) (q = u, d, s, c, . . . , ū, . . . )

fg(x) = g(x) (gluons).

9.7 QCD corrections to the parton model

Our discussion of the parton model involved no QCD corrections up to now; it rested on
the assumption of electromagnetic interactions alone. QCD corrections will concern the
quark part of our diagram. Within the parton model we just found

 

q

γ?

q
=
4παe2

q

ŝ
δ(x− ξ) =: σ̂0δ(x− ξ) (9.19)

and

F2(x, Q2)

x
=

∑

q

1∫

0

dξ

ξ
q(ξ)e2

q δ

(

1− x

ξ

)

(9.20)

where σ̂0 is the QED contribution which drops out of the structure functions.

The O(αs) = O(g2
s) QCD corrections are given by

∣
∣
∣
∣
∣
∣
∣

 

+

 

∣
∣
∣
∣
∣
∣
∣

2

and 2Re

∣
∣
∣
∣
∣
∣
∣

 

·

 

∣
∣
∣
∣
∣
∣
∣

,

i. e. gluon radiation and virtual gluon exchange. The one-loop virtual gluon interference
term stems from the loop corrections to the quark-photon vertex squared at O(g2

s). As an
example, consider the process γ?q → qg (which is a crossing of γ? → qq̄g):

|M|2 = 32π2(e2
qααs)CF

(

− t̂

ŝ
− ŝ

t̂
+
2ûQ2

ŝt̂

)

.
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This expression for |M|2 is unproblematic for small ŝ, since ŝ is fixed. However, a prob-
lem arises at small t̂, since we have to integrate over it as it is a dynamic variable (see
Sect. 3.3.2, p. 26).

For small scattering angles −t̂� ŝ and we have

p2
T =

ŝ(−t̂)

ŝ+Q2

for the transverse momentum of the outgoing gluon. Eliminating the Mandelstam variable
û, the differential cross section becomes

dσ̂

dp2
T

=
1

16πŝ2
|M|2 ' σ̂0

αs

2π
CF

(

− 1

t̂ŝ

[

ŝ+
2(ŝ+Q2)Q2

ŝ

])

.

By introducing the dimensionless variable

z =
x

ξ
=

Q2

2pq · q
=

Q2

ŝ+Q2
,

we arrive at

dσ̂

dp2
T

= σ̂0
1

p2
T

αs

2π
Pqq(z)

where

Pqq(z) = CF
1 + z2

1− z

(compare Sect. 9.4.2). Note that in the simple parton model we had pq = ξp which is no
longer the case when QCD corrections are taken into account.

To find the inclusive cross section, we have to integrate over the transverse momentum
squared:

σ̂γ?q→qg

σ̂0

=
αs

2π
Pqq(z)

Q2
∫

µ2

dp2
T

p2
T

=
αs

2π
Pqq(z) log

Q2

µ2

where the infrared cutoff µ2 has been introduced because of the collinear singularity at
p2

T → 0. The rationale is to later define observables in a way that allows to send µ2 → 0
(compare also Sect. 8.2.1, p. 160). Having calculated the QCD corrections at O(αs) to the
structure function in Eq. (9.20), we can state the resulting corrected expression:

F2(x, Q2)

x
=

∑

q

1∫

x

dξ

ξ
q(ξ)e2

q

{

δ
(

1− x

ξ

)

+
αs

2π

[

Pqq

(x

ξ

)

log
Q2

µ2
+ finite

]

+O(α2
s)

}

(9.21)
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which leads to some interesting consequences.3 Observe that we found an equality of
a measurable and hence finite quantity (after all, F2 is just a specific coefficient in the
parametrization of a cross section) and an expression which is divergent at the given order
of perturbation theory. Since the LHS of Eq. (9.21) is fixed, the problem has to be tackled
on its RHS. As a starting point, recall that we justified the form of the quark distribution
functions by asymptotic freedom and neglected QCD interactions among the quarks in the
first place. When QCD corrections are taken into account, the naive parton model is no
longer valid. Therefore, it is necessary to redefine the parton distribution functions such
that they are well-defined for the case of interacting quarks. This amounts to a redefinition
of the quark distribution in the infrared region and is called mass factorization of the quark
distribution:

q(x, µ2
F ) = q(x) +

αs

2π

1∫

x

dξ

ξ
q(ξ)Pqq

(x

ξ

)

log
µ2

F

µ2
(9.22)

where q(x, µ2
F ) is a measurable, screened quark density, q(x) denotes the bare (unphysical)

quark density, and the integral term is the contribution from unresolvable gluon radiation
with transverse momentum µ2

F ≥ p2
T ≥ µ2 where µ2

F is the mass factorization scale
at which the quark distribution is measured. Recall that the infrared cutoff µ2 can be
chosen arbitrarily small—smaller than any given detector resolution. At sufficiently small
scattering angles the emitted gluon cannot be resolved by the detector as it appears to
be parallel to the proton remnants. Two-jet events in deep inelastic scattering can only
be excluded in the momentum range where they could be detected. Therefore, the quark
distribution q(x, µ2

F ) admits gluon radiation below a predefined resolution scale µF .

Let us solve for q(x) in Eq. (9.22) and plug it into the QCD corrected structure function
in Eq. (9.21), we have

F2(x, Q2)

x
=

∑

q

1∫

x

dξ

ξ
q(ξ, µ2

F )e
2
q

{

δ
(

1− x

ξ

)

+
αs

2π
Pqq

(x

ξ

)

log
Q2

µ2
− αs

2π
Pqq

(x

ξ

)

log
µ2

F

µ2

}

=
∑

q

1∫

x

dξ

ξ
q(ξ, µ2

F )e
2
q

{

δ
(

1− x

ξ

)

+
αs

2π
Pqq

(x

ξ

)

log
Q2

µ2
F

}

which is independent of the infrared cutoff µ2 and finally, setting µ2
F = Q2 as in deep

inelastic scattering experiments,

=
∑

q

q(x, Q2)e2
q.

Perturbative QCD is used to answer the question how the Q2 dependence of the quark
distribution q(x, Q2) looks like.

3One can observe, as was done before, that because of QCD corrections to the naive parton model
scaling no longer holds, since F2(x, Q2) ceases to be a function of the single variable x alone.
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9.8 Altarelli-Parisi equations

The bare quark distribution q(x) is independent of µ2
F :

µ2
F

d

dµ2
F

q(x) = 0.

Differentiating Eq. (9.22) with respect to log µ2
F we thus obtain the renormalization group

equation4 for the quark distribution:

∂q(x, µ2
F )

∂ log µ2
F

=
αs

2π

1∫

x

dξ

ξ
q(ξ, µ2

F )Pqq

(x

ξ

)

(9.23)

which means that scaling invariance is logarithmically violated.

Eq. (9.23) is known as the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
equation, or simply Altarelli-Parisi evolution equation. It is a small-p2

T approximation,
which resums the collinear gluon radiation in the initial state at O(αn

s log
n Q2).

 

q(x0, Q
2
0)

q(x1 ≤ x0, Q
2
1 > Q2

0)

q(x2 ≤ x1, Q
2
2 > Q2

1)

q(x ≤ xn, Q
2 > Q2

n)

This diagram is a universal correction, since the emitted gluons do not know about the
scattering process of the quark off the virtual photon. The DGLAP equation tells us what
happens if one infinitesimally increases the resolution. It is an integro-differential equation
with one “initial condition” q(x, µ2

F = µ2
0). Knowing the latter, one can compute the quark

distribution at any value of µ2
F . The procedure is analogous to the determination of the

running coupling of QED (Sect. 6.1.2, p. 102) or QCD (Sect. 7.4.2, p. 148).

In using Eq. (9.23) we omitted until now, the fact that Pqq(z) has a singularity in z = 1,
which belongs to the integration domain. This singularity corresponds to the emitted

4For a concise discussion of this topic see [2, pp. 28].
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gluon becoming soft. It is compensated by a singularity in the virtual corrections. As a
result, Pqq(z) is modified to become,

Pqq(z) = CF

(
1 + z2

(1− z)+
+
3

2
δ(1− z)

)

,

which takes into account the virtual corrections occuring at z = 1. We use the ‘+’-
presciption, coming from the reguarisation procedure and defined by,

1∫

0

dz
f(z)

(1− z)+
=

1∫

0

dz
f(z)− f(1)

1− z
. (9.24)

The factor in front of the δ-function can be inferred from the quark number conservation,
which can be stated as,

1∫

0

dzPqq(z) = 0. (9.25)

Up to now, we considered only gluon radiation off a quark. However, the emission history
can be made more complicated with gluons at intermediate stages of the parton cascade,

 

By inspection, one can find out that there are four different splitting processes at O(αs) :

• q → q :

 

p zp

! Pqq(z) = CF

(
1 + z2

(1− z)+
+
3

2
δ(1− z)

)

, (9.26)
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• q → g :

 

p zp

! Pgq(z) = CF

(
1 + (1− z)2

z

)

, (9.27)

• g → q :

 

p zp

! Pqg(z) = TF

(
z2 + (1− z)2

)
, (9.28)

• g → g :

 

p zp

! Pgg(z) = 2CA

(
z

(1− z)+
+
1− z

z

)

+

(
11

6
CA −

3

2
TF nf

)

δ(1− z).

(9.29)

Those splitting functions satisfy a set of coupled DGLAP equations,

∂

∂ log µ2
F

(
q(x, µ2

F )
g(x, µ2

F )

)

=
αs(µ

2
F )

2π

1∫

x

dz

z

(
Pqq(z) Pqg(z)
Pgq(z) Pgg(z)

)(
q
(

x
z
, µ2

F

)

g
(

x
z
, µ2

F

)

)

. (9.30)

In this equation, αs

2π
Pji(z) is the probability for i → j splitting with momentum fraction

z in the transverse momentum interval [log µ2
F , log µ2

F + d log µ2
F ].

For nf quark flavours, we get 2nf +1 coupled equations (antiquarks must be taken explic-
itly into account). This system can be diagonalized be introducing (i labels the flavour),

• nf valence quark distributions

qV
i = qi − q̄i, (9.31)

• nf − 1 flavour non-singlet quark distributions

qF
i =

i−1∑

n=1

(qn + q̄n − qi − q̄i), (9.32)

• 1 flavour singlet quark distribution

qS =

nf∑

n=1

(qn + q̄n). (9.33)
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We also define the convolution,

(P ⊗ q)(x, µ2
F ) =

1∫

x

dz

z
P (z)q

(x

z
, µ2

F

)

,

allowing us to write,

∂qV
i

∂ log µ2
F

=
αs

2π
Pqq ⊗ qV

i (9.34)

∂qF
i

∂ log µ2
F

=
αs

2π
Pqq ⊗ qF

i (9.35)

∂qS

∂ log µ2
F

=
αs

2π

(
Pqq ⊗ qS + 2nfPqg ⊗ g

)
(9.36)

∂g

∂ log µ2
F

=
αs

2π

(
Pgq ⊗ qS + Pgg ⊗ g

)
. (9.37)

The factor 2nf in Eq. (9.36) comes from the fact that one needs to consider quarks
and antiquarks of all possible flavours. This set of equations only includes leading order
corrections that are precise at 15%. The data obtained in the last years yield however
results to the 5% precision, so that correction from higher orders need to be taken into
account.

At NLO, O(αn
s log

n−1 Q2), the finite term from the O(αs)-processes is relevant,

∣
∣
∣
∣
∣
∣
 

+

 

∣
∣
∣
∣
∣
∣

2

This translates in the expressions for the structure functions,

1

x
F2(x, Q2) =

1∫

x

dξ

ξ

{
∑

q

q
(
ξ, Q2

)
[

δ

(

1− x

ξ

)

+
αs

2π
C2,q

(
x

ξ

)]

+ g(ξ, Q2)
αs

2π
C2,g

(
x

ξ

)}

(9.38)

FL(x, Q2) = O(αs) 6= 0 (9.39)

We now need to compute O(α2
s)-corrections to the spitting functions Pji. At this

order, there is essentially one new spitting process with two quark-gluon vertices,

 

i j

!

i j
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At O(αs), we had implicitly P V
qq = P F

qq = P S
qq = Pqq in Eqs. (9.34), (9.35) and (9.36). This is

no longer true at O(α2
s), where all these splitting functions are different from one another.

At even higher orders, no essentially new features appear, so that NLO calculations lead
already quite acceptable results. These are of crucial importance for W and Z production
at hadron colliders.

9.9 Solution of DGLAP equations

Looking at the set (9.30) of coupled DGLAP integro-differential equations one can expect
that solving it could be a highly non-trivial task. There are basically two approaches to
attack the problem :

1. Numerical solution, e.g. with the Runge-Kutta method. This approach is yielding
satisfactory results for Q2

0 & 2GeV, i.e. in the asymptotically free regime, where
αs(Q

2
0)� 1,

2. Analytically, by using Mellin tranformation. This approach is especially useful to
obtain a quantitative understanding and to determine the asymptotic properties.

In both cases we have to start from given initial distributions qi(x, Q2
0), q̄i(x, Q2

0), g(x, Q2
0).

Mellin transformation The Mellin transform of a function f : [0, 1]→ R is given by,

f(n) = M [f(x)] =

1∫

0

dxxn−1f(x), (9.40)

with inverse

f(x) =
1

2πi

a+i∞∫

a−i∞

dnx−nf(n), (9.41)

for f(n) analytical in the half plane Ren > a.

We list here some of the properties of Mellin transformations:

M [af(x) + bg(x)] = af(n) + bg(n) (linearity) (9.42)

M

[
dk

dxk
f(x)

]

= (−1)n−k Γ(n)

Γ(n− k)
f(n− k) (derivative) (9.43)

M [(f ⊗ g)(x)] = f(n)g(n) (convolution) (9.44)
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Armed with this new technology, we Mellin transform Eq. (9.34) with respect to the x
variable to get (the following analysis is valid for the valence and flavour non-singlet quark
distribution, thus, we drop the i, V/F for notational convenience),

∂q(n, µ2
F )

∂ log µ2
F

=
αs(µ

2
F )

2π
Pqq(n)q(n, µ2

F ). (9.45)

Using the evolution equation for αs (Sect. 7.4.2, p. 151) in the leading order approximation,

1

αs

∂αs

∂ log µ2
F

=
∂ logαs

∂ log µ2
F

= − β0

4π
αs,

one gets,

∂q(n, µ2
F )

∂ logαs

= − 2

β0

Pqq(n)q(n, µ2
F )

∂ log q(n, µ2
F )

∂ logαs

= − 2

β0

Pqq(n), (9.46)

which can now be solved by integrating from µ2
F = Q2

0 to Q2,

q(n, Q2) = q(n, Q2
0)

[
αs(Q

2
0)

αs(Q2)

] 2

β0
Pqq(n)

,

or, in the usually known form, using Eq. (7.44), p. 152,

q(n, Q2) = q(n, Q2
0)exp

{
2

β0

Pqq(n) log
log(Q2/Λ2)

log(Q2
0/Λ

2)

}

. (9.47)

This is the solution for the quark valence and flavour non-singlet distributions.

We now turn to the two remaining distributions, namely the quark singlet and and gluon
distributions. Mellin transforming Eqs. (9.36) and (9.37) yields,

∂

∂ log µ2
F

(
qS(n, µ2

F )
g(n, µ2

F )

)

= − 2

β0

(
Pqq(n) 2nfPqg(n)
Pgq(n) Pgg(n)

)(
qS(n, µ2

F )
g(n, µ2

F )

)

. (9.48)

The first step is the diagonalization of the matrix,
(

Pqq(n) 2nfPqg(n)
Pgq(n) Pgg(n)

)

.

Then one applies the same formalism as for the valence quark distribution discussed above.
By inverse Mellin transformation, one gets the result in the variable x.

Specific values of n correspond to various physical quantities. For example, Pqq(n = 1) = 0
is the Mellin transform of Eq. (9.25) and q(n = 2) corresponds to the fraction of the total
momentum transported by the quark q. One has the momentum sum rule,

qS(2, Q2) + g(2, Q2) = 1.
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with the asymptotic values,

qS(2, Q2 →∞)→ 3nf

16 + 3nf

nf=5
=

15

31

g(2, Q2 →∞)→ 16

16 + 3nf

nf=5
=

16

31
.

9.10 Observables at hadron colliders

We now study processes and observables at hadron colliders and the consequences of
parton evolution in this context.

The simple parton model cross section for processes at hadron-hadron colliders reads

σpp =
∑

i,j∈{q,g}

∫

dx1dx2fi(x1)fj(x2)σ̂ij→X(sij = x1x2spp), (9.49)

i. e. two partons enter into a hard collision from which a final state X emerges, as shown
in Fig. 9.21(a).

 p(p2)

p(p1)

j(x2p2)

i(x1p1)

Xσ̂

(a)

 

q

q̄
γ?

µ−

µ+

(b)

Figure 9.21: (a) Hadron-hadron collision in naive parton model and (b) Drell-Yan process.

As an example consider the Drell-Yan process, pp → µ+µ−, shown in Fig. 9.21(b). The
parton model cross section reads

σDY =
∑

q

∫

dx1dx2 [q(x1)q̄(x2) + q(x2)q̄(x1)] σ̂qq̄→µ+µ− (9.50)
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where

σ̂qq̄→µ+µ− =
4πα2

3sqq̄

1

3
︸ ︷︷ ︸

σ̂DY
0

e2
q δ(1− x1x2spp/M

2
µ+µ−) (9.51)

which we basically already calculated before (Sect. 5.10, p. 92). The difference to the
e+e− → µ+µ− result is the color factor of 1/3 and the delta function which states that
the muon pair invariant mass fulfills (pµ+ + pµ−)

2 =: M2
µ+µ− = x1x2spp.

The following QCD corrections have to be included:

 

q

q̄

γ?

µ−

µ+

g
 

q

g

γ?
µ−

µ+

q

 

γ?

µ−

µ+

where the first two diagrams are because of parton evolution and the third diagram is a
virtual correction. Setting z = x1x2spp/M

2
µ+µ− , the QCD corrected Drell-Yan cross section

reads

σDY = σ̂DY
0

∑

q

e2
q

∫

dx1dx2

{

q(x1)q̄(x2)δ(1− z) +
αs

2π
Cqq̄(z)

+ [q(x1) + q̄(x1)] g(x2)
αs

2π
Cqg(z) + (x1 ↔ x2)

}

where q(xi) etc. are the QCD evolved parton distributions.

In the following some standard reactions are listed.

• W±, Z0 production
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q̄

q

W±, Z0

• γ + jet production

 

g

q

q

γ

 

q̄

q

g

γ

• 2-jet production

 

q̄

q

q̄

q

 

q̄

q

g

g

Further processes leading to 2-jet events are qg → qg, gg → gg, gg → qq̄ and
qq → qq.

Examples for relevant processes in searches for new physics:

• Higgs production

 

t

t̄

H

g

g

• SUSY particles
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g

q

q̃

g̃

A general feature of hadron-hadron colliders is that
√

sparton-parton is variable since the
parton momentum fractions vary.5 This allows to search for peaks in mass spectra at
fixed collider energy. An example for this effect is the Z0 peak in the µ+µ− spectrum of
SPS at CERN (compare also Sect. 4.4.4, p. 51).

9.11 Multiparticle production

Describing multijet final states in QCD is problematic because of two reasons.

• Factorial growth of the number of diagrams
E. g. for gg → ng the number of diagrams # scales with the number of final state
gluons n in the following way:

n 2 3 4 5 6 7
# 4 25 220 2485 34300 559405.

These numbers illustrate that a computation even on the amplitude level is time-
consuming.

• Complexity of the final state phase space
In addition to the aforementioned problem, the final state phase space has high
dimension and the integrations are constrained in various ways.

These problems can be approached by introducing approximate descriptions. One uses the
fact that |M|2 is largest if partons are emitted into soft (E → 0) or collinear (θij → 0)
regions of phase space. Therefore, the dominant contributions stem from these phase space
regions.

5Compare this to the e+e− case where the center of mass energy of the actual collision is fixed by the
collider energy: s = ŝ.
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Let us analyze a collinear parton shower. Consider the shower subgraph

 

a

θc

θb

c

b

where p2
a � p2

b , p
2
c and p2

a = t. The opening angle is θ = θb + θc and the energy fractions
are

z =
Eb

Ea

1− z =
Ec

Ea

. (9.52)

For small angles we have

t = 2EbEc(1− cos θ) = z(1− z)E2
aθ

2 (9.53)

θb

1− z
=

θc

z
= θ. (9.54)

For θ → 0 the matrixelement factorizes as

|Mn+1|2 =
4g2

s

t
CF Fqq(z)|Mn|2

where

Fqq(z) =
1 + z2

1− z
= Pqq(z < 1).

Analogous splittings involve Fqg, Fgq, and Fgg.

Also the phase space factorizes:

dφn = . . .
d3pa

2Ea(2π)3

dφn+1 = . . .
d3pb

2Eb(2π)3
d3pc

2Ec(2π)3
.
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Since pc = pa − pb, we have d3pc = d3pa for fixed pb. For small θ this yields6

dφn+1 = dφn
1

2(2π)3

∫

EbdEbθbdθbdφ
dz

1− z
δ(z − Eb/Ea)dtδ(t− EaEbθ

2)

= dφn
1

4(2π)3
dtdzdφ

(recall Eq. (9.52) and (9.53)).

Since the matrixelement and the phase space factorize, so does the cross section:

dσn+1 = dσn
dt

t
dz

dφ

2π

αs

2π
CF F (z).

Therefore, multiple emission processes like

 

γ?(Q)

t1 < Q2

t2 < t1

tc < tn

q̄

z1 < 1

z2 < z1

q

where tc is a cutoff scale at which hadronization sets in, tc & Λ2
QCD, can be subdivided

into fundamental steps in (t, z) space:

 

(t1, z1) (t2, z1)

(t2, z2)

A Monte Carlo method to generate a corresponding set of final state partons proceeds as

6One observes that

dφn+1 = . . .
d3pb

2Eb(2π)3
d3pc

2Ec(2π)3
= dφn

Ea

Ec

d3pb

(2π)32Eb

' dφn

Ea

Ec

EbdEb

2(2π)3
θbdθbdφ = dφn

1

1− z

EbdEb

2(2π)3
θbdθbdφ.

And the Jacobian determinant is just 2zEaθb/(1− z).
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follows: Starting from a simple final state (e. g. e+e− → qq̄), generate additional partons
step-by-step while admitting only visible (i. e. non-soft) emission:

z > ε(t) (1− z) > ε(t)

where ε(t) can be expressed in the following way:

p2
a = t and p2

b , p
2
c > tc

p2
T = z(1− z)p2

a − (1− z)p2
b − zp2

c > 0

⇒ z(1− z) >
tc
t

⇒ ε(t) =
1

2
− 1

2

√

1− 4
tc
t
' tc

t

which means that the threshold ε(t) gets more strict for decreasing t.

Let us define the Sudakov form factor ∆(t)

∆(t) = exp







−
t∫

tc

dt′

t′

1−ε(t′)∫

ε(t′)

dzαsCF Fqq(z)







which is the probability for a parton to evolve from t to tc without emission of another
parton. Observe that

∆(tc) = 1

and the probability for a parton to evolve from t1 → t2 without emission of another parton
is given by

R(t1, t2) =
∆(t1)

∆(t2)
.

The Monte Carlo procedure is now as follows.

0. Starting point (t1, z1)

1. Generate a random number R ∈ ]0; 1[.

2. Solve ∆(t1)/∆(t2) = R for t2.

• For ∆(t1) > R:
∆(t2) > 1: t2 < tc: no emission, parton saved for final state
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• For ∆(t1) < R:
Generate further random number R′ ∈ ]0; 1[ and solve

z2/z1∫

ε(t2)

dz
αs

2π
P (z) = R′

1−ε(t2)∫

ε(t2)

dz
αs

2π
F (z)

for z2.

3. Use the two new partons

(

(t2, z2);
(

t2,
z1 − z2

z1

))

as starting point for another Monte Carlo step (see Fig. 9.22).

4. Repeat steps 1 to 3 until all partons fulfill ti < tc.

This procedure generates events with the same probabilities as in experiment and produces
a list of final state particles which allows to perform the same analyses as on experimental
data. This is how one arrives at the “theory curves” shown e. g. in some of the plots in
Chap. 8.

 

t1

t2

t2

z1

z1−z2

z1

z2

Figure 9.22: Starting point for second Monte Carlo step.


