
Chapter 11

Electroweak interactions

Literature:

• Böhm/Denner/Joos [11]

In this chapter a unified theory of electromagnetic and weak interactions is discussed.
The energy scale of this unification corresponds to the mass of the vector bosons: EEW ∼
MW , MZ ∼ 100GeV. At low energies, in contrast, there are two distinct interactions,
the electromagnetic interaction described by QED, and the weak interaction described by
Fermi’s theory. Some signals are also present in low energy atomic physics, e. g. electroweak
interference and parity violation.

11.1 Introduction – the weak force

A comparison of strong, electromagnetic and weak interactions is given in the following
table:

Interaction Involved ∼ τ/s

Strong quarks 10−23

Electromagnetic charged leptons and quarks 10−16

Weak all leptons and quarks 10−6 − 10−8

One can observe that the timescales involved in weak decays are much larger than the
ones of strong or electromagnetic decays. Thus, since τ ∼ 1/coupling2, the weak coupling
is supposed to be some orders of magnitude smaller than the strong coupling (see also
Sect. 7.3.3).

Weak processes are classified according to the leptonic content of their final state:

• Leptonic.
E. g. µ+ → e+ + ν̄µ + νe; νe + e− → νe + e−.
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88 CHAPTER 11. ELECTROWEAK INTERACTIONS

• Semi-leptonic.
E. g. τ+ → ρ+ + ν̄τ .

• Hadronic (non-leptonic).
E. g. K0 → π+ + π−; Λ0 → n+ π0.

The weak interaction violates parity (P ) and charge conjugation (C) symmetry. It also
violates CP and T, much more weakly, though. Also flavor is not conserved in weak
interactions (see Sect. 7.3.2). If mν 6= 0, neutrino oscillations occur and lepton family
number is not conserved either.

Let us review some of the experimental results for the weak interaction.

Existence of neutrinos. Consider nuclear β− decay, assuming a two-particle final
state: n→ p+ e−. Since me � mn, mp, the recoil can be neglected and so

mn = Ep + Ee

mn ' mp + pe

pe ' mn −mp.

This result means that for a two-body decay monoenergetic electrons are to be expected.
However, the measured electron spectrum is continuous (see Fig. 11.1(a)). To solve this
problem, Fermi and Pauli introduced an invisible neutrino carrying part of the decay
energy: n → p + e− + ν̄e (see Fig. 11.1(b)). The Fermi theory amplitude for this process
reads

M =
GF√
2
(ψ̄pγ

µψn)(ψ̄eγµψν̄), (11.1)

where GF ∼ 1/(300GeV)2 is the Fermi constant. Note that the expression in Eq. (11.1)
has vector structure and therefore does not violate parity. This point will be revisited
later on.

Leptonic decays of π±. Since π± is the lightest hadron, it cannot decay into other
hadrons. Furthermore, electromagnetic decay (like in the case of π0 → γγ) is forbidden
by charge conservation. Thus no other channels are obscuring the study of the leptonic
decay π+ → µ+ + νµ.

Non-observation of µ→ e+γ. Although energetically possible, the decay µ− → e−+γ
is not observed in experiment. This leads to the introduction of a new quantum number
called lepton number L, where

Ll = 1 e−, µ−, νe, . . .

Ll̄ = −1 e+, µ+, ν̄e, . . . .

The leptonic muon decay conserving lepton number per family reads µ− → e− + νµ + ν̄e.
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Figure 11.1: β− decay spectrum (a) and diagram (b). (a) shows an electron momentum
spectrum for the β− decay of 64Cu, source: [12, p. 14].

Parity violation. One famous instance of parity violation is the so-called τ -θ puzzle
(1956). It consists in the finding that the Kaon K+ decays into two final states with
opposite parity:

K+

{

θ → π+π0

τ → π+π+π−

P |ππ〉 = (−1)(−1)(−1)l = +1

P |πππ〉 = (−1)3(−1)lπ1π2 (−1)lπ3 = −1,

where l denotes angular momentum eigenvalues. The above is true for JK+ = 0, since then,
by conservation of angular momentum, l = 0 and lπ1π2 ⊕ lπ3 = 0 such that lπ1π2 = lπ3 .
Lee and Young introduced the idea that θ and τ are the same particle K+ (fitting into
its multiplet, see Fig. 7.6) which undergoes a flavor changing decay.

Another famous example for the demonstration of parity violation in weak interactions
is the Wu experiment (1957). The idea is to consider β decay of nuclei polarized by an
external magnetic field:

60
Co

︸︷︷︸

J=5

→
60
Ni

 

︸ ︷︷ ︸

J=4

+ e
−

+ ν̄e
︸ ︷︷ ︸

Jz=1

 B

The Cobalt nuclei are aligned to the external magnetic field and are in a state with
J = 5. By conservation of angular momentum, the electron and neutrino spins have to
be parallel (the decay product 60Ni? is fixed). Since, to fulfill momentum conservation,
they are emitted in opposite directions, the electron and its neutrino must have opposite
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chirality. It is observed that electrons are emitted preferentially opposite to the
#»

B field
direction:

Γ
(

60Co→ 60Ni? + e−L + ν̄e,R

)

>Γ
(

60Co→ 60Ni? + e−R + νe,L

)

= P
{

Γ
(

60Co→ 60Ni? + e−L + ν̄e,R

)}

.

Thus left-handed leptons and right-handed antileptons (e−L , ν̄e,R) are preferred over right-
handed leptons and left-handed antileptons (e−R, ν̄e,L). Recall (Sect. 5.2.4) that one uses
the projectors PR

L

= 1
2
( ± γ5) to indicate the chirality basis: uL,R = PL,Ru.

These observations gave rise to the V − A theory of weak interactions, described in
Sect. 11.3 below.

11.2 γ5 and εµνρσ

Recall that the amplitude in Eq. (11.1) does not violate parity. Therefore it has to be
modified such that parity violation is included. To achieve this aim, the matrix γµ which
forms the vector ψ̄γµψ has to be replaced by a linear combination of elements of the set

{ , γµ, σµν , γ5γ
µ, γ5}

where σµν = i
2
[γµ, γν ] and γ5 = iγ0γ1γ2γ3. Using these matrices we can form the following

field bilinears whose names are inspired by their transformation behavior under proper
and improper Lorentz transformations1

ψ̄ψ scalar

ψ̄γµψ vector

ψ̄σµνψ tensor

ψ̄γ5ψ pseudoscalar

ψ̄γµγ5ψ pseudovector.

In Sect. 5.2.4 we discussed operators on spinor spaces, including helicity,

h =
1

2
#»σ ·

#»p

| #»p | ⊗  P± =
1

2
( ± h),

and chirality,

γ5 PR
L

=
1

2
( ± γ5).

Recall that in the high energy limit chirality and helicity have the same eigenstates.

The chirality matrix γ5 has the following useful properties (see also Sect. 5.9)

1See e. g. [13, p. 64].
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• γ2
5 =  ;

• {γ5, γµ} = 0;

• γ†5 = iγ3γ2γ1γ0 = γ5;

• Trγ5 = 0;

• Dirac-Pauli representation: γ5 =

(

0  

 0

)

.

Now let us define the totally antisymmetric ε tensor in four dimensions:

εµνρσ =











+1, {µ, ν, ρ, σ} even permutation of {0, 1, 2, 3}
−1, {µ, ν, ρ, σ} odd permutation of {0, 1, 2, 3}
0 else

, (11.2)

such that

ε0123 = +1

εµνρσ = −εµνρσ.

The product of two such ε tensors is then given by

εµνρσεµ′ν′ρ′σ′ = − det









gµµ′ gµν′ gµρ′ gµσ′

gνµ′ gνν′ gνρ′ gνσ′

gρµ′ gρν′ gρρ′ gρσ′

gσµ′ gσν′ gσρ′ gσσ′









resulting in

εµνρσεµν
ρ′σ′ = −2(gρρ′gσσ′ − gρσ′gσρ′)

εµνρσεµνρ
σ′ = −6gσσ′

εµνρσεµνρσ = −24 = −4!.

Using the definition in Eq. (11.2), one can express γ5 as

γ5 = iγ0γ1γ2γ3 = − i

4!
εµνρσγ

µγνγργσ.

Here are some traces involving γ5:

• Trγ5 = 0;

• Tr(γ5γ
µγν) = 0;
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• Tr(γ5γ
αγβγγγδ) = −4iεαβγδ

Observe that interchanging two matrices in the trace above yields a minus sign,
furthermore the trace vanishes if two indices are identical. Hence the trace is pro-
portional to the ε-tensor:

aεαβγδ = Tr(γ5γ
αγβγγγδ).

Multiplying both sides by εαβγδ yields

−24a = Tr(γ5γ
αγβγγγδ)εαβγδ

= 24iTr(γ5γ5 =  )

⇒ a = −4i.

11.3 The V − A amplitude

The correct linear combination of bilinears replacing the vector ψ̄γµψ in Eq. (11.1) in
order to achieve parity violation turns out to be the “vector minus axialvector”, or V −A,
combination ψ̄γµψ − ψ̄γµγ5ψ.

2

Adjusting the amplitude in Eq. (11.1) accordingly yields for the β− decay amplitude

M(n→ pe−ν̄e) =
GF√
2
[ūpγ

µ( − γ5)un][ūeγµ( − γ5)uνe
] (11.3)

and analogously for the muon decay

M(µ− → νµe
−ν̄e) =

GF√
2
[ūνµ

γµ( − γ5)uµ][ūeγµ( − γ5)uνe
]. (11.4)

Let us analyze the general form and properties of V − A amplitudes. Their structure is
that of a current-current interaction:

M =
4√
2
GFJ

µ
i J

†
j,µ (11.5)

where

Jµ
i = ūi0γ

µ1

2
( − γ5)ui− (11.6)

J†j,µ = ūj−γµ
1

2
( − γ5)uj0 . (11.7)

Note the following properties of this kind of amplitudes:

2An axialvector is a pseudovector, since the prefix “pseudo” is used for cases where an extra minus
sign arises under the parity transformation (in contrast to the non-pseudo case).
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1. γµ( − γ5) selects left-handed fermions,

γ5uL = γ5PLu = γ5
1

2
( − γ5) = −

1

2
( − γ5)u = −uL,

and right-handed antifermions, as desired.

2. GF is universal.

3. Parity and charge conjugation alter the outcome of experiments, but here CP is
conserved:

Γ
(

π+ → µ+
R + νL

)

6= Γ
(

π+ → µ+
L + νR

)

/P 7

Γ
(

π+ → µ+
R + νL

)

6= Γ
(

π− → µ−R + ν̄L

)

/C 7

Γ
(

π+ → µ+
R + νL

)

= Γ
(

π− → µ−L + ν̄R

)

CP 3.

11.4 Muon decay – determination of GF

Consider the decay

µ−(p)→ e−(p′) + ν̄e(k
′) + νµ(k),

see Fig. 11.2. The amplitude is given by

M =
GF√
2
[ū(k)γµ( − γ5)u(p)][ū(p

′)γµ( − γ5)v(k
′)].

Recall that the differential decay rate reads

dΓ =
1

2Eµ

|M|2(2π)4dR3(p
′, k, k′)

where

dR3(p
′, k, k′) =

d3p′

(2π)32Ep′

d3k

(2π)32Ek

d3k′

(2π)32Ek′
δ(4)(p− p′ − k − k′).

For mν = me = 0 this yields

dΓ

dEp′
=
mµG

2
F

2π3
m2

µE
2
p′

(

3− 4Ep′

mµ

)

and

Γ =

mµ/2
∫

0

dEp′
dΓ

dEp′
=
G2

Fm
5
µ

192π3
=
1

τ
.
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Figure 11.2: Leptonic muon decay.

The measured muon lifetime is

τ = 2.1970 · 10−6 s = 2.9960 · 10−10 eV;

assuming a muon mass of

mµ = 105.658 · 106 eV,

this yields

GF = 1.166 · 10−5GeV−2 ' 1

(300GeV)2

which is a dimensionful ([GF ] = m−2) quantity. This hints to the fact that there are some
problems with Fermi’s theory:

1. It deals with massless fermions only.

2. It is not renormalizable. This problem, along with the dimensionful coupling, is
typical for an effective theory, a low energy approximation of a more general theory,
in this case the GWS theory.

3. It violates unitarity at high energies. E. g. one finds that the cross section for
electron-neutrino scattering is divergent for ECM →∞:

σe−+νe→e−νe =
4G2

F

π
E2

CM.

One can show that the optical theorem yields the following unitarity constraint
for the S-wave: G2

F s
2 . 1. Thus Fermi’s theory is a good approximation only for√

s . 1/
√
GF and it breaks down for higher energies.
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11.5 Weak isospin and hypercharge

From the earlier analysis, we consider the currents of the weak interaction as charged
currents 3,

jµ = j+
µ = ūνγµ

1

2
(1− γ5)ue = ν̄γµ

1

2
(1− γ5)e = ν̄LγµeL =

 

W+

e−

νe

j†µ = j−µ = ūeγµ
1

2
(1− γ5)uν = ēγµ

1

2
(1− γ5)ν = ēLγµνL =

 

W−

νe

e−

.

These currents correspond to transitions between pairs of fermions whose charge differs
by one unit. For this reason, one speaks of charged currents (CC). These two currents
are the ones associated with (weak) decays of muons and neutrons.

In analogy to the case of isospin, where the proton and neutron are considered as the two
isospin eigenstates of the nucleon, we postulate a weak isopin doublet structure (T = 1

2
),

χL =

(

ν
e

)

L

T3 = +1
2

T3 = −1
2

, (11.8)

with raising and lowering operators,

τ± =
1

2
(τ1 ± iτ2),

where the τi are the usual Pauli matrices. With this formalism, one can write the charged
currents as,

j+
µ = χ̄Lγµτ+χL (11.9)

j−µ = χ̄Lγµτ−χL (11.10)

The next step consists in postulating an SU(2) symmetry of these currents. In the case
of isospin, this leads to the prediction of three currents mediated by the pions π±, π0. We
thus expect a third current to exist, which does not change the charge and is thus called
neutral current (NC),

j3
µ = χ̄Lγµ

1

2
τ3χL = ν̄Lγµ

1

2
νL − ēLγµ

1

2
eL =

 

W 3

νe(e
−)

νe(e
−)

, (11.11)

3The ‘plus’ + and ‘dagger’ † shall not be confused.
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yielding a weak isospin triplet of weak currents,

ji
µ = χ̄Lγµ

1

2
τiχL i = 1, 2, 3,

with algebra,

[τi, τj] = iεijkτk.

Now, we compare these to the electromagnetic current,

jem
µ = ēγµQe = ēRγµQeR + ēLγµQeL, (11.12)

where Q is the electromagnetic charge operator. This current is invariant under U(1)Q, the
gauge group of QED associated to the electromagnetic charge. It is however not invariant
under the SU(2)L which we postulated for the weak currents : it contains eL instead of χL.

To solve this issue, we construct an SU(2)L-invariant U(1)-current,

jY
µ = ēRγµYReR + χ̄LγµYLχL, (11.13)

where the hypercharges YR and YL are the conserved charge operators associated to the
U(1)Y symmetry. It is different for left and right handed leptons.

We now want to write jem
µ as a linear combination of j3

µ and
1
2
jY
µ (the factor 1

2
is a matter

of convention). One gets,

ēRγµQeR + ēLγµQeL = ν̄Lγµ
1

2
νL − ēLγµ

1

2
eL +

1

2
ēRγµYReR +

1

2
χ̄LγµYLχL,

from which we read out,

YR = 2Q YL = 2Q+ 1. (11.14)

with the weak isospin third components,

T3(eR) = 0 singlet, blind to the weak interaction

T3(νL) = +1
2

T3(eL) = −1
2

}

doublet,

one can then write the relation,

Y = 2Q− 2T3 . (11.15)

In Tab. 11.1 and 11.2, we summarise the quantum numbers of leptons and quarks. It should
be noted that the right handed neutrino νR does not carry SU(2)L or U(1)Y charges, and
thus decouples from the electroweak interaction.
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T T3 Q Y
νL 1/2 1/2 0 −1
e−L 1/2 −1/2 −1 −1
νR 0 0 0 0
e−R 0 0 −1 −2

Table 11.1: Weak quantum numbers of leptons

T T3 Q Y
uL 1/2 1/2 2/3 1/3
dL 1/2 −1/2 −1/3 1/3
uR 0 0 2/3 4/3
dR 0 0 −1/3 −2/3

Table 11.2: Weak quantum numbers of quarks

11.6 Construction of the electroweak interaction

As in the case of QED (Sec. 5.12, p.98) and QCD (Sec. 7.4, p. 138), we expect the elec-
troweak interaction to be mediated by gauge fields. In the case of QED, we had,

LQED
int = −iejem

µ Aµ,

where e is the (U(1)Q-)coupling, j
em
µ the (U(1)Q-)current, and A

µ the (U(1)Q-)gauge field
(photon). We copy this for the current triplets and singlet :

LEW
int = −igji

µW
iµ − i

g′

2
jY
µ B

µ, (11.16)

where we introduced the SU(2)L-gauge field triplet W
iµ and singlet Bµ associated to the

weak isospin and weak hypercharge respectively.

From those we can construct the massive charged vector bosons,

W±µ =
1√
2
(W 1µ ∓ iW 2µ),

as well as the neutral vector bosons (mass eigenstates) as a linear combination of W 3µ

and Bµ,

Aµ = Bµ cos θw +W 3µ sin θw massless → γ,

Zµ = −Bµ sin θw +W 3µ cos θw massive → Z0,

where θw is called the weak mixing angle (or sometimes Weinberg angle).
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Substituting these quantities in the interaction Lagrangian of the neutral electroweak
current, we obtain,

−igj3
µW

3µ − i
g′

2
jY
µ B

µ =− i

(

g sin θwj
3
µ + g′ cos θw

jY
µ

2

)

Aµ

− i

(

g cos θwj
3
µ − g′ sin θw

jY
µ

2

)

Zµ.

The first term corresponds to the electromagnetic current, for which we had jem
µ = j3

µ +
1
2
jY
µ , implying,

g sin θw = g′ cos θw = e , (11.17)

and thus linking the three couplings together. One often uses e and sin θw as parameters
for the standard model to be measured experimentally.

The second term corresponds to the weak neutral current. From jY
µ = 2(jem

µ − j3
µ), we get,

jNC
µ =

g

cos θw

(j3
µ − sin2 θwj

em
µ ). (11.18)

11.7 Electroweak Feynman rules

Vertices The Feynman rules for vertices stemming from,

LEW
int = LQED

int + LCC
int + LNC

int ,
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can be computed as follows,

iLQED
int = −ieψ̄fγµQψfA

µ

⇒
 

γ

f

f

= −ieQfγµ

iLCC
int = −i

g√
2
(χ̄Lγµτ+χL)W

+µ − i
g√
2
(χ̄Lγµτ−χL)W

−µ

= −i g√
2
ν̄γµ

(

1− γ5

2

)

eW+µ − i
g√
2
ēγµ

(

1− γ5

2

)

νW−µ

⇒
 

W+

e−

νe

=

 

W−

νe

e−

= −i g√
2
γµ

(

1− γ5

2

)

iLNC
int = −i

g

cos θw

ψ̄fγµ

[(

1− γ5

2

)

T3 − sin2 θwQ

]

ψfZ
µ

= −i g

cos θw

ψ̄fγµ
1

2
(cfV − cfAγ5)ψfZ

µ

⇒
 

Z0

f

f

= −i g

cos θw

γµ
1

2
(cfV − cfAγ5)

where cfV and cfA are the vector and axial vector couplings of the fermion type f . A simple
calculation yields,

cfV = T f
3 − 2 sin2 θwQ

f (11.19)

cfA = T f
3 . (11.20)

Tab. 11.3 lists the couplings for the various types of fermions.

Qf cfV cfA
ν 0 1/2 1/2
e −1 −1/2 + 2 sin2 θw −1/2
u 2/3 1/2− 4/3 sin2 θw 1/2
d −1/3 −1/2 + 2/3 sin2 θw −1/2

Table 11.3: Vector and axial vector couplings of fermions.
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Propagator of a massive vector boson Form Eq. (11.17), we see that e and g
should be of the same order of magnitude (since we know experimentally that sin2 θw ≈
0.23). This leads to the question : why is the weak interaction so much weaker than the
electromagnetic one? This can be made evident by looking at the typical lifetime of weakly
decaying particles (as the neutron or the muon) compared with electromagnetic decays.
The answer lies in the large mass of the weak gauge bosons W± and Z0.

The components Xµ = W+µ,W−µ, Zµ fulfill the Klein-Gordon equation,

(�+M2)Xµ = 0, ∂µX
µ = 0 (gauge fixing),

which results in the propagator,

i

∑

λ(ε
µ
λ)
∗εν

λ

p2 −M2
.

The polarisation sum Πµν must take the form,

Πµν =
∑

λ

(εµ
λ)
∗εν

λ = Agµν +Bpµpν .

Using the identities,

pµp
µ =M2, pµΠ

µν = pνΠ
µν = 0, gµνΠ

µν = 3,

coming from the on-shell condition, the conservation of current and the count of polar-
ization states (for a massive particle) respectively, we get A = −1 and B =M−2, making
us able to write,

 

W±, Z0
µ ν = i

−gµν + pµpν/M2

p2 −M2
.

So unless momentum transfer is not of the order of M & 100GeV, the propagator gets
suppressed drastically by the mass.

Relation of the Fermi V −A-interaction In V −A-theory, we have a 4 point vertex,

 

4GF√
2
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yielding the matrix element,

MV−A =
4GF√
2
jµj†µ.

The same process, viewed as the exchange of a low momentum (q2 �M2
W ) vector boson,

 

q

g√
2

g√
2

corresponds to the matrix element,

MEW ≈
(

g√
2
jµ

)

1

M2
W

(

g√
2
j†µ

)

,

yielding the relation,

GF =

√
2g2

8M2
W

. (11.21)

From this relation, the first estimates of the mass of the W± bosons were 50− 100GeV.

11.8 Spontaneous symmetry breaking:

Higgs mechanism

The ad hoc introduction of non-vanishing vector boson masses runs into a serious problem:
One would have to include into the Lagrangian the usual mass term

LM = −m
2

2
AµA

µ (11.22)

which violates gauge invariance (the boson field transforms as Aµ → Aµ− ∂µα(x)). If the
“massive vector bosons” are indeed to be massive, gauge symmetry needs to be broken
in some way, since the inclusion of a mass term requires breaking of gauge symmetry.
To avoid problems at the theory level caused by broken gauge symmetry, the idea is
to retain gauge symmetry in this respect, while physical states are less symmetric than
the Lagrangian. This situation can e. g. also be found in solid state physics: Consider a
ferromagnet modeled as a collection of spins. As long as no magnetization is imposed, this
system is rotationally invariant. A non-vanishing magnetization breaks this symmetry, in
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that it singles out a specific direction. Symmetry breaking occurs due to the influence of
changing a continuos parameter (magnetization) caused by the environment. This does not
affect the rotational invariance of the theory describing the ferromagnet and two physical
states with different imposed directions are related by a transformation corresponding to
the symmetry that is broken by imposing directions.

Let us start out with an example: Consider a real scalar field with a four-point interaction
(which is to the complex scalar field what is the Ising model to the isotropic ferromagnet
mentioned above):

L =
1

2
(∂µφ)

2 −
(

1

2
µ2φ2 +

1

4
λφ4

)

(11.23)

= T − V (11.24)

where −1/2µ2φ2 is a mass term and −1/4λφ4 is an interaction term corresponding to the
four-point vertex. Because the potential needs to be bounded from below, λ > 0. Observe
that L is even in φ and therefore invariant under the transformation φ→ −φ.
The vacuum state of this theory corresponds to a minimum of the potential:

∂V

∂φ
= φ(µ2 + λφ2)

!
= 0. (11.25)

Depending on the sign of µ2, one can distinguish two cases.

a) µ2 > 0, λ > 0.
In this case the vacuum state is reached for φ = 0, see Fig. 11.3(a).

b) µ2 < 0, λ > 0.
Here, φ = 0 is still an extremum, but has turned into a local maximum. In addition
there are two minima at

φ = ±
√

−µ2

λ
= ±v

which correspond to two vacua, degenerate in energy, see Fig. 11.3(b). In this case,
the symmetry transformation φ → −φ, which leaves the Lagrangian in Eq. (11.23)
invariant, changes two distinct physical states into each other.

A perturbative calculation is an expansion around the vacuum sate. If we consider case
b), this means φ = v or φ = −v. Therefore, the symmetry φ → −φ is broken, although
the Lagrangian has this symmetry irrespective of the signs of µ2 and λ. Let us choose the
positive sign vacuum state and expand:

φ(x) = v + η(x) (11.26)
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Figure 11.3: The Potential V (φ) for (a) µ2 > 0 and (b) µ2 < 0 and λ > 0. Source: [1, p.
322].

where η(x) is some perturbation around v. Inserting this expansion into the Lagrangian
yields

L =
1

2
(∂µη)

2 − λv2η2 − λvη3 − 1

4
λη4 + const. (11.27)

Here, the first term is a kinetic term for η with mass mη =
√
2λv2 =

√

−2µ2 and the
second an third terms are the thee-pint and four-point interaction terms, respectively.

Two other examples for spontaneous symmetry breaking are

• The alignment of spins in a ferromagnet which violates rotational invariance and

• The bending of an elastic bar under a force aligned with its symmetry axis, see
Fig. 11.4.

These examples share the following feature: Variation of some continuous parameter is
associated with a transition between two phases with differing degree of symmetry.

Above we considered a discrete symmetry of the Lagrangian; we now turn to the sponta-
neous breaking of a continuos symmetry, namely of global gauge symmetry. Consider now
a complex scalar field:

φ =
1√
2
(φ1 + iφ2) (11.28)

L = (∂µφ)
∗(∂µφ)− µ2φ∗φ− λ(φ∗φ)2. (11.29)
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Figure 11.4: Bending of an elastic bar. Source: [1, p. 324].

The Lagrangian is invariant under global U(1) transformations φ → eiαφ. In the case
λ > 0, µ2 < 0 the minimum of the potential V (φ) is a circle in the φ1, φ2 plane with

φ2
1 + φ2

2 = v2 = −µ
2

λ
, (11.30)

see Fig. 11.5. Out of the infinitely many distinct vacua, degenerate in energy, we choose
φ1 = v, φ2 = 0. Again, we can expand around the ground state, this time in two orthogonal
directions: η(x) denotes the perturbation in the steepest ascent direction and ξ(x) is the
perturbation in the orthogonal direction (potential valley, see Fig. 11.5):

φ(x) =
1√
2
[v + η(x) + iξ(x)] . (11.31)

Inserting this expansion into the Lagrangian in Eq. (11.29) yields

L =
1

2
(∂µξ)

2 +
1

2
(∂µη)

2 + µ2ξ2 + const +O
(

(η, ξ)3
)

(11.32)

where we identify a mass term −1/2m2
ηη

2 with mη = −2µ2 while for the ξ field there is
only a kinetic and no mass term.4 This is because η is an excitation along the potential
direction while ξ corresponds to a rotation along the circle of vacua. Here, the process
of spontaneous symmetry breaking leads from a more symmetric phase with two massive
fields to a less symmetric phase with a massive and a massless field.

4This massless scalar is a Goldstone boson. The Goldstone theorem says that for every broken con-
tinuous symmetry there is a massless boson.
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Figure 11.5: The potential V (φ) for a complex scalar field for the case µ2 < 0 and λ > 0.
Source: [1, p. 325].

Let us now turn to the spontaneous breaking of local gauge symmetry. Consider a complex
scalar field and local U(1) gauge transformations:

φ→ φ′ = φeieα(x). (11.33)

Gauge invariance of the Lagrangian requires the covariant derivative

Dµ = ∂µ + ieAµ (11.34)

with the massless U(1) gauge field Aµ transforming as

Aµ → A′µ = Aµ − ∂µα(x). (11.35)

A gauge invariant Lagrangian reads

L = (∂µ − ieAµ)φ∗(∂µ + ieAµ)φ− µ2φ∗φ− λ(φ∗φ)2 − 1

4
F µνFµν . (11.36)

As before, we consider the case µ2 < 0, λ > 0; v and the expansion are

v2 = −µ
2

λ
φ(x) =

1√
2
[v + h(x)] ei

ξ(x)
v (11.37)

where in this case wee keep the finite rotation due to ξ to preserve gauge freedom. This
allows to absorb ξ(x) into a redefinition of the gauge field:

Aµ → Âµ = Aµ −
1

v
∂µξ(x). (11.38)
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Combining expansion and redefinition with the Lagrangian in Eq. (11.36) yields

L =
1

2
(∂µh)

2 − λv2h2 +
1

2
e2v2Â2

µ − λvh3 − 1

4
λh4 +

1

2
e2Â2

µh
2 + ve2Â2

µ −
1

4
F̂ µνF̂µν .

(11.39)

The particle spectrum of this theory is as follows.

• There is a massive scalar field h (Higgs) of mass mh =
√
2λv2.

• The Goldstone field has been absorbed into Âµ and is no longer present in the
Lagrangian.

• There is a massive U(1) vector field Âµ of mass mA = ev.

It is important to notice that the vacuum state φ = v/
√
2 is charged under the gauge

interaction.

Finally, let us consider the degrees of freedom for the Lagrangian given in terms of φ and
A and in terms of h and Â:

L Fields d. o. f.

L in φ, A
φ complex, scalar 2
Aµ massless, spin-1 vector 2

L in h, Â
h real, scalar 1

Âµ massive, spin-1 vector 3
This acquiring of a mass by a spin-1 vector boson is also what happens to the photons
belonging external fields in superconductors: Since the propagation of the massive photons
is exponentially suppressed, the field is correspondingly excluded (Meißner-Ochsenfeld
effect).

11.9 Gauge boson masses in SU(2)L × U(1)Y

For constructing a gauge invariant Lagrangian, we define the covariant derivative in
SU(2)L × U(1)Y :

Dµ = ∂µ − ig
1

2
#»τ · # »

W µ − ig′
1

2
Y Bµ. (11.40)

The corresponding Lagrangian for a complex scalar field reads

L = [iDµφ]†[iDµφ]− µ2φ†φ− λ[φ†φ]2 (11.41)

where φ is an SU(2) doublet (choose to arrange fields such that Y = 1):

φ =
1√
2

(

φ1 + iφ2

φ3 + iφ4

)

=

(

φ+

φ0

)

. (11.42)
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This is also called a Higgs doublet.

Again let us consider the case µ2 < 0 and λ > 0. We may choose the following vacuum
state: φ1 = φ2 = φ4 = 0 and φ3 = v and expand, which, up to a phase, yields

v2 = −µ
2

λ
φ =

1√
2

(

0
v + h(x)

)

. (11.43)

This choice of vacuum breaks the SU(2)L and U(1)Y gauge symmetries, since it is hy-
percharged. The U(1)Q symmetry of electromagnetism, though, is conserved, because
Qφ = (T3+Y/2)φ = 0 and the photon remains massless. What is the particle spectrum for
this theory, given the vacuum expectation value chosen above? Inserting φ0 = 1/

√
2(0, v)T

into the relevant term of the Lagrangian in Eq. (11.41), [Dµφ]†[Dµφ], gives the answer:

∣

∣

∣

∣

(

−ig
2

#»τ · # »

W µ − i
g′

2
Bµ

)

φ

∣

∣

∣

∣

2

=
1

8

∣

∣

∣

∣

(

gW 3
µ + g′Bµ g(W 1

µ − iW 2
µ)

g(W 1
µ + iW 2

µ) −gW 3
µ + g′Bµ

)(

0
v

)∣

∣

∣

∣

2

=
1

8
v2g2

∣

∣(W 1)2 + (W 2
µ)

2
∣

∣+
1

8
v2(g′Bµ − gW 3

µ)(g
′Bµ − gW 3µ)

=

(

1

2
vg

)2

W+
µ W

−µ +
1

8
v2(g′Bµ − gW 3

µ)
2

which, using Zµ = (gW 3
µ − g′Bµ)/

√

g2 + g′2,

=M2
WW

+
µ W

−µ +
1

2
M2

ZZµZ
µ

where

MW =
1

2
vg MZ =

1

2
v

√

g2 + g′2 . (11.44)

Using g′/g = tan θw yields the following relation between the W and the Z mass:

MW

MZ

= cos θw . (11.45)

Finally, knowing the W mass, we can use Fermi’s constant to obtain an estimate for the
vacuum expectation value v:

GF =

√
2g2

8M2
W

=
1√
2v2

→ v = 246GeV .
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11.10 Fermion masses

The usual mass term for quarks and leptons (we focus on the T3 = −1
2
fermions, i.e. down

quarks and electrons) takes the form,

Lm− = −mψ̄ψ = −m
(

ψ̄RψL + ψ̄LψR

)

,

where ψL is a component of the SU(2)L-doublet χL, and ψR is an SU(2)L-singlet. Because
of its form, this mass term cannot be invariant under the action of the gauge group SU(2)L
(ψR transforms trivially, whereas ψL necessarily changes).

The solution consists in pairing ψL with an adjoint doublet, the Higgs doublet, that we
have already introduced earlier to give masses to the vector bosons by means of sponta-
neous symmetry breaking. A gauge invariant mass term is obtained by coupling to the
Higgs doublet, e.g. for the electron (also valid for all T3 = −1

2
fermions):

Lm− = −Ge

[

(

ν̄e ē
)

L

(

φ+

φ0

)

eR + ēR

(

φ̄+ φ̄0
)

(

νe

e

)

L

]

= −G
ev√
2
(ēLeR + ēReL)−

Ge

√
2
h (ēLeR + ēReL) , (11.46)

where Ge denotes the Yukawa coupling of the electron, and we used,
(

φ+

φ0

)

=
1√
2

(

0
v + h(x)

)

.

We can now read out of Eq. (11.46),

me =
Gev√
2
, (11.47)

and the coupling of the electron to the Higgs field,

 

h

e−

e−

= −ime

v
.

Since me = 511 keV and v = 246GeV, this vertex factor is very small for the electron. In
the case of the top, mt = 172GeV and the vertex factor is much bigger. In the event the
Higgs mass is big enough (mh > 2mt), thus kinematically allowing this decay mode, the
branching ratio,

BR(h→ tt̄) =
Γ(h→ tt̄)

Γ(h→ anything)
,
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would be significant.

The vacuum is charged under both SU(2)L and U(1)Y but not electrically. Because of
this, the photon stays massless, even after SU(2)L × U(1)Y has been broken. Therefore
the vacuum expectation value (VEV) of the Higgs fields concentrates on the neutral
component of the doublet, i.e. the second component having T3 = −1

2
(otherwise the

vacuum would also be charged electrically, giving a mass to the photon). Up to now, we
have been able to give a gauge invariant mass term to the charged leptons and d-type
quarks (d, s, b) all having T3 = −1

2
. It appears that we are not able to give a mass term

to the neutrinos (neutral leptons) and u-type quarks (u, c, t) having T3 = +1
2
without

introducing another Higgs doublet 5.

In the case of SU(2) (but not in general), we are allowed to use at this end the charge
conjugate of the Higgs doublet,

φc = iτ2φ
† =

(

φ̄0

−φ̄+

)

→ 1

2

(

v + h(x)
0

)

, (11.48)

which has Y = −1, because φ and φc are equivalent, i.e. can be connected by a unitary
transformation.

Example For quarks we get,

Lm− + Lm+ =−Gd

[

(

ū d̄
)

L

(

φ+

φ0

)

dR + d̄R

(

φ̄+ φ̄0
)

(

u
d

)

L

]

−Gu

[

(

ū d̄
)

L

(

φ0

−φ+

)

uR + ūR

(

φ̄0 −φ̄+
)

(

u
d

)

L

]

=−mdd̄d−
md

v
hd̄d−muūu−

mu

v
hūu. (11.49)

We conculde by emphasising that all fermion masses are generated in a gauge invariant
way through coupling of the field to the Higgs VEV v. The coupling of each fermion to the
Higgs boson h is proportional to the mass of the particle. The origin of mass is reduced
to a Yukawa coupling of the different fermions to the Higgs field.

11.11 Lagrangian of the electroweak standard model

The theory of the electroweak interaction was formulated between 1961 and 1967 by
Sheldon Lee Glashow, Abdus Salam and Steven Weinberg. All three received the Physics
Nobel Prize in 1979 although the W± and Z0 had not yet been observed directely. Deep
inelastic scattering of spin-polarized electrons off nuclei gave evidence for a minute parity

5This is the case in extensions of the standard model, e.g. for the minimal supersymmetric standard
model (MSSM), where we have a Higgs doublet for each value of T3.
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violating interaction (all interactions except the weak interaction conserve parity). The
first evidence for neutral currents (mediated by the Z0 boson) were found in 1973 in
the bubble chamber Gargamelle at CERN. Direct observation of both W± and Z0 was
achieved in 1983 by the experiments UA1 also at CERN, leading to the Physics Nobel
Prize of 1984 for Carlo Rubbia and Simon van der Meer.

The Lagrangian of the electroweak theory can be decomposed as,

LEW = Lgauge + Lmatter + LHiggs + LY ukawa,

with,

Lgauge = −
1

4

# »

Wµν ·
# »

W µν − 1

4
BµνB

µν (11.50)

W i
µν = ∂µW

i
ν − ∂νW

i
µ − igεijkW j

µW
k
ν

Bµν = ∂µBν − ∂νBµ,

Lmatter =
∑

L

L̄γµ

(

i∂µ + g
1

2
#»τ · # »

Wµ + g′
Y

2
Bµ

)

L+
∑

R

R̄γµ

(

i∂µ + g′
Y

2
Bµ

)

R,

(11.51)

LHiggs =

∣

∣

∣

∣

(

i∂µ + g
1

2
#»τ · # »

Wµ + g′
Y

2
Bµ

)

φ

∣

∣

∣

∣

2

− V (φ), (11.52)

V (φ) = −µ2φ†φ+ λ(φ†φ)2

LY ukawa = −
∑

f−

Gf
−(L̄φR + R̄φ̄L)−

∑

f+

Gf
+(L̄φ

cR + R̄φ̄cL), (11.53)

where L denotes a left-handed fermion doublet, R a right-handed fermion singlet, Gf
± the

fermion Yukawa coupling for T3 = ±1
2
. All terms in LEW are invariant under SU(2)L and

U(1)Y gauge transformations.

After the spontaneous symmetry breaking, we have,

φ(x) =
1√
2

(

0
v + h(x)

)

,

yielding the masses through the Higgs mechanism:

MW = 2gv = 80.4 [GeV] (11.54)

MZ =
MW

cos θw

= 91.19 [GeV] (11.55)

Mf =
Gfv√
2

me = 511 [keV], . . . ,mt = 172 [GeV] (11.56)

Mh = v
√
2λ > 114 [GeV] (LEP) (11.57)

We now classify the vertices of the electroweak Lagrangian (V : vector boson, f : fermion,
H : Higgs boson):
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V ff :

 

V V V :

 

V V V V :

 

Hff :

 

HHH:

 

HHHH:

 

HV V :

 

HHV V :

Care must be taken in choosing the fields as for example photon can interact with W
bosons because they carry an electric charge, but not with the Z boson. All diagrams not
involving a Higgs bosons have been observed experimentally so far.

11.12 Properties of the Higgs boson

The decay width of the Higgs boson Γ = 1
τ
for a two particle final state is (see Eq. (3.15),

p. 22),

ΓH =
1

2MH

1

(2π)2

∑

f

∫

d3p1

2E1

d3p2

2E2

δ(4)(pf − pH)|MfH |2,

where f denotes the final state : bb̄, tt̄,W+W−, Z0Z0, τ+τ−, . . . and m1 = m2 = mf .

|MfH |2 cannot depend on individual components of p1 or p2, and we can hence factorize
the phase space,

R2 =

∫

d3p1

2E1

d3p2

2E2

δ(4)(pf − pH) =
π

2M2
H

√

λ
(

M2
H ,m

2
f ,m

2
f

)

=
π

2

√

1−
4m2

f

M2
H

,

and hence,

ΓH =
1

16πMH

∑

f

√

1−
4m2

f

M2
H

|MfH |2 =
∑

f

ΓH→f . (11.58)

We now look at the different final states separately :
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Decay into fermions Leptons :

|MlH |2 =
∑

s,f

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

 

f̄

f

−imf

v

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

=
m2

f

v2
Tr

(

(/pf
+mf )(/pf̄

−mf )
)

=
4m2

f

v2

(

M2
H

2
− 2m2

f

)

,

where s denotes the spin and f the flavour.

Quarks :

|MqH |2 =
∑

c

|MlH |2 = 3|MlH |2,

where c denotes the color.

Plugging these into Eq. (11.58), we get the partial widths,

ΓH→l+l− =
1

8π2v2
m2

fMH

(

1−
4m2

f

M2
H

)

3
2

(11.59)

ΓH→qq̄ =
3

8π2v2
m2

qMH

(

1−
4m2

q

M2
H

)

3
2

. (11.60)

We remark at this point that the dominant decay mode (corresponding to the largest
partial width) is always into the heaviest kinematically allowed fermion. In the case of a
light Higgs boson (MH < 2MW,Z), the dominant channels would be into bb̄ and τ

+τ−.

The partial width for a decay into fermions is proportional to the mass of the Higgs boson,
so there is no upper limit to MH .

Decay into gauge bosons The relevant vertices are,

 

H

W−
ν

W+
µ

= igMWgµν ,

 

H

Z0
ν

Z0
µ

=
igMZ

cos θw

gµν ,
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Summing the moduli squared over the polarizations, we get,

∑

λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

 

H

W−

W+
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

= g2M2
W

(

−gµρ +
pµ

1p
ρ
2

M2
W

)(

−gµρ +
p1µp2ρ

M2
W

)

=
g2M4

H

4M2
W

(

1− 4
M2

W

M2
H

+ 12
M4

W

M4
H

)

,

and an analogous result for the decay H → Z0Z0. The partial widths are then, respec-
tively,

ΓH→W+W− =
1

16πv2
M3

H

(

1− 4M2
W

M2
H

)
1
2
(

1− 4
M2

W

M2
H

+ 12
M2

W

M4
H

)

(11.61)

ΓH→Z0Z0 =
1

32πv2
M3

H

(

1− 4M2
Z

M2
H

)
1
2
(

1− 4
M2

Z

M2
H

+ 12
M2

Z

M4
H

)

, (11.62)

where the factor 1
2
in the second line is a symmetry factor for identical bosons.

In the case of a decay into gauge bosons, the partial width is proportional to the third
power of the Higgs mass. This implies that for a heavy Higgs boson (MH > 2MW,Z), the
decay into gauge bosons will be dominant over the decay into fermions, the only competing
fermionic decay being H → tt̄ (for MH ≈ 2mt). Fig. 10.42(a) and (b), show the different
branching ratios and total width as a function of MH .

Due to this power dependence, one remarks by plugging the known values of MW , MZ

and v that if MH ≈ 1TeV, ΓH ≈ MH and the interpretation of the Higgs particle as a
resonance of the S-matrix is no longer possible. This yields an upper bound for the Higgs
mass in the framework of the standard model. A mass of the order of 1TeV would imply
a coupling λ ≈ 1 requiring some non-perturbative approach (as in QCD for Q ≈ ΛQCD).

11.13 Tests of electroweak theory

In the previous sections the theory of electroweak interactions was discussed, in particular
it was shown how massive gauge bosons emerge; in this section we discuss experimental
tests of the theory, including the consistency of the standard model parameters, the W
and Z boson discovery and measurements of the width. We discuss the forward-backward
asymmetries, as well as examples of Higgs boson searches. An introduction to the latter
topic is given in Sect. 10.9, here we focus on a specific case study, namely searches for
heavy Higgs decaying into W boson pairs.
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11.13.1 Parameters of the standard model and historical back-

ground

A summary6 of the experimental values of the standard model parameters is shown in
Fig. 10.1. The stated deviations are a measure for the consistency of the standard model.
As can be seen from the bars, which visualize the deviation of the measured from the
best fitting values, assuming the standard model to be correct, in units of measurement
standard deviations, the majority of the measured parameters is compatible within 1σ. A
notable exception is the variable A0,b

fb , an asymmetry measured in the b sector.

Electroweak unification was accomplished theoretically in the sixties by Glashow, Salam
and Weinberg. The predictions derived from this theory were consistent with the observed
charged current interactions (flavor-changing exchange ofW± bosons, see e. g. Fig. 1.1(b)).
However, as we have seen in Sect. 11.5, the theory also predicts neutral current interactions
(via Z0 exchange and γ/Z0 interference) which had never been observed up to that time.
In fact, until 1973 all observed weak interactions were consistent with the existence of
only charged bosons W±. The first neutral current interaction was observed at CERN in
1973 with the “Gargamelle” experiment in the following reaction:

νµ + nucleus→ νµ + p+ π− + π0

which can be explained by a flavor conserving weak interaction, i. e. a weak neutral current.
This discovery made urgent the question of how to observe W and Z bosons directly to
test electroweak predictions.

11.13.2 W and Z boson discovery, mass and width measure-

ments

Electroweak theory predicted bosons with masses MW ∼ 83GeV and MZ ∼ 93GeV.
Therefore, to produceW and Z bosons, a particle collider was needed capable of producing
particles with mass ∼ 100GeV. A the time, two candidates were available at CERN. The
ISR with

√
s = 61GeV was too weak and also the SPS, which consisted of a 400GeV

proton beam against a fixed target, did not provide sufficient center of mass energy (recall
that for fixed target experiments

√
s =

√
2mE, see Sect. 4.1.1).

This problem was solved by the Spp̄S machine, designed by Rubbia and van der Meer,
a proton-antiproton collider at

√
s = 540GeV. It had a luminosity of 5 · 1027 cm−2s−1,

achieved with three against three bunches with ∼ 1011 particles per bunch. The first
collisions took place in 1981.

LEP, which later on delivered part of the precision data discussed in this chapter was
an electron-positron collider, while Spp̄S was a hadron collider.7 Figure 11.6 shows the

6http://lepewwg.web.cern.ch/LEPEWWG/
7A general comparison of these types of colliders can be found in Sect. 10.1.2.
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Figure 11.6: Z (a) and W (b) boson production at electron-positron colliders.

relevant production diagrams for e+e− colliders while Fig. 11.7 shows a hadron collider
production diagram along with the dominant background diagram (see also Fig. 10.14).
In the electron-positron case, beam energies of about MZ/2 are sufficient to produce Z
bosons (see Fig. 11.6(a)), while W± bosons can only be produced in pairs, requiring a
higher center of mass energy (see Fig. 11.6(b)). Now compare this to the hadron collider
case shown in Fig. 11.7(a): To produce a Z boson, flavor conservation is required such that
processes like uū→ Z0 and dd̄→ Z0 contribute. The production of W± bosons involves
quarks of different flavors, such as ud̄ → W+ and dū → W−. What has been said so far
concerns production of W and Z bosons, what about their detection? Consider first the
decay into quark-antiquark pairs: The cross section of “usual” two-jet production, e. g.
via gluon exchange (see Fig. 11.7(b)) is much larger than the one of hadronic vector boson
decays. In other words, the cross section for W production is small compared to the total
cross section:

σ(p̄p→ WX → eνX)

σT (pp̄)
' 10−8.

Therefore, it is preferred to look for W and Z decays into leptons, where the background
is smaller:8

W± → e±
(−)
νe , µ

± (−)
νµ , τ

± (−)
ντ

Z0 → e+e−, µ+µ−, τ+τ−.

11.13.2.1 W discovery and mass measurement

The UA1 experiment at the Spp̄S collider was an hermetic particle detector optimized
for the W± → e±νe/ν̄e measurement. It featured for the first time the general design
principles of collider detectors (see also Sect. 4.3.3): tracking devices inside a magnetic

8The Z0 boson may also decay into neutrino-antineutrino pairs, which makes it possible to determine
the number of neutrino families with mν < MZ/2, see below.
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Figure 11.7: (a) Sketch of the kinematics of W and Z boson production at hadron colliders
and diagram of a process leading to two jets (b).

•

•

•

•

•
(a) (b)

Figure 11.8: UA1 experiment. A cross section along the beam line, featuring the impor-
tant components of collider experiment detectors is shown in (a), while (b) shows the
electromagnetic and hadronic calorimeters. Source: [14, p. 305].

field, followed by electromagnetic calorimeters, hadron calorimeters and muon chambers
(see Fig. 11.8(a)). Since MW ∼ 80GeV, the electromagnetic calorimeter resolution is
optimized for 40GeV electrons to ±500MeV(1%). Because the photomultipliers had to
be placed outside the magnetic field of the coil, the hadron calorimeter is sandwiched in
the return yoke (see Fig. 11.8(b)): Showering in the lead layers, the particles then produce
light in the szintillator layers which is transferred to the photomultipliers via light-guides.

To understand how to search for the W decay in the data, we look at the final-state
kinematics. Since the neutrino cannot be detected, there is no direct information on its
momentum. However, due to momentum conservation one can write

#»p⊥(ν) = − #»p⊥(H)− #»p⊥(e)

where #»p⊥(ν) is the neutrino transverse momentum while #»p⊥(H) and
#»p⊥(e) denote the

total hadron transverse momentum and the electron transverse momentum, respectively.
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Figure 11.9: Transverse momenta in a leptonic W decay. On the LHS one sees a sketch
of the electron and neutrino transverse momenta. ~p⊥‖e is the component of the neutrino
transverse momentum parallel to ~p⊥(e). The correlation between these momenta is shown
in the RHS Subfig. Source: [14, p. 305].

Momenta are considered in the transverse plane to avoid leakage along the beam lines.
Since the W boson is not always produced at rest and the detector resolution is finite, the
neutrino transverse momentum #»p⊥(ν) is not exactly anti-parallel to the electron trans-
verse momentum (see Fig. 11.9). Nevertheless, there is still a strong correlation between
#»p⊥(e) and the neutrino transverse momentum projected along the electron transverse
momentum #»p⊥(ν)‖e (see Fig. 11.9).
We discuss now how to measure the W boson mass using the electron transverse mo-
mentum spectrum (see also exercises). Electron emission is assumed to be isotropic
(dN/d cos θ = const) and detector effects are emulated with Monte Carlo simulation.
One can rewrite the spectrum as

dN

dp⊥
=

dN

d cos θ

d cos θ

dp⊥
= const

d cos θ

dp⊥

where θ is the electron polar angle. Using the kinematics of Sect. 2.1 and | #»p⊥| = | #»p | sin θ,
we have

p⊥ =
MW

2
sin θ =

MW

2

√
1− cos2 θ,

which yields

dp⊥
d cos θ

=
MW

2

cos θ

sin θ
=
MW

2

√

1− sin2 θ

sin θ
=

(

MW

2

)2

√

1− 4p2
⊥

M2
W

p⊥
.
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Figure 11.10:Momentum distribution of the electron perpendicular to the beam (43 events).
The histogram shows the data while the continuous and dashed lines show the Monte Carlo
expectation for a two-body decay and three-body decay scenarios, respectively. Source:
[14, p. 306].

We thus find

dN

dp⊥
∝ p⊥

√

M2
W − 4p2

⊥
. (11.63)

The denominator vanishes at MW = 2p⊥, which allows to determine the W boson mass
from a measurement of the electron transverse momentum spectrum (see Fig. 11.10).

A summary of experimental results for the W boson mass is shown in Fig. 11.11.

11.13.2.2 W and Z width

Using the kinematics discussed Chap. 3, one can calculate the partial width of the W
boson. From Eq. (3.15) we have

Γ =
1

2MW

1

(2π)2

∫

dR2|Mfi|2

and Eq. (3.29) reads

dR2 =
1

8s

√

λ(s,m2
e,m

2
ν)dΩ.

Combining these results yields

dΓ

dΩ
=

1

64π2MW

|Mfi|2.
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Figure 11.11: Summary of the current W boson mass measurements. Source: [17].

Using the following result for the matrix element:

|Mfi|2 =
g2M2

W

4
(1− cos θ),

where θ is the electron polar angle in the center of mass frame, and integrating over θ,
one finds for MW = 80GeV

Γ(W → eν) =
g2MW

48π
=
GF√
2

M3
W

6π
= 224MeV. (11.64)

To obtain the total width (for the W− case) from the partial widths, we consider the
following points:

1. All leptonic decays (e, µ, τ) have the same width.

2. ūd and c̄s are similar to the leptonic channels (cos θc ∼ 1).

3. The other hadronic decays (ūs, c̄d, ūb, c̄b) with quarks of different families are
Cabibbo-suppressed.

Keeping these facts in mind, we have to sum over three lepton currents and two quark
currents to find the total width ΓT . Each quark current can be realized in three colors,
therefore:

ΓT (W ) = 3 lepton currents + (3 colors × 2 quark currents) (11.65)

= 9Γ(W → eν) = 2.02GeV. (11.66)
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We now consider the Z boson decay. The Z resonance in the hadronic cross section for
e+e− annihilation can be used to count the number of neutrino families with mν < MZ/2.
One way to accomplish this is to derive a standard model prediction for the Z decay
widths as a function of the number of neutrino families Nν which can be compared to the
experimental data.

First we calculate the partial width of the Z boson decaying into neutrino pairs (see also
exercises for the explicit calculation). It can be obtained from theW boson case with some
substitutions: Using the Feynman rules given in Sect. 11.7, one finds, since cνV = cνA = 1/2,
that substituting

g → g√
2 cos θw

, MW →MZ

in the partial W width in Eq. (11.64) does the trick:

Γ(Z → νν̄) =
g2MZ

96π cos2 θw

=
GF√
2

M3
Z

12π
= 165MeV, (11.67)

assuming MZ = 91GeV. To obtain the total width of the Z boson, one has to sum over
all partial widths, originating from all the allowed decays into quarks and leptons. Solving
exercise sheet 99 we showed that for the general fermionic case the Z partial width is

Γ(Z → ff̄) =
g2

48π cos2 θw

√

M2
Z − 4m2

f

{

[cfV ]
2

(

1 +
2m2

f

M2
Z

)

+ [cfA]
2

(

1−
4m2

f

M2
Z

)}

.

Neglecting mf , one finds that the total Z width is proportional to the sum

fermions
∑

mf <MZ/2

(

[cfV ]
2 + [cfA]

2
)

which can be calculated using Tab. 11.3. Note that only the following fermionic final states
contribute:

• three neutrino pairs: νeν̄e, νµν̄µ, ντ ν̄τ ;

• three other halves of the doublets: e+e−, µ+µ−, τ+τ−;

• two quark pairs with T3 = +1/2: uū, cc̄ and finally

• three quark pairs with T3 = −1/2: dd̄, ss̄, bb̄.

Assuming sin2 θw = 0.23, the total Z width is

ΓT (Z) =
g2MZ

48π cos2 θw

fermions
∑

mf <MZ/2

(

[cfV ]
2 + [cfA]

2
)

= 2.41GeV.
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(a) (b)

Figure 11.12: ALEPH event displays of Z decays and Z jets cross-section as function of√
s. Subfigure (a) shows typical events in the ALEPH detector. Starting in the top left cor-

ner and proceeding in clockwise order, one has e+e− → hadrons, e+e− → e+e−, e+e− →
µ+µ− and e+e− → τ+τ−. Source: [15, p. 15]. The Z cross section fit is shown in (b). The
dots show the measurement while the expectation from scenarios with different number
of neutrino families are shown by the continuous and dashed lines. Source: [14, p. 312].

One can measure the hadronic cross section for e+e− annihilation around the Z peak as
a function of

√
s to constrain the number of neutrino families. This is done by a fit to a

modified Breit-Wigner distribution,

σ(s) =
12πΓ(e+e−)Γ(ff̄)

M2
Z

s

(s−M2
Z)

2 +M2
ZΓ

2
T (Z)

, (11.68)

for the Z resonance. One also has to take into account γ/Z interference, the 1/s dependent
QED contribution, and quite substantial corrections due to initial and final state radiation.
To measure the relevant cross sections, one selects (e. g. hadronic) events, which is done
using on their basic properties, such as number of tracks (see Fig. 11.12(a)). Since the cross
section is given by σ = N/(εLint), the precision of the result depends on the precision of
the integrated luminosity measurement, as well as the trigger and its efficiency. A best fit
to the hadronic cross section yields for the number of light neutrino families

Nν = 2.994± 0.012

(see Fig. 11.12(b)). Note that because of the kinematics of 1 → 2 decay, this does not
exclude heavy (mν > MZ/2) quark and neutrino families.

As we have seen, since the cross section is inversely proportional to the integrated luminos-
ity, the luminosity error propagates into the cross section error. Therefore, it is essential

9http://www.itp.uzh.ch/~pfmonni/PPPII_FS10/sheet9.pdf
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Figure 11.13: Luminosity measurement in ALEPH using the Bhabha scattering. On the
left a small angle electron-positron scattering event is shown. (a) shows a cut including
the beam direction and (b) is a view along the beam of the two luminosity calorimeters.
A comparison of measured and simulated polar angle of the scattered electron is shown
on the right. Source: [15, p. 20].

to determine the luminosity with high accuracy. This is done by measuring the rate of
Bhabha scattering, which can be precisely calculated. As we have seen in Sect. 6.2.4,
the corresponding cross section is divergent as the electron polar angle goes to zero (see
also Fig. 11.13). This procedure yields a final precision of about 3% for the luminosity
measurement.

Selecting leptonic events, one can perform the same measurement as the one shown for
the hadronic case (see Fig. 11.14(a); note that the cross sections are considerably smaller).
This delivers the partial widths Γ(ll̄) and thus allows for a test of lepton universality.
Remembering our discussion of the total Z width, one finds for the leptonic widths (e. g.
for muons) the following prediction:

Γ(µ+µ−)

ΓT

=
[cµV ]

2 + [cµA]
2

∑fermions
mf <MZ/2

(

[cfV ]
2 + [cfA]

2
) = 3.4%.

The corresponding experimental result is

Γ(µ+µ−)

ΓT

= (3.366± 0.007)%.

A summary of the LEP results for the Z boson width is shown in Fig. 11.14(b). To conclude
this section, let us put our discussion into an historic and energetic context: Figure 11.15
shows the cross section for e+e− → hadrons as measured by various experiments at center
of mass energies up to 200GeV. For center of mass energies smaller than about 50GeV, the
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(a) (b)

Figure 11.14: Cross sections for electron-positron annihilation into leptons around the Z
pole measured by ALEPH (a) and LEP summary of the Z width measurements (b). Source:
[15, p. 24].

cross section agrees with the 1/s prediction obtained by QED alone (quark mass effects
included, see Sect. 8.1). Around 90GeV the Z resonance is the dominant contribution.
The figure shows also the cross section for W production from e+e− → W+W−.

11.13.3 Forward-backward asymmetries

As we have begun to discuss in Sect. 6.2.5, the weak contributions to electron-positron
annihilation cross sections result in forward-backward asymmetries (in the angle between
the outgoing fermion and the incident positron), which are not predicted by QED alone
(see e. g. Fig. 6.17). Solving exercise sheet 810, we showed that the differential cross section
for e+e− → ff̄ , obtained by squaring the sum of the γ and the Z exchange diagram, can
be written as

dσf

dΩ
=
α2N f

c

4s

[

F1(s)(1 + cos2 θ) + 2F2(s) cos θ
]

(11.69)

where

F1(s) = Q2
f − 2vevfQfReχ+ (v2

e + a2
e)(v

2
f + a2

f )|χ|2

F2(s) = −2aeafQfReχ+ 4veaevfaf |χ|2

10http://www-theorie.physik.unizh.ch/~pfmonni/PPPII_FS10/sheet8.pdf
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Figure 11.15: Summary of the e+e− → hadrons cross section measurements as a function
of the center of mass energy

√
s.

with

χ =
s

s−M2
z + iMZΓT (Z)

the Breit-Wigner term (compare Eq. (11.68)) and

vf ≡
cfV

2 sin θw cos θw

af ≡
cfA

2 sin θw cos θw

.

To get a quantitative estimate of the forward-backward asymmetry, we define the following
quantity

AFB =
I(0, 1)− I(−1, 0)
I(0, 1) + I(−1, 0) (11.70)

where we have defined the integral I(a, b) as

I(a, b) ≡
b

∫

a

d cos θ
dσ

d cos θ
. (11.71)
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Figure 11.16: LEP results for forward-backward asymmetry AFB. (a) shows a plot of the
LEP data for AFB as a function of

√
s and (b) shows a summary of the numerical values

at
√
s =MZ and the combined result.

Thus forward-backward asymmetry means AFB 6= 0. In terms of F1, F2 defined above, we
have

AFB =
3

4

F2

F1

=
3veaevfaf

(v2
e + a2

e)(v
2
f + a2

f )
= 3

(v/a)e(v/a)f
[1 + (v/a)2e][1 + (v/a)2f ]

. (11.72)

Therefore, at the Z peak the asymmetry AFB is sensitive to the ratio of vector to axial
vector couplings v/a = cfV /c

f
A. Recalling the definition of cfV and cfA (see Sect. 11.7), we

see that in the electroweak theory the cV /cA ratio depends on sin2 θw:

cV /cA = 1− 4|Q| sin2 θw. (11.73)

Furthermore, rewriting Eq. (11.69) using Eq. (11.72) yields

dσ

d cos θ
∝ 1 + cos2 θ +

8

3
AFB cos θ (11.74)

(see Fig. 6.17). Figure 11.16(a) shows results for AFB by the four LEP experiments. The
corresponding numerical values are shown in Fig. 11.16(b). Combining these results gives

AFB = 0.0171± 0.0010

for the forward-backward asymmetry at
√
s =MZ .
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Figure 11.17: Feynman diagram for the decay of a heavy Higgs into a W+W− pair.

11.13.4 Searches for heavy Higgs decays into W pairs

Having studied extensively the observable consequences of non-vanishing gauge boson
masses, we now turn to the source of this phenomenon. In Sect. 11.12 we discussed prop-
erties of the Higgs boson, including its partial widths for decay intoW and Z boson pairs.
Sect. 10.9 introduces the principles of Higgs production and searches; here we focus on
searches of heavy Higgs in the the H → W+W− channel.

Recall from Sect. 10.9 that formH ' 140−175GeV the important Higgs discovery channel
is H → W+W−, which yields two leptons and missing transverse energy in the final state
(see Fig. 11.17).

Figure 11.18 shows the orders of magnitude of various production cross sections at Teva-
tron. Note the difference of about ten orders of magnitude between the production cross
sections for heavy flavors and Higgs bosons. In addition, also the production cross sections
for Z/γ? and standard modelW+W− pair production not involving Higgs boson exchange
are orders of magnitude larger than the Higgs production cross section.

How does one select events in the desired final states? To reduce the background as much
as possible, the following cuts are applied:

• Total missing energy larger than 20GeV.
This requirement reduces the Z/γ? → leptons background.

• Invariant mass of two leptons larger than 15GeV.
This requirement reduces the background from semi-leptonic decays of heavy quarks.

The remaining background is due to standard model W pair production not involving
Higgs bosons (see Fig. 11.19). Therefore, the remaining task is to reject this kind of elec-
troweak background obscuring the H → W+W− signal. To achieve this aim, one can
exploit the fact that the standard model Higgs is a scalar (i. e. it has spin 0). W bosons,
on the other hand, have spin 1. To conserve angular momentum, the two decay leptons
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Figure 11.18: Various production cross sections at Tevatron. Note that the scale is loga-
rithmic.

are almost collinear. Therefore, it is convenient to measure the opening angle between the
lepton pair in the transverse plane, ∆φl+l− . This allows to select only events with small
opening angle: ∆φ < 2 rad. Figure 11.20 shows plots for the ee, µµ and eµ case: The left
column shows the signal plus a considerable amount of background by various processes
unrelated to Higgs production. The right column shows ∆φ after all cuts but the ∆φ < 2
cut are applied (the ∆φ cut is indicated by arrows). If no event survives all cuts, it is
possible to set an exclusion limit on the Higgs mass. A combined Tevatron (DØ and CDF)
result using an amount of data corresponding to Lint ∼ 5 fb−1 excluding the mass range
from 162 to 166GeV at 95% CL is shown in Fig. 11.21. The current combined Tevatron
and LEP standard model Higgs mass fit and excluded regions11 are shown in Fig. 10.2.

11http://lepewwg.web.cern.ch/LEPEWWG/
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Figure 11.19: Examples of W+W− production diagrams at hadron colliders not involving
Higgs boson exchange.
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Figure 11.20: Distribution of the opening angle ∆φll′ after applying the initial transverse
momentum cuts (a), (c), (e) and after all cuts, except for the ∆φ cut (b), (d), (f). Source:
[18].
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Figure 11.21: Higgs mass range exclusion with combined Tevatron results. Source: [19].


