
Chapter 9

Proton structure in QCD

Literature:

� Halzen/Martin [1], Chap. 8-10.

This chapter reviews the study of the proton structure, which lasted form after World
War II to the closure of HERA (DESY) in 2007. The understanding gained from those
results is of essential importance to predict cross-sections for the Tevatron (Fermilab) and
the LHC (CERN), since both of them use hadrons as colliding particles.

First, the methods used to study the proton structure are presented and the relevant
kinematic quantities are de�ned, starting from the similar case ofe �  -scattering. We
then generalize to the case of a composite hadron. After that, the Bjorken scaling is
introduced. Finally, the steps leading to the discovery of the uncharged parton { the
gluon { are described.

One must remember that the link between the particle zoo and the results concerning the
proton structure was not at all obvious, as the quark model had not yet imposed itself as
a leading theory.

9.1 Probing a charge distribution & form factors

To probe a charge distribution in a target one can scatter electrons on it and measure their
angular distribution (Fig. 9.1). The measurement of the cross-section can be compared
with the expectation for a point charge distribution,

d�
d


=
�

d�
d


�

point

jF (q)j2; (9.1)

whereF (q) is called theform factor , and q := ki  kf is the momentum transfer from the
probing particle to the target. The momentum transfer is also related to the resolution
power of the probe.
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Figure 9.1: Probing a charge distribution

When probing a point (� spinless & structureless) target,F (q) � 1 and one gets the
Mott cross section ,

�
d�
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�

point

=
(Z� )2E 2

4k4 sin4(�=2)

�
1  

k2

E 2
sin2(�=2)

�
; (9.2)

where Z is the electric charge measured in units of the elementary charge,E and k =
jki j = jkf j are respectively the energy and the momentum of the probing particle, and�
is the scattering angle. One typically measures� and E of the scattered electron.

Comparing the angular dependence of the di�erential cross-section of eletrons scattering
o� protons with the Mott cross sections, measurements show that the two distributions
do not agree at large scattering angles as shown in Fig. 9.2.
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Figure 9.2: Mott cross section (dashed line) and compared to the experimental data form
electron-hydrogen scattering. The measurement disagrees with the point-linke cross sec-
tion at large scattering angles.
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9.2 Structure functions

Starting from the example of scattering of two di�erent elementary spin-12 particles, an
ansatz is made for the general case.

9.2.1 e �  -scattering in the laboratory frame

In the case of thee �  -scattering in the laboratory frame at high energy (s � M = m� ),
the matrix element is given by,

jM f i j2 =
e4

q4
L ��

e L �  

��

=
8e4

q4
2M 2E 0E

�
cos2(�=2)  

q2

2M 2
sin2(�=2)

�
;

whereE 0 is the energy of the scattered electron, and the transferred momentum,

q2 �  2k � k0 �  4EE 0sin2(�=2);

yielding { upon inclusion of the 
ux factor and phase space { the di�erential cross section
for e �  in the laboratory frame,

d�
d


=
� 2

4E 2 sin4(�=2)
E
E 0

�
cos2(�=2)  

q2

2M 2
sin2(�=2)

�
: (9.3)

9.2.2 e p-scattering & the hadronic tensor

When dealing with hadrons, the possibility of inelastic scattering, i.e. scattering where
the �nal state contains excited states or other particles than the probe and the scattering
particle, must be taken into account, shown in the Feynman diagram,

 p

ki kf

q

W

where W is the invariant mass of the particles in the �nal state (Sect. 4.4.4, p. 51). The
scattering cross-section as a function ofW is shown in Fig. 9.3. One notes the elastic peak
at W = mp followed by a peak at 1232 MeV corresponding to the �+ resonance and
produced by the reaction,

e p ! e � + ! e p� 0
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Figure 9.3: Di�erential cross section as a function of the invariant massW.

To calculate thee p-scattering, one makes the substitutionL ��
�  ! W ��

p , where,

W ��
p =  W1g�� +

W2

M 2
p� p� +

W4

M 2
q� q� +

W5

M 2
(p� q� + q� p� ); (9.4)

is the most general rank-2 tensor with functionsW1; :::; W5 constructed from Lorentz
scalars1 depending on the internal structure of the proton, constructible from the 4-
momentum of the proton (p) and the momentum transfer (q).

Imposing current conservation@� j �
p = 0, one can rewriteW4 and W5 in terms of W1 and

W2 :

W5 =  
p � q
q2

W2

W4 =
�

p � q
q2

� 2

W2 +
M 2

q2
W1;

ReplacingW4 and W5 in Eq. (9.4) :

W ��
p = W1

�
 g�� +

q� q�

q2

�
+

W2

M 2

�
p�  

p � q
q2

q�

� �
p�  

p � q
q2

q�

�
: (9.5)

W1 and W2 are the so-called thestructure functions of the proton. They depend on
two independent variables,

Q2 :=  q2 : the 4-momentum transfer squared,

� =
p � q
M

: the energy transferred to the nucleon by the scattering electron,

1The \missing" W3-term is related to the axial part of the current, and is relevant when considering
the weak interaction. It is discarded in what follows.
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or their dimensionless counterparts,

x =  
q2

2p � q
=

Q2

2M�
: the Bjorken scalingx-variable, 0� x � 1;

y =
p � q
p � ki

; 0 � y � 1:

With the variables de�ned above, we have the following expression for the invariant mass :

W 2 = ( p + q)2 = M 2 + 2M�  Q2: (9.6)

The elastic scattering caseW 2 = M 2 corresponds to the valuex = 1. Fig. 9.4 shows the

Figure 9.4: Allowed kinematical region of theQ2-� -plane.

kinematic region in theQ2-� -plane.

Using the hadron tensor, Eq. (9.5), the scattering matrix element is,

Le 

�� W ��
p = 4EE 0

 
W2(Q2; � ) cos2(�=2) + W1(Q2; � ) sin2(�=2)

�

Including the 
ux and phase-space factors (Sect. 2.2.4, p. 13 & 3.2.3, p. 23) one �nds the
di�erential cross-section in the laboratory frame,

d�
dE0d


=
� 2

4E 2 sin4(�=2)

 
W2(Q2; � ) cos2(�=2) + W1(Q2; � ) sin2(�=2)

�

Integrating over the energy of the outgoing electionE 0, one gets,

d�
d


=
� 2

4E 2 sin4(�=2)
E 0

E

 
W2(Q2; � ) cos2(�=2) + W1(Q2; � ) sin2(�=2)

�
:
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9.3 Parton model

The key factor for investigating the proton substructure is the wavelength of the probing
photon, which is related to the transferred momentum by,

� �
1

p
Q2

;

Therefore, large momentum transfer is equivalent to high resolution. As shown in Fig. 9.5,
for � � 1 fm, one can \see" the proton as a single particle, whereas for,� � 1 fm, the

Figure 9.5: Relationship between resolution and transferred momentum.

probed particles are the constituents of the proton.

9.3.1 Bjorken scaling

J. Bjorken proposed in 1968 that, in the limit of in�nite Q2, the structure functions
should only depend on the scaling variablex, and not on Q2 and � independently. This
corresponds to postulating that at largeQ2 the inelastice p-scattering is a sum of elastic
scatterings of the electron on freepartons within the proton, as illustrated below.

 
p


 �

!
p


 �

Q2 !1
=)

In this limit, one de�nes then the functions,

F1(x) := lim
Q2 !1

MW1(Q2; � ); (9.7)

F2(x) := lim
Q2 !1

�W 2(Q2; � ): (9.8)
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9.3.2 SLAC-MIT experiment

To test the hypothesis of Bjorken, a joint experiment of the SLAC and MIT groups was
performed at the SLAC laboratory. Sketches and photographs of the experiment are shown
in Fig. 9.6.

(a) (b)

TARGET 
POSITION

8 Gev SPECTROMETER

20  Gev SPECTROMETER

      1.6 Gev
SPECTROMETER

MONITORS
BEAM

 

(c)

Figure 9.6:SLAC-MIT experiment. (a), (b) Sketches showing the 1.5 GeV, 8 GeV and 20
GeV spectrometers. (c) Photograph of the experiment.

The setup measured the scattering cross-section for �xed energies of the scattered electron
and various angles. Fixingx (or ! = 1

x ) one gets di�erent values ofQ2 by varying the
angle. The experimental result is shown in Fig. 9.7. This experiment con�rmed the scaling
hypothesis of Bjorken and gave a decisive piece of evidence in favour of the parton model
introduced by Feynman in 1969. This model describes the proton as composed ofpartons
which are the object one \sees" during ane p-scattering. One may describe the scattering
process as shown in the following diagrams,
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Figure 9.7: Experimental evidence for Bjorken scaling as measured at the SLAC-MIT
experiment (! = 1=x).
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P

i

R
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i
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The sum runs over all possible partons, each carrying an electric chargeei (in units of
the elementary charge) and a fractionx of the total momentum of the proton. This gives
us a physical interpretation of the Bjorken scaling variablex. Since the fraction of proton
momentum carried by thei -th parton is not known a priori, one needs to integrate over all
possible values ofx between zero (the parton carries no momentum) and one (the parton
carries all the proton momentum).

The probability f i (x) that the struck parton carries a fractionx of the proton momentum
is calledparton distribution function (PDF). The total probability must be equal to
1, in order for the proton as a whole to carry all its momentum :

X

i

1Z

0

dx xf i (x) = 1 : (9.9)

In Feynman's parton model the structure functions are sums of the parton densities
constituting the proton,

�W 2(Q2; � ) ! F2(x) =
X

i

e2
i xf i (x) (9.10)

MW1(Q2; � ) ! F1(x) =
1

2x
F2(x) (9.11)
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9.3.3 Callan-Gross relation

The result,

2xF1 = F2 ; (9.12)

is known asCallan-Gross relation and is a consequence of quarks being spin-1
2 particles.

It can be derived by comparing thee p and e �  di�erential cross sections and setting
the mass of the quark to bem = xM . Remembering the de�nitions ofF1 and F2, Eqs.
(9.7) and (9.8), one has,

F1(x)
F2(x)

=
W1(Q2; � )
W2(Q2; � )

M
�

;

and since the scattering is elastic with a point particle (the parton),

2W1(Q2; � ) =
Q2

2m2
�

�
�  

Q2

2m

�

W2(Q2; � ) = �
�

�  
Q2

2m

�
)

W1(Q2; � )
W2(Q2; � )

=
Q2

4m2
;

and one gets the desired result, by putting in the de�nition ofx and m = xM ,

F1(x)
F2(x)

=
Q2

4m2

M
�

=
Q2

2M�
1

2x2
=

1
2x

Fig. 9.8 shows theQ2-independence of the Callan-Gross relation.

Figure 9.8: Experimental evidence for the Callan-Gross relation.



10 CHAPTER 9. PROTON STRUCTURE IN QCD

9.3.4 Parton density functions of protons and neutrons

The proton is know to be composed of two up and one down quarks (Sect. 7.3, p. 131).
These quarks are known as valence quarks and are denotedqv. They are the ones de-
termining the properties of a hadron. It can however occur (in particular at highQ2,
corresponding to a high resolution) that a valence quark radiates a gluon which then
splits in a quark-antiquark pair which is then probed by the virtual photon. These quarks
are referred to as sea quarks and are denotedqs.

In the case ofe p-scattering ande n-scattering, writing qN instead of f N
q (x) for conve-

nience and using Eq. (9.10), we get respectively,

1
x

F ep
2 =

�
2
3

� 2

(up + �up) +
�

1
3

� 2

(dp + �dp) +
�

1
3

� 2

(sp + �sp) (9.13)

1
x

F en
2 =

�
2
3

� 2

(un + �un ) +
�

1
3

� 2

(dn + �dn ) +
�

1
3

� 2

(sn + �sn ); (9.14)

where we have discarded the contributions of partons heavier than the strange quark.

One makes the assumption that these functions are not independent (exchanging an up
quark for a down turns basically a proton into a neutron), and de�nes the total PDF of
a given quark as the sum of its valence and sea components,

u := uv + us = up = dn

d := dv + ds = dp = un :

Furthermore, we assume that the three lightest quark 
avours (u,d,s) occur with equal
probability in the sea:

S := us = �us = ds = �ds = ss = �ss:

Combining all de�nitions and assumptions one obtains,
1
x

F ep
2 =

1
9

(4uv + dv) +
4
3

S (9.15)

1
x

F en
2 =

1
9

(4dv + uv) +
4
3

S: (9.16)

At small momentum fractions (x � 0) the structure function is dominated by low-
momentum q�q-pairs constituting the \sea", and hence

F en
2

F ep
2

! 1;

whereas forx � 1 the valence quarks dominate and,
F en

2

F ep
2

!
1
4

:

The experimental evidence is shown in Fig. 9.9.

Fig. 9.10 shows the distribution ofF ep
2 that one would observe in di�erent scenarios of

proton structure.
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Figure 9.9: Ratio of the proton and neutron structure functions as a function of the
Bjorken x-variable.

9.4 Gluons

9.4.1 Missing momentum

Summing the measured momenta of the partons cited above should give the proton mo-
mentum. However this is not the case.

1Z

0

dx x(u + �u + d + �d + s + �s) = 1  "g;

where,

"q :=

1Z

0

dx x(q+ �q):

The experimental data, neglecting the contribution of strange quarks, show that,

1Z

0

dxF ep
2 =

4
9

"u +
1
9

"d = 0:18;

1Z

0

dxF en
2 =

1
9

"u +
4
9

"d = 0:12:



12 CHAPTER 9. PROTON STRUCTURE IN QCD

Figure 9.10: Structure functionsF ep
2 in di�erent scenarios of the proton structure.

Therefore,

"u = 0:36

"d = 0:18;

and the fraction of the proton momentum not carried by quarks is,

"g = 1  "u  "d = 0:46:

Almost half of the proton momentum is carried by electrically uncharged partons. By
repeating the scattering experiments with neutrinos instead of electrons, one observes
that these uncharged partons do not interact weakly either. The parton carrying the
missing momentum is now known as thegluon , the gauge boson of QCD.
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9.4.2 Gluons and the parton model at O(�� s)

By including the gluons into the parton model, the following diagrams need to be taken
into account :

 
p


 �

!
p


 �

Looking speci�cally at the contribution of the �rst diagram, and using the kinematic
variables de�ned in the following diagram,

 

p


 �

pi = yp zpi = xp

one can show that the contribution to the proton structure function is of the form :

1
x

F 
 � q! qg
2 =

X

i

e2
i

1Z

x

dy
y

f i (y)
�

� s

2�
Pqq(x=y) log

�
Q2

� 2

��
; (9.17)

where� is a cuto� to regularize soft gluon emission and,

Pqq(z) =
4
3

�
1 + z2

1  z

�
;

is called splitting function. It is the probability of a quark to emit a gluon and reduce
momentum by a fractionz. It is obviously divergent for soft gluons (z ! 1).

From the form of Eq. (9.17), one sees thatQ2 appear explicitely, and not divided by
2M� . This logarithmic term is responsible for the phenomenon of scaling violations wo
be discussed in the next chapter.

Why did the SLAC-MIT experiment not see this violation? The e�ect of scaling violation is
only visible at extremely smallx-values which were not available at this time. The scaling
violation was indeed observed in later experiments as we will discuss in the following
sections.
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9.5 Experimental techniques

The main site dedicated to the study of the proton structure is the HERA accelerator
(DESY), shown in Fig. 9.11. It was the onlye p-collider ever built and reached the beam
energiesEe = 30 GeV and Ep = 900 GeV for electrons and protons respectively.

Figure 9.11: Schematics of the HERA accelerator at DESY.

Fig. 9.12 shows the coverage of theQ2-x-kinematic region achieved at HERA and other
experiments. The data at lowQ2 and low x allowed the observation of scaling violation
and de�nitively con�rmed the existence of the gluon as a constituent of the proton.

Fig. 9.13 shows the sketches of the H1 and ZEUS experiments at HERA, as well as the
integrated luminosity collected by ZEUS. One can notice the asymmetrical con�guration
due to the di�erent beam energies.

A typical deep inelastic scattering (DIS) event at ZEUS is shown in Fig. 9.14. One can
observe the di�erent properties of the �nal state : the quark jet deposits energy in the
hadron calorimeter, while the electron is stopped in the electromagnetic section. The
angles of the electron and hadronic system are measured in the central tracking chamber.

A \two jets" event, corresponding to the reaction,

e + p ! e + q+ �q+ X;

whereX denotes the proton remnant (whose products are visible in the forward calorime-
ter), is shown in Fig. 9.15. An interesting feature of this event is the presence of a muon
in correspondence of the jet. This muon may originate from the decay of a heavy quark.
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Figure 9.12: Coverage of theQ2-x-kinematic region at HERA.

Since scaling is no longer preserved, bothQ2 and x (or y = Q2

sx ) have to be measured.
Those can be obtained by measuring the energyE 0

e and angle� e of the scattered eletron
and using,

ye = 1  
E 0

e

2Ee
(1  cos� e)

Q2
e = 2EeE 0

e(1 + cos� e):

Fig. 9.16 shows the kinematic region measured at ZEUS while Fig. 9.17 shows the experi-
mental results for the structure functionF2 as well as the NLO QCD �ts. For low values
of x, the scaling violation appears very clearly. It is due to the inclusion of the processes
containing gluons.

Finally, Fig. 9.18 shows the measurement of the proton PDFs achieved at HERA. The
relative importance of the sea and gluon distribution can be seen to vary signi�cantly for
Q2 between 1:9 GeV2 and 10 GeV2 (note the scale reduction!). One can notice similarities
with the expectation shown in Fig. 9.10.

9.6 Parton model revisited

In the following two sections we formalize the foregoing discussion and derive the expres-
sion of the QCD improved parton model forF2(x; Q2)=x given in Eq. (9.17).

As we have seen the proton is a bound state of three quarks with strong binding. \Strong
binding" says that the quark binding energy is much larger than the light quark masses:
Ebind � mq: Compare this to the weak binding of the hydrogen atom electron:Ebind � me:
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(a) (b)

(c)

Figure 9.13:Experiments at HERA.(a) H1. (b) Luminosity integrated by the ZEUS during
its operation. (c) ZEUS.

We consider a proton with large momentum (j #�p j � mp):

p� =

 q
j #�p j2 + m2

p
#�p

!

'
�

j #�p j
#�p

�
:



9.6. PARTON MODEL REVISITED 17

Figure 9.14: DIS event recorded by the ZEUS experiment.

(a) (b)

Figure 9.15:Two jet event at ZEUS(a) Side view. (b) Transverse view.

In Sect. 7.4.2 (p. 148) we discussed asymptotic freedom, namely the fact that forQ2 �
� 2

QCD the strong coupling constant �� s � 1: In this case the quarks of the proton are asymp-
totically free and therefore deep inelastic lepton-proton scattering is not an interaction
with the whole proton but with just one of its constituents. This means that coherence
and interference are lost (one of mutually exclusive scattering events is taking place) and
deep inelastic lepton-proton scattering is an incoherent sum of lepton-quark scattering
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a)

ZEUS 1994

Figure 9.16: Kinematic phase-space measured by the ZEUS experiment.

processes (see Sect. 9.3.2 for diagrams) with the doubly di�erential cross section2

d2�
dxdQ2

=
X

q

1Z

0

d�f q(� )
d2�̂ lq

dxdQ2
(9.18)

where

� f q(� ) is a quark distribution function, i. e. the probability density of �nding a quark
with momentum �p inside a proton with momentump;

� �f q(� ) is the corresponding momentum density,

� and the hat is used to denote quantities in the lepton-quark system (to distinguish
them from lepton-proton system quantities).

Depending on strength and nature of the binding, one expects di�erent behaviors of the
momentum density�f q(� ); as is shown in Fig. 9.19 (compare also Fig. 9.10). If the proton
were pointlike the momentum density would be just a delta function,� (1  � ); enforcing
� = 1 for the one particle involved, see Fig. 9.19(a). A proton built out of threemassive
and weakly coupledquarks leads to momentum densities consisting of non-ideal delta
functions located at� = 1=3; 1=3� (1=3  � ); which are insigni�cantly smeared out due to
the ongoing exchange of binding energy between the quarks with weak, QED like coupling:

2Note that � and x are not a priori identical. Their relationship under varying assumptions is discussed
below and eventually involves QCD corrections.
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Figure 9.17: Proton structure function F p
2 measured by H1 and other experiments for

various values ofQ2 and x. Scaling violations appear forx < 10 2.

mp ' 3mq; see Fig. 9.19(b). If, however, the proton consisted of threelight and strongly
coupledquarks, mq � 1=3mp; the peaks of�f (� ) would still be located around 1=3; but,
since most energy is present in the form of potential and kinetic energy, they would be
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(a) (b)

Figure 9.18: Parton distribution functions of the proton (a) Q2 = 1:9 GeV2. (b) Q2 =
10 GeV2. The sea and gluon PDFs are reduced by a factor 20.

smeared out signi�cantly at any given instant of time, as shown in Fig. 9.19(c).

X

x

x Y Z HxL

(a) Pointlike proton.

[

\ ]

x

x ^ _ HxL

(b) Three massive, weakly interact-
ing quarks: mp ' 3mq:

1

3
1

•

• fq••  

(c) Three light, strongly coupled quarks:
mq � mp=3:

Figure 9.19:Quark momentum density�f q(� ):
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Let us consider the kinematics of the simple parton model. The on-shell condition for the
outgoing quark (see Fig. 9.20(a)) yields

m2
q = ( �p + q)2 ' 2p � q�  Q2 =

Q2

x
�  Q2 ) � =

�
1 +

m2
q

Q2

�
x ' x:

Therefore, given the assumptions made are valid, the Bjorken variablex is the momentum
fraction � of a parton inside the proton.

 
p

l(k) l(k0)

q = k  k0

q(�p)

(a)

 
q

l

q

l

(b)

Figure 9.20:(a) Kinematics of simple parton model and (b) Feynman diagram for lepton-
quark scattering.

To determine d2�̂ lq=dxdQ2 of lepton-quark scattering, we consider the Feynman diagram
in Fig. 9.20(b) which is just a crossing of the Born level diagram fore+ e ! � + �  (see
Sect. 5.10, p. 92). We therefore �nd

d�̂ lq

dt
=

2�� 2e2
q

ŝ2

�
ŝ2 + û2

t̂2

�

where the Mandelstam variables read (the subscriptep emphasizes thatsep refers to the
lepton-proton system)

ŝ = ( xp + k)2 = 2xpk = xsep

t̂ =  Q2 =  xysep = t

û =  ŝ  t̂ =  x(1  y)sep:

Note that t̂ = t depends only on the lepton kinematics. This leads to the lepton-quark
di�erential cross section

d2�̂ lq

dxdQ2
=

2�� 2e2
q

Q4

 
1 + (1  y)2

�
� (x  � ):

Inserting this result into the parton model expression for lepton-proton scattering of
Eq. (9.18) yields

d2�
dxdQ2

=
4�� 2

xQ4

X

q

1Z

0

d�f q(� )e2
q
x
2

 
1 + (1  y)2

�
� (x  � ):
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Upon comparison with the deep inelastic scattering structure functions we �nd

F2(x; Q2) =
X

q

e2
qxf q(x)

FL (x; Q2) = F2(x; Q2)  2xF1(x; Q2) = 0

where FL is called longitudinal structure function. We recognize thatF2(x; Q) = F2(x)
ceases to be a function of two variables, but under the assumed conditions depends only
on one variable, a phenomenon generally referred to as scaling. Furthermore,FL = 0 ,
2xF1 = F2 is the Callan-Gross relation, a consequence of quarks having spin 1/2 familiar
from Sect. 9.3.3.

Before we go on we introduce the following notation for the distribution functions

f q(x) = q(x) (q = u; d; s; c; : : : ;�u; : : : )

f g(x) = g(x) (gluons):

9.7 QCD corrections to the parton model

Our discussion of the parton model involved no QCD corrections up to now; it rested on
the assumption of electromagnetic interactions alone. QCD corrections will concern the
quark part of our diagram. Within the parton model we just found

 q


 ?

q
=

4��e 2
q

ŝ
� (x  � ) =: �̂ 0� (x  � ) (9.19)

and

F2(x; Q2)
x

=
X

q

1Z

0

d�
�

q(� )e2
q �

�
1  

x
�

�
(9.20)

where ^� 0 is the QED contribution which drops out of the structure functions.

The O(� s) = O(g2
s) QCD corrections are given by

�
�
�
�
�
�
�
 

+

 

�
�
�
�
�
�
�

2

and 2Re

�
�
�
�
�
�
�
 

�

 

�
�
�
�
�
�
�
;

i. e. gluon radiation and virtual gluon exchange. The one-loop virtual gluon interference
term stems from the loop corrections to the quark-photon vertex squared atO(g2

s): As an
example, consider the process
 ?q ! qg (which is a crossing of
 ? ! q�qg):

jMj 2 = 32� 2(e2
q�� s)CF

�
 

t̂
ŝ

 
ŝ

t̂
+

2ûQ2

ŝt̂

�
:
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This expression forjMj 2 is unproblematic for smallŝ; sinceŝ is �xed. However, a prob-
lem arises at small̂t; since we have to integrate over it as it is a dynamic variable (see
Sect. 3.3.2, p. 26).

For small scattering angles t̂ � ŝ and we have

p2
T =

ŝ( t̂)
ŝ + Q2

for the transverse momentum of the outgoing gluon. Eliminating the Mandelstam variable
û; the di�erential cross section becomes

d�̂
dp2

T
=

1
16� ŝ2

jMj 2 ' �̂ 0
� s

2�
CF

�
 

1

t̂ŝ

�
ŝ +

2(ŝ + Q2)Q2

ŝ

��
:

By introducing the dimensionless variable

z =
x
�

=
Q2

2pq � q
=

Q2

ŝ + Q2
;

we arrive at

d�̂
dp2

T
= �̂ 0

1
p2

T

� s

2�
Pqq(z)

where

Pqq(z) = CF
1 + z2

1  z

(compare Sect. 9.4.2). Note that in the simple parton model we hadpq = �p which is no
longer the case when QCD corrections are taken into account.

To �nd the inclusive cross section, we have to integrate over the transverse momentum
squared:

�̂ 
 ? q! qg

�̂ 0
=

� s

2�
Pqq(z)

Q2Z

� 2

dp2
T

p2
T

=
� s

2�
Pqq(z) log

Q2

� 2

where the infrared cuto� � 2 has been introduced because of the collinear singularity at
p2

T ! 0: The rationale is to later de�ne observables in a way that allows to send� 2 ! 0
(compare also Sect. 8.2.1, p. 160). Having calculated the QCD corrections atO(� s) to the
structure function in Eq. (9.20), we can state the resulting corrected expression:

F2(x; Q2)
x

=
X

q

1Z

x

d�
�

q(� )e2
q

�
�
�

1  
x
�

�
+

� s

2�

�
Pqq

� x
�

�
log

Q2

� 2
+ �nite

�
+ O(� 2

s)
�

(9.21)
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which leads to some interesting consequences.3 Observe that we found an equality of
a measurable and hence �nite quantity (after all,F2 is just a speci�c coe�cient in the
parametrization of a cross section) and an expression which is divergent at the given order
of perturbation theory. Since the LHS of Eq. (9.21) is �xed, the problem has to be tackled
on its RHS. As a starting point, recall that we justi�ed the form of the quark distribution
functions by asymptotic freedom and neglected QCD interactions among the quarks in the
�rst place. When QCD corrections are taken into account, the naive parton model is no
longer valid. Therefore, it is necessary to rede�ne the parton distribution functions such
that they are well-de�ned for the case of interacting quarks. This amounts to a rede�nition
of the quark distribution in the infrared region and is called mass factorization of the quark
distribution:

q(x; � 2
F ) = q(x) +

� s

2�

1Z

x

d�
�

q(� )Pqq

� x
�

�
log

� 2
F

� 2
(9.22)

whereq(x; � 2
F ) is a measurable, screened quark density,q(x) denotes the bare (unphysical)

quark density, and the integral term is the contribution from unresolvable gluon radiation
with transverse momentum� 2

F � p2
T � � 2 where � 2

F is the mass factorization scale
at which the quark distribution is measured. Recall that the infrared cuto� � 2 can be
chosen arbitrarily small|smaller than any given detector resolution. At su�ciently small
scattering angles the emitted gluon cannot be resolved by the detector as it appears to
be parallel to the proton remnants. Two-jet events in deep inelastic scattering can only
be excluded in the momentum range where they could be detected. Therefore, the quark
distribution q(x; � 2

F ) admits gluon radiation below a prede�ned resolution scale� F :

Let us solve forq(x) in Eq. (9.22) and plug it into the QCD corrected structure function
in Eq. (9.21), we have

F2(x; Q2)
x

=
X

q

1Z

x

d�
�

q(�; � 2
F )e2

q

(

�
�

1  
x
�

�
+

� s

2�
Pqq

� x
�

�
log

Q2

� 2
 

� s

2�
Pqq

� x
�

�
log

� 2
F

� 2

)

=
X

q

1Z

x

d�
�

q(�; � 2
F )e2

q

(

�
�

1  
x
�

�
+

� s

2�
Pqq

� x
�

�
log

Q2

� 2
F

)

which is independent of the infrared cuto� � 2 and �nally, setting � 2
F = Q2 as in deep

inelastic scattering experiments,

=
X

q

q(x; Q2)e2
q:

Perturbative QCD is used to answer the question how theQ2 dependence of the quark
distribution q(x; Q2) looks like.

3One can observe, as was done before, that because of QCD corrections to the naive parton model
scaling no longer holds, sinceF2(x; Q2) ceases to be a function of the single variablex alone.
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9.8 Altarelli-Parisi equations

The bare quark distribution q(x) is independent of� 2
F :

� 2
F

d
d� 2

F
q(x) = 0 :

Di�erentiating Eq. (9.22) with respect to log � 2
F we thus obtain the renormalization group

equation4 for the quark distribution:

@q(x; � 2
F )

@log� 2
F

=
� s

2�

1Z

x

d�
�

q(�; � 2
F )Pqq

� x
�

�
(9.23)

which means that scaling invariance is logarithmically violated.

Eq. (9.23) is known as theDokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
equation, or simply Altarelli-Parisi evolution equation. It is a small-p2

T approximation,
which resums the collinear gluon radiation in the initial state atO(� n

s logn Q2).

 

q(x0; Q2
0)

q(x1 � x0; Q2
1 > Q 2

0)

q(x2 � x1; Q2
2 > Q 2

1)

q(x � xn ; Q2 > Q 2
n )

This diagram is a universal correction, since the emitted gluons do not know about the
scattering process of the quark o� the virtual photon. The DGLAP equation tells us what
happens if one in�nitesimally increases the resolution. It is an integro-di�erential equation
with one \initial condition" q(x; � 2

F = � 2
0). Knowing the latter, one can compute the quark

distribution at any value of � 2
F . The procedure is analogous to the determination of the

running coupling of QED (Sect. 6.1.2, p. 102) or QCD (Sect. 7.4.2, p. 148).

In using Eq. (9.23) we omitted until now, the fact that Pqq(z) has a singularity in z = 1,
which belongs to the integration domain. This singularity corresponds to the emitted

4For a concise discussion of this topic see [2, pp. 28].
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gluon becoming soft. It is compensated by a singularity in the virtual corrections. As a
result, Pqq(z) is modi�ed to become,

Pqq(z) = CF

�
1 + z2

(1  z)+
+

3
2

� (1  z)
�

;

which takes into account the virtual corrections occuring atz = 1. We use the `+'-
presciption, coming from the reguarisation procedure and de�ned by,

1Z

0

dz
f (z)

(1  z)+
=

1Z

0

dz
f (z)  f (1)

1  z
: (9.24)

The factor in front of the � -function can be inferred from the quark number conservation,
which can be stated as,

1Z

0

dzPqq(z) = 0 : (9.25)

Up to now, we considered only gluon radiation o� a quark. However, the emission history
can be made more complicated with gluons at intermediate stages of the parton cascade,

 

By inspection, one can �nd out that there are four di�erent splitting processes atO(� s) :

� q ! q :

 

p zp

! Pqq(z) = CF

�
1 + z2

(1  z)+
+

3
2

� (1  z)
�

; (9.26)
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� q ! g :

 

p zp

! Pgq(z) = CF

�
1 + (1  z)2

z

�
; (9.27)

� g ! q :

 

p zp

! Pqg(z) = TF
 
z2 + (1  z)2

�
; (9.28)

� g ! g :

 

p zp

! Pgg(z) = 2 CA

�
z

(1  z)+
+

1  z
z

�
+

�
11
6

CA  
3
2

TF nf

�
� (1  z):

(9.29)

Those splitting functions satisfy a set of coupled DGLAP equations,

@
@log� 2

F

�
q(x; � 2

F )
g(x; � 2

F )

�
=

� s(� 2
F )

2�

1Z

x

dz
z

�
Pqq(z) Pqg(z)
Pgq(z) Pgg(z)

� �
q

 
x
z ; � 2

F

�

g
 

x
z ; � 2

F

�
�

: (9.30)

In this equation, � s
2� Pji (z) is the probability for i ! j splitting with momentum fraction

z in the transverse momentum interval [log� 2
F ; log� 2

F + d log� 2
F ].

For nf quark 
avours, we get 2nf +1 coupled equations (antiquarks must be taken explic-
itly into account). This system can be diagonalized be introducing (i labels the 
avour),

� nf valence quark distributions

qV
i = qi  �qi ; (9.31)

� nf  1 
avour non-singlet quark distributions

qF
i =

i  1X

n=1

(qn + �qn  qi  �qi ); (9.32)

� 1 
avour singlet quark distribution

qS =
n fX

n=1

(qn + �qn ): (9.33)
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We also de�ne the convolution,

(P 
 q)(x; � 2
F ) =

1Z

x

dz
z

P(z)q
� x

z
; � 2

F

�
;

allowing us to write,

@qVi
@log� 2

F
=

� s

2�
Pqq 
 qV

i (9.34)

@qFi
@log� 2

F
=

� s

2�
Pqq 
 qF

i (9.35)

@qS

@log� 2
F

=
� s

2�

 
Pqq 
 qS + 2nf Pqg 
 g

�
(9.36)

@g
@log� 2

F
=

� s

2�

 
Pgq 
 qS + Pgg 
 g

�
: (9.37)

The factor 2nf in Eq. (9.36) comes from the fact that one needs to consider quarks
and antiquarks of all possible 
avours. This set of equations only includes leading order
corrections that are precise at 15%. The data obtained in the last years yield however
results to the 5% precision, so that correction from higher orders need to be taken into
account.

At NLO, O(� n
s logn 1 Q2), the �nite term from the O(� s)-processes is relevant,

�
�
�
�
�
� 

+
 

�
�
�
�
�
�

2

This translates in the expressions for the structure functions,

1
x

F2(x; Q2) =

1Z

x

d�
�

(
X

q

q
 
�; Q 2

�
�
�

�
1  

x
�

�
+

� s

2�
C2;q

�
x
�

��
+ g(�; Q 2)

� s

2�
C2;g

�
x
�

� )

(9.38)

FL (x; Q2) = O(� s) 6= 0 (9.39)

We now need to computeO(� 2
s)-corrections to the spitting functions Pji . At this

order, there is essentially one new spitting process with two quark-gluon vertices,

 

i j

!

i j
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At O(� s), we had implicitly PV
qq = PF

qq = PS
qq = Pqq in Eqs. (9.34), (9.35) and (9.36). This is

no longer true atO(� 2
s), where all these splitting functions are di�erent from one another.

At even higher orders, no essentially new features appear, so that NLO calculations lead
already quite acceptable results. These are of crucial importance forW and Z production
at hadron colliders.

9.9 Solution of DGLAP equations

Looking at the set (9.30) of coupled DGLAP integro-di�erential equations one can expect
that solving it could be a highly non-trivial task. There are basically two approaches to
attack the problem :

1. Numerical solution, e.g. with the Runge-Kutta method. This approach is yielding
satisfactory results forQ2

0 & 2 GeV, i.e. in the asymptotically free regime, where
� s(Q2

0) � 1,

2. Analytically, by using Mellin tranformation. This approach is especially useful to
obtain a quantitative understanding and to determine the asymptotic properties.

In both cases we have to start from given initial distributionsqi (x; Q2
0); �qi (x; Q2

0); g(x; Q2
0).

Mellin transformation The Mellin transform of a function f : [0; 1] ! R is given by,

f (n) = M [f (x)] =

1Z

0

dxxn 1f (x); (9.40)

with inverse

f (x) =
1

2�i

a+ i 1Z

a i 1

dnx n f (n); (9.41)

for f (n) analytical in the half plane Ren > a .

We list here some of the properties of Mellin transformations:

M [af (x) + bg(x)] = af (n) + bg(n) (linearity) (9.42)

M
�

dk

dxk
f (x)

�
= (  1)n k  ( n)

 ( n  k)
f (n  k) (derivative) (9.43)

M [(f 
 g)(x)] = f (n)g(n) (convolution) (9.44)
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Armed with this new technology, we Mellin transform Eq. (9.34) with respect to thex
variable to get (the following analysis is valid for the valence and 
avour non-singlet quark
distribution, thus, we drop the i , V=F for notational convenience),

@q(n; � 2
F )

@log� 2
F

=
� s(� 2

F )
2�

Pqq(n)q(n; � 2
F ): (9.45)

Using the evolution equation for� s (Sect. 7.4.2, p. 151) in the leading order approximation,

1
� s

@�s
@log� 2

F
=

@log� s

@log� 2
F

=  
� 0

4�
� s;

one gets,

@q(n; � 2
F )

@log� s
=  

2
� 0

Pqq(n)q(n; � 2
F )

@logq(n; � 2
F )

@log� s
=  

2
� 0

Pqq(n); (9.46)

which can now be solved by integrating from� 2
F = Q2

0 to Q2,

q(n; Q2) = q(n; Q2
0)

�
� s(Q2

0)
� s(Q2)

� 2
� 0

Pqq (n)

;

or, in the usually known form, using Eq. (7.44), p. 152,

q(n; Q2) = q(n; Q2
0)exp

�
2
� 0

Pqq(n) log
log(Q2=� 2)
log(Q2

0=� 2)

�
: (9.47)

This is the solution for the quark valence and 
avour non-singlet distributions.

We now turn to the two remaining distributions, namely the quark singlet and and gluon
distributions. Mellin transforming Eqs. (9.36) and (9.37) yields,

@
@log� 2

F

�
qS(n; � 2

F )
g(n; � 2

F )

�
=  

2
� 0

�
Pqq(n) 2nf Pqg(n)
Pgq(n) Pgg(n)

� �
qS(n; � 2

F )
g(n; � 2

F )

�
: (9.48)

The �rst step is the diagonalization of the matrix,
�

Pqq(n) 2nf Pqg(n)
Pgq(n) Pgg(n)

�
:

Then one applies the same formalism as for the valence quark distribution discussed above.
By inverse Mellin transformation, one gets the result in the variablex.

Speci�c values ofn correspond to various physical quantities. For example,Pqq(n = 1) = 0
is the Mellin transform of Eq. (9.25) andq(n = 2) corresponds to the fraction of the total
momentum transported by the quarkq. One has the momentum sum rule,

qS(2; Q2) + g(2; Q2) = 1 :
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with the asymptotic values,

qS(2; Q2 ! 1 ) !
3nf

16 + 3nf

n f =5
=

15
31

g(2; Q2 ! 1 ) !
16

16 + 3nf

n f =5
=

16
31

:

9.10 Observables at hadron colliders

We now study processes and observables at hadron colliders and the consequences of
parton evolution in this context.

The simple parton model cross section for processes at hadron-hadron colliders reads

� pp =
X

i;j 2f q;gg

Z
dx1dx2f i (x1)f j (x2)�̂ ij ! X (sij = x1x2spp); (9.49)

i. e. two partons enter into a hard collision from which a �nal stateX emerges, as shown
in Fig. 9.21(a).

 p(p2)

p(p1)

j (x2p2)

i (x1p1)

X�̂

(a)

 

q

�q

 ?

�  

� +

(b)

Figure 9.21:(a) Hadron-hadron collision in naive parton model and (b) Drell-Yan process.

As an example consider the Drell-Yan process,pp ! � + �  ; shown in Fig. 9.21(b). The
parton model cross section reads

� DY =
X

q

Z
dx1dx2 [q(x1)�q(x2) + q(x2)�q(x1)] �̂ q�q! � + �  (9.50)
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where

�̂ q�q! � + �  =
4�� 2

3sq�q

1
3

| {z }
�̂ DY

0

e2
q � (1  x1x2spp=M 2

� + �  ) (9.51)

which we basically already calculated before (Sect. 5.10, p. 92). The di�erence to the
e+ e ! � + �  result is the color factor of 1=3 and the delta function which states that
the muon pair invariant mass ful�lls (p� + + p�  )2 =: M 2

� + �  = x1x2spp:

The following QCD corrections have to be included:

 

q

�q


 ?

�  

� +

g  
q

g


 ?
�  

� +

q

 


 ?

�  

� +

where the �rst two diagrams are because of parton evolution and the third diagram is a
virtual correction. Setting z = x1x2spp=M 2

� + �  ; the QCD corrected Drell-Yan cross section
reads

� DY = �̂ DY
0

X

q

e2
q

Z
dx1dx2

n
q(x1)�q(x2)� (1  z) +

� s

2�
Cq�q(z)

+ [ q(x1) + �q(x1)] g(x2)
� s

2�
Cqg(z) + ( x1 $ x2)

o

whereq(x i ) etc. are the QCD evolved parton distributions.

In the following some standard reactions are listed.

� W � ; Z 0 production
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�q

q

W � ; Z 0

� 
 + jet production

 
g

q

q




 
�q

q

g




� 2-jet production

 
�q

q

�q

q

 
�q

q

g

g

Further processes leading to 2-jet events areqg ! qg; gg ! gg; gg ! q�q and
qq! qq:

Examples for relevant processes in searches for new physics:

� Higgs production

 

t

�t

H

g

g

� SUSY particles
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g

q

~q

~g

A general feature of hadron-hadron colliders is that
p

sparton-parton is variable since the
parton momentum fractions vary.5 This allows to search for peaks in mass spectra at
�xed collider energy. An example for this e�ect is theZ 0 peak in the � + �  spectrum of
SPS at CERN (compare also Sect. 4.4.4, p. 51).

9.11 Multiparticle production

Describing multijet �nal states in QCD is problematic because of two reasons.

� Factorial growth of the number of diagrams
E. g. for gg ! ng the number of diagrams # scales with the number of �nal state
gluonsn in the following way:

n 2 3 4 5 6 7
# 4 25 220 2485 34300 559405.

These numbers illustrate that a computation even on the amplitude level is time-
consuming.

� Complexity of the �nal state phase space
In addition to the aforementioned problem, the �nal state phase space has high
dimension and the integrations are constrained in various ways.

These problems can be approached by introducing approximate descriptions. One uses the
fact that jMj 2 is largest if partons are emitted into soft (E ! 0) or collinear (� ij ! 0)
regions of phase space. Therefore, the dominant contributions stem from these phase space
regions.

5Compare this to the e+ e case where the center of mass energy of the actual collision is �xed by the
collider energy: s = ŝ:
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Let us analyze a collinear parton shower. Consider the shower subgraph

 

a

� c

� b

c

b

wherep2
a � p2

b; p2
c and p2

a = t: The opening angle is� = � b + � c and the energy fractions
are

z =
Eb

Ea
1  z =

Ec

Ea
: (9.52)

For small angles we have

t = 2EbEc(1  cos� ) = z(1  z)E 2
a � 2 (9.53)

� b

1  z
=

� c

z
= �: (9.54)

For � ! 0 the matrixelement factorizes as

jM n+1 j2 =
4g2

s

t
CF Fqq(z)jM n j2

where

Fqq(z) =
1 + z2

1  z
= Pqq(z < 1):

Analogous splittings involveFqg; Fgq; and Fgg:

Also the phase space factorizes:

d� n = : : :
d3pa

2Ea(2� )3

d� n+1 = : : :
d3pb

2Eb(2� )3

d3pc

2Ec(2� )3
:
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Sincepc = pa  pb; we haved3pc = d3pa for �xed pb: For small � this yields6

d� n+1 = d� n
1

2(2� )3

Z
EbdEb� bd� bd�

dz
1  z

� (z  Eb=Ea)dt� (t  EaEb� 2)

= d� n
1

4(2� )3
dtdzd�

(recall Eq. (9.52) and (9.53)).

Since the matrixelement and the phase space factorize, so does the cross section:

d� n+1 = d� n
dt
t

dz
d�
2�

� s

2�
CF F (z):

Therefore, multiple emission processes like

 


 ?(Q)

t1 < Q 2

t2 < t 1

tc < t n

�q

z1 < 1

z2 < z 1

q

where tc is a cuto� scale at which hadronization sets in,tc & � 2
QCD ; can be subdivided

into fundamental steps in (t; z) space:

 

(t1; z1) (t2; z1)

(t2; z2)
A Monte Carlo method to generate a corresponding set of �nal state partons proceeds as

6One observes that

d� n +1 = : : :
d3pb

2Eb(2� )3

d3pc

2Ec(2� )3 = d� n
Ea

Ec

d3pb

(2� )32Eb

' d� n
Ea

Ec

EbdEb

2(2� )3 � bd� bd� = d� n
1

1  z
EbdEb

2(2� )3 � bd� bd�:

And the Jacobian determinant is just 2zEa � b=(1  z).
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follows: Starting from a simple �nal state (e. g.e+ e ! q�q); generate additional partons
step-by-step while admitting only visible (i. e. non-soft) emission:

z > " (t) (1  z) > " (t)

where"(t) can be expressed in the following way:

p2
a = t and p2

b; p2
c > t c

p2
T = z(1  z)p2

a  (1  z)p2
b  zp2

c > 0

) z(1  z) >
tc

t

) " (t) =
1
2

 
1
2

r

1  4
tc

t
'

tc

t

which means that the threshold"(t) gets more strict for decreasingt:

Let us de�ne the Sudakov form factor �( t)

�( t) = exp

8
><

>:
 

tZ

tc

dt0

t0

1 " (t0)Z

" (t0)

dz� sCF Fqq(z)

9
>=

>;

which is the probability for a parton to evolve fromt to tc without emission of another
parton. Observe that

�( tc) = 1

and the probability for a parton to evolve fromt1 ! t2 without emission of another parton
is given by

R(t1; t2) =
�( t1)
�( t2)

:

The Monte Carlo procedure is now as follows.

0. Starting point (t1; z1)

1. Generate a random numberR 2 ]0; 1[.

2. Solve �( t1)=�( t2) = R for t2.

� For �( t1) > R :
�( t2) > 1: t2 < t c: no emission, parton saved for �nal state
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� For �( t1) < R :
Generate further random numberR0 2 ]0; 1[ and solve

z2=z1Z

" (t2 )

dz
� s

2�
P(z) = R0

1 " (t2 )Z

" (t2 )

dz
� s

2�
F (z)

for z2.

3. Use the two new partons
�

(t2; z2);
�

t2;
z1  z2

z1

� �

as starting point for another Monte Carlo step (see Fig. 9.22).

4. Repeat steps 1 to 3 until all partons ful�ll t i < t c.

This procedure generates events with the same probabilities as in experiment and produces
a list of �nal state particles which allows to perform the same analyses as on experimental
data. This is how one arrives at the \theory curves" shown e. g. in some of the plots in
Chap. 8.

 

t1

t2

t2

z1

z1  z2
z1

z2

Figure 9.22:Starting point for second Monte Carlo step.


