

Topics in this lecture

Part 1:

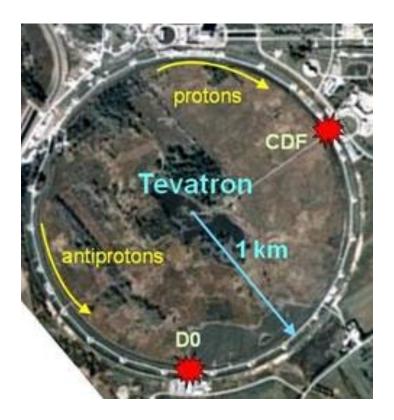
- Evidence of top quark production
- Measurement of top mass
- Part 2:
 - Searches for Supersymmetry
 - Full hadronic searches
 - Multi-leptonic searches

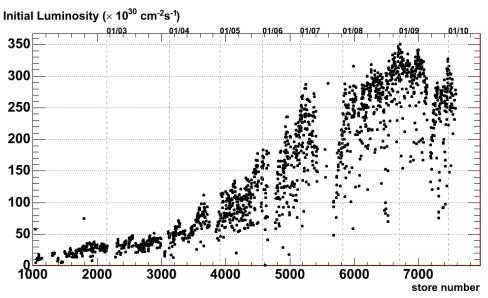
Historical outline

1977: Discovery of the Upsilon family at Fermilab

- Existence of the bottom (*b*) quark
- Is there a heavier weak isospin partner of the b quark (third quark family)?

After 1990:

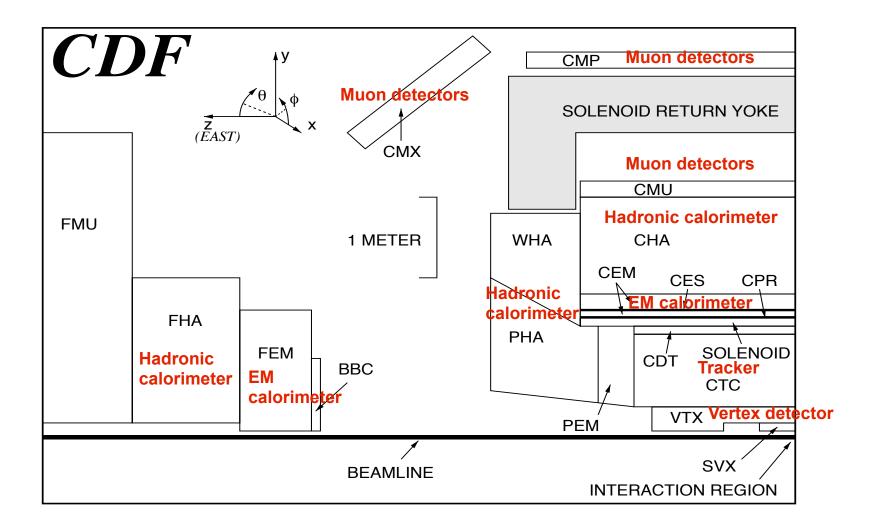

- Limits to top mass imposed from global EW fits: mtop=177±20 GeV
- Direct searches at Tevatron: mtop>135 GeV


1994-5: Discovery of the top quark at Tevatron

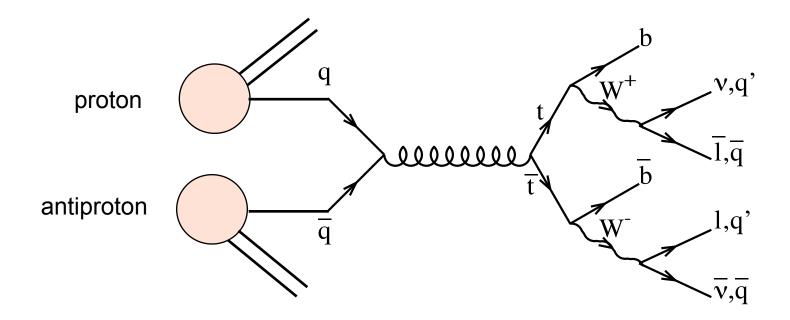
- Observed both by CDF and D0 collaborations
- First observation:
 - **174±10 GeV** with about 19 pb⁻¹ of p-anti(p) data at \sqrt{s} =1.78 GeV
 - Production cross section of about **7 pb**

Discovery of the top quark

Tevatron accelerator



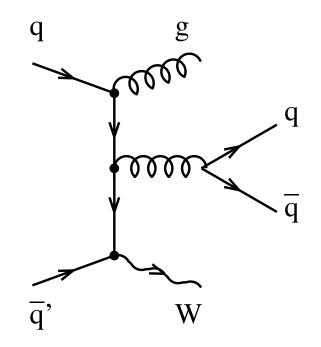
1992–1993 Tevatron Collider operating parameters


Beam:	proton-antiproton
Beam Energy:	900 GeV/beam
Luminosity:	$10^{30} - 10^{31}$ cm ⁻² s ⁻¹
Bunches/Beam:	6
Bunch Spacing:	3.5 µs
Collision Region RMS:	30 cm
Beam Spot:	$\approx 40 \ \mu m$
Beam Pipe:	1.5 in. diameter

Schema of the CDF experiment

Production mechanism

- In proton-antiproton collisions pairs of quark anti-quark are produced in the gluon-gluon and quark-antiquark channels
- For heavy top (>130 GeV) the quark channel dominates
- Main production process and consequent decay:


Top quark decays

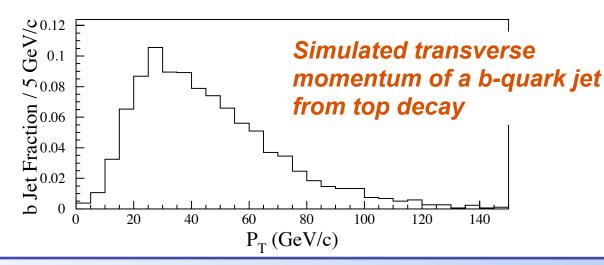
Decay mode	Branching ratio	muon
$t\overline{t} \longrightarrow (q\overline{q}'b)(q\overline{q}'\overline{b})$	36/81	Jet 1(b)
$t\overline{t} \longrightarrow (q\overline{q}'b)(e\nu\overline{b})$	12/81	$\frac{\nu_{\mu}}{\nu_{\mu}}$ neutrino
$t\overline{t} \longrightarrow (q\overline{q}'b)(\mu\nu\overline{b})$	12/81	W
$t\overline{t} \longrightarrow (q\overline{q}'b)(\tau\nu\overline{b})$	12/81	
$t\overline{t} \longrightarrow (e\nu b)(\mu \nu \overline{b})$	2/81	antiproton beam proton beam
$t\overline{t} \longrightarrow (e\nu b)(\tau \nu \overline{b})$	2/81	° 💦 °
$t\overline{t} \longrightarrow (\mu\nu b)(\tau\nu\overline{b})$	2/81	
$t\overline{t} \longrightarrow (e\nu b)(e\nu \overline{b})$	1/81	W b
$t\overline{t} \longrightarrow (\mu\nu b)(\mu\nu\overline{b})$	1/81	neutrino Va
$t\overline{t} \longrightarrow (\tau\nu b)(\tau\nu\overline{b})$	1/81	electron Jet 2 (b)

- If m_{top}>85 GeV decays mainly in a real W boson and b-quark jet
- Consequent W decays to qq(bar): too much background from jet production
- **Solution**: require at least one leptonic W decay to **muons** and **electrons**
 - Identification of hadronic tau decay also has high background
- Event selection:
 - One lepton (μ or e) with E_T>20 GeV and |h|<2.1
 - **Neutrino**: missing transverse energy E_T(miss)>20 GeV
 - Require 1 to 4 jets

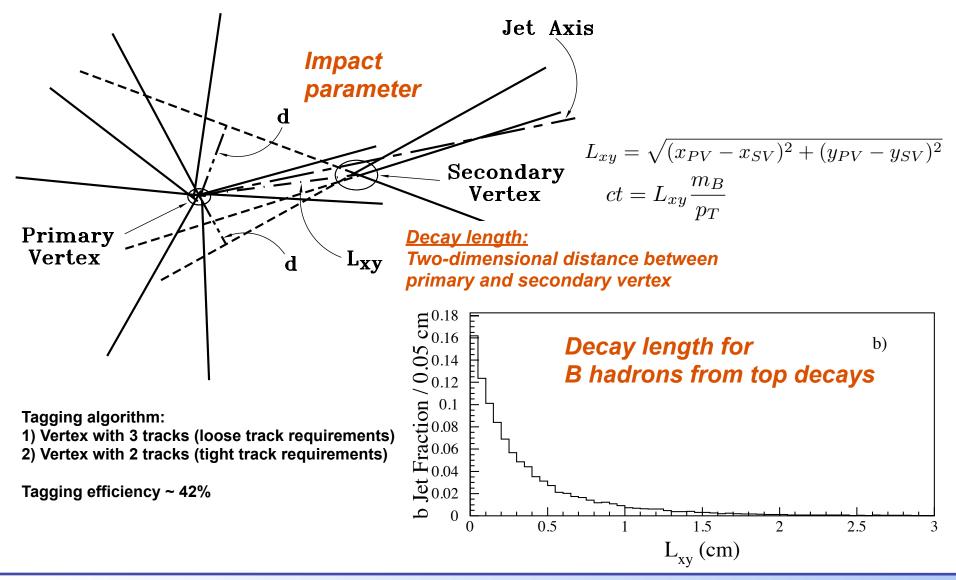
Background from W+jets

- By requiring W leptonic decays a considerable background channel remains W production recoiling against other jets
- Example:

 Solution: background processes do not necessarily include b quark jets. Identify at least one b or b(bar) quark among the jets

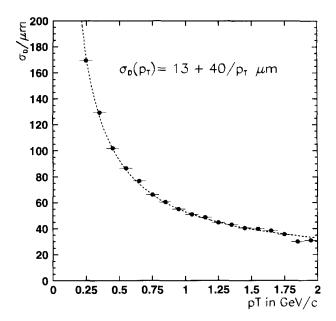

Particle jets from b-quarks

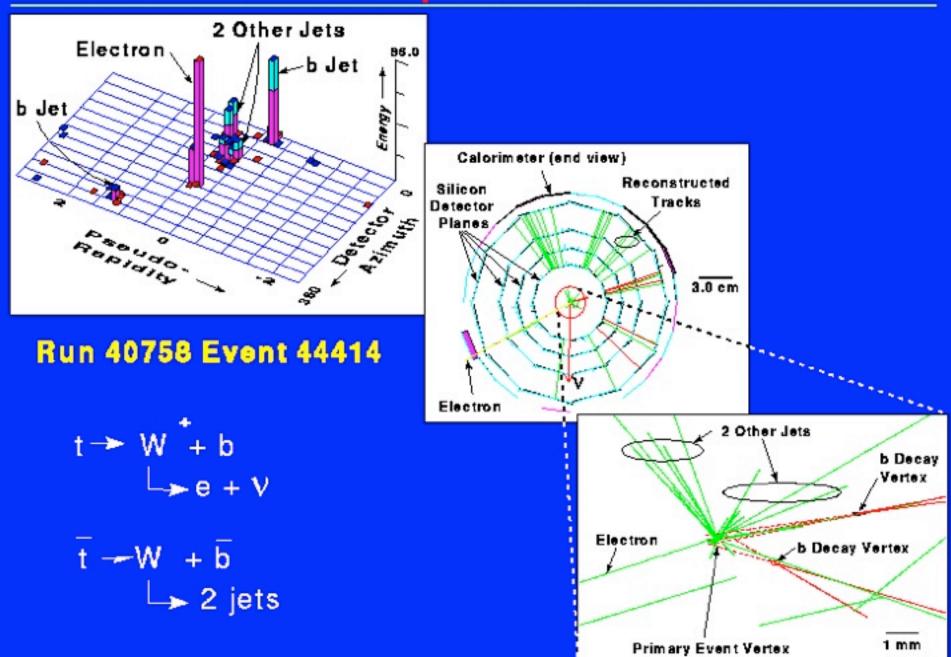
- A b-quark hadronizes in B-hadrons (mainly B+, B0, Bs, Lb)
 - Mass ~ 5 GeV, typical lifetime ~ 1.4-1.6 ps

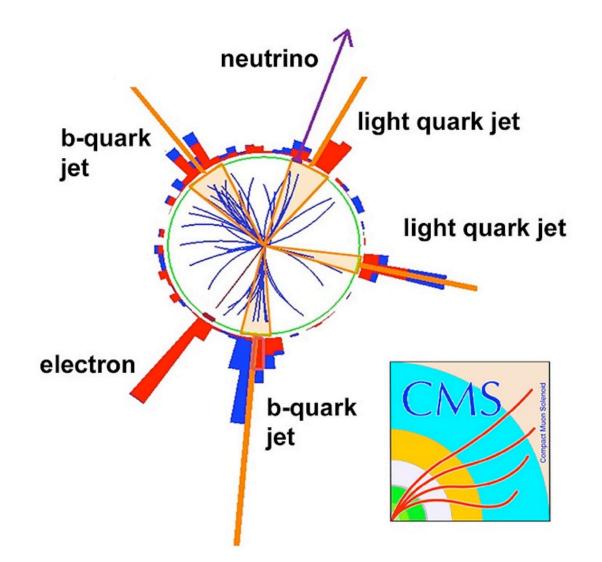

		Fraction at Z [%]	Fraction at $\overline{p}p[\%]$	Combined [%]
Dominant fractions	B^+, B^0	40.2 ± 0.9	33.2 ± 3.0	40.0 ± 1.2
nactions	B^0_s	10.5 ± 0.9	12.2 ± 1.4	11.5 ± 1.3
	b baryons	9.1 ± 1.5	21.4 ± 6.8	8.5 ± 2.1
	B_s°			

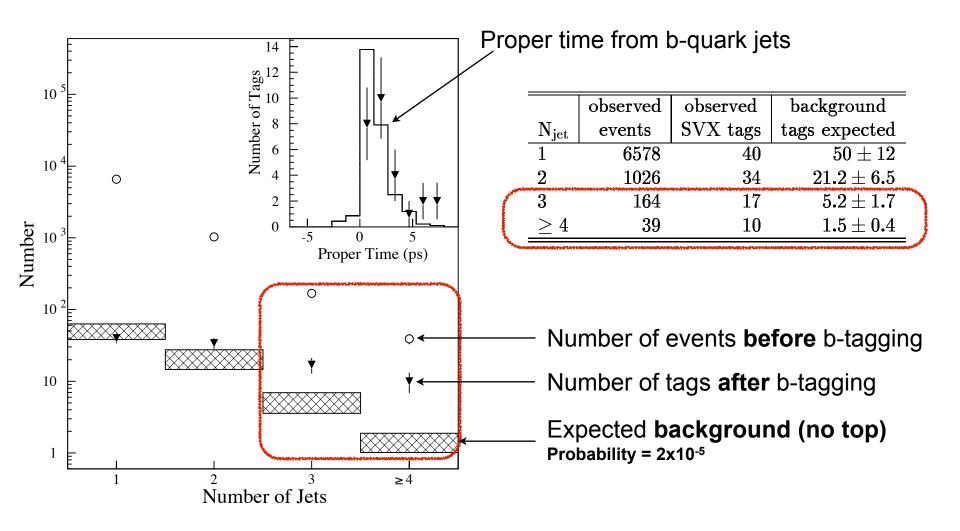
Particle	Lifetime [ps]
B^+	1.638 ± 0.011
B^0	1.525 ± 0.009
B_s^0 (flavor-specific)	1.417 ± 0.042
$B_s^0 (1/\Gamma_s)$	$1.472^{+0.024}_{-0.026}$
B_c^+	0.453 ± 0.041
Λ_b^0	$1.391\substack{+0.038\\-0.037}$
Ξ_{b}^{-}	$1.56^{+0.27}_{-0.25}$
Ω_b^-	$1.13_{-0.40}^{+0.53}$

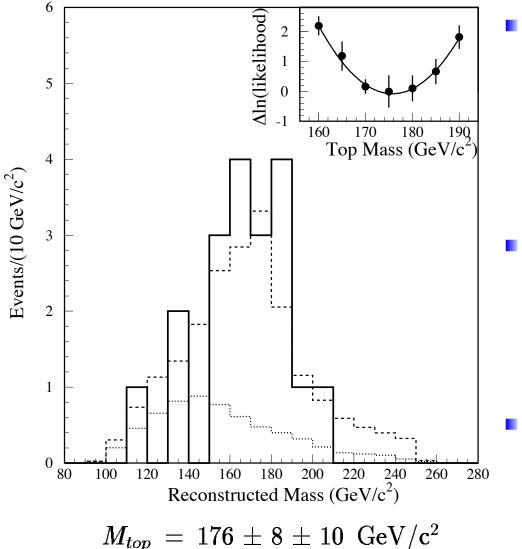
The transverse momentum of a b-jet from a top decay (~50 GeV) is larger than the b-quark mass (~5 GeV)


Secondary vertices


SVX detector

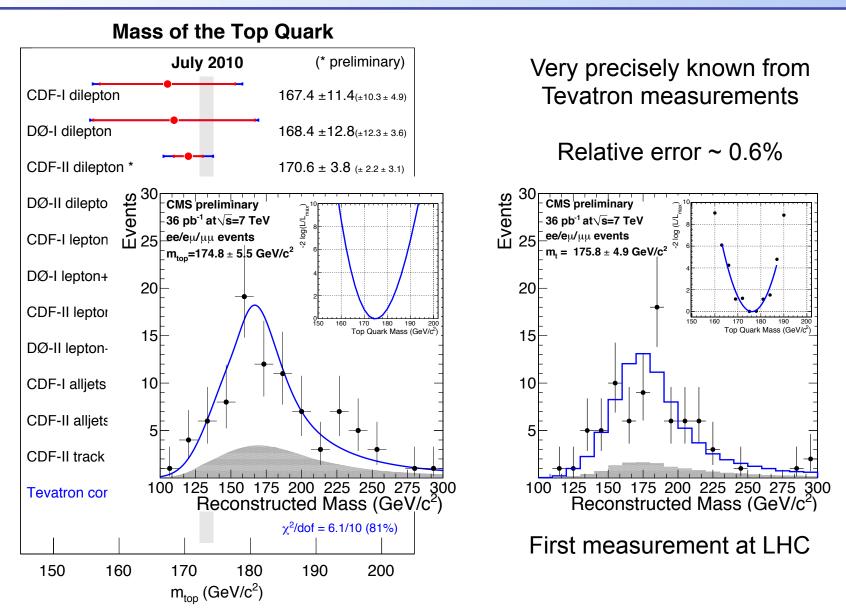

- Micro-strip vertex detector
 - Four layers of micro-strip sensors
 - 51 cm long with innermost layer at 3 cm from beam line, outermost at 8 cm
 - Strip pitch 60 μm
 - Hit resolution = 13 μ m
 - Impact parameter resolution = 17 μm (at high momentum)


Evidence for top: Critical SVX Role


Top event at the LHC

Signal extraction

Mass measurement


Process

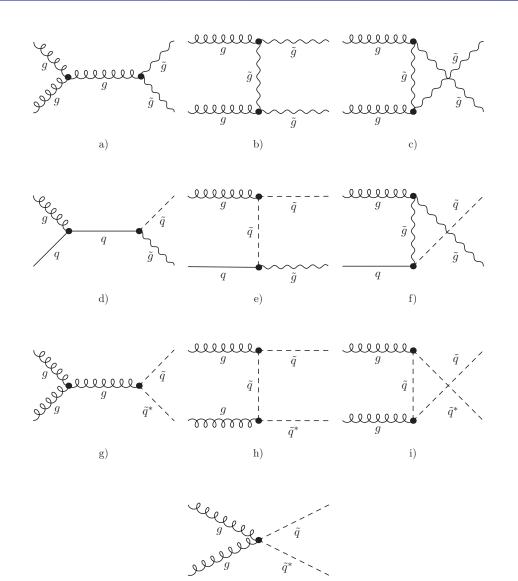
vertex	process
1	$\bar{p}p \to t_1 + t_2 + X$
2	$t_1 \to b_1 + W_1$
3	$t_2 \to b_2 + W_2$
4	$W_1 \to \ell + \nu$
5	$W_2 \rightarrow j_1 + j_2$

Ingredients:

- Lepton
- Missing transverse energy
 - No longitudinal energy measurement → 2 solutions
- 4 jets with highest E_T
- Fit data to sum of two distributions
 - W+jets background
 - Top quark for various masses M_{top}

Summary of Tevatron measurements

Searches for Supersymmetry


Extensions of the Standard Model

- Although very successful the standard provides no explanation for:
 - Dark matter
 - Origin of mass (Higgs?)
 - Dark energy
 - Excess of matter over antimatter
 - Quantum nature of gravity
- Possible extension of the Standard model given by SuperSymmetric theories
 - Postulate new symmetry between bosons and fermions
 - Quark and leptons have "bosonic" counterparts, called "squarks" and "sleptons"
 - Could fix SM divergency of Higgs boson mass
 - Could describe unification of coupling constants at very high energies
 - Could provide a dark matter candidate if lightest SuSy particle is stable

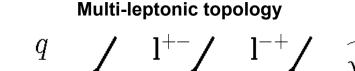
Ongoing searches at the LHC

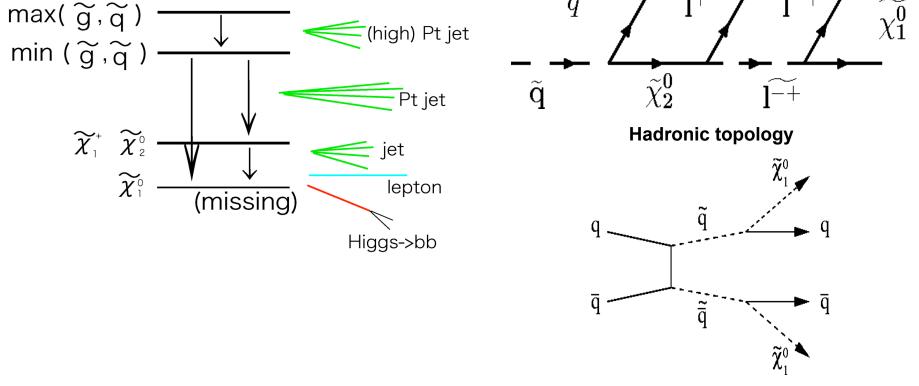
- SuSy processes could be identified in a semi-infinite number of final states
 - First SuSY searches al the LHC focused on model meeting all the mentioned criteria
 - However, data analyses are model independent, interpretation of the results (limits) is.
 - Minimal model of SuSy with potential unification with gravity (mSUGRA)
 - At GUT scale all squarks, sleptons, Higgses have mass mo
 - At GUT scale all gauginos have mass m_{1/2}
 - 5 parameters: m_0 , $m_{1/2}$, $sign(\mu)$, A_0 , $tan(\beta)$
 - R-parity conservation:
 - R-parity = (-1)^{2S+3B+L}. R=1 for SM particles, -1 for sparticles
 - SM particles produced in pairs with sparticles
 - Lightest supersymmetric particle (LSP) is stable
 - Neutralino escapes particle detectors \rightarrow Large missing energy
- Experimental situation evolving very fast
 - ATLAS and CMS public results so far based on 36 pb⁻¹ collected in 2010 at √s=7 TeV. More than 500 pb⁻¹ have been collected since then!
 - Atlas: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults</u>
 - CMS: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

Production process

Dominant production processes are gluon-gluon and gluon-quark fusion

Mass spectrum depends on model parameters (e.g gluino can be lighter or heaview than squarks)


Experimental signatures


Decay of charginos/neutralinos

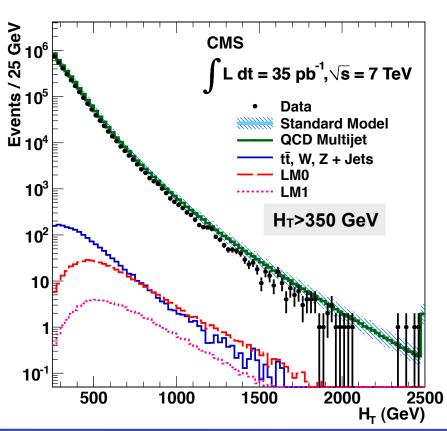
- Multi-leptonic events (opposite or same charge) with missing transverse energy
- Decay of squarks

zürich

Multi-jet events

Search topologies

	Hadronic	Leptonic			
Number of leptons	0	1	2 same charge	2 opposite charge	3
Dominant SM background	QCD top pair W+jets	top pair QCD W+jets	fake top pair	top pair Z+jets	fake top pair


- Event selection is designed to suppress Standard Model background
- Data driven techniques to better constrain residual background
- Count events after all cuts
 - New process manifests as an 'excess' in the number of selected events

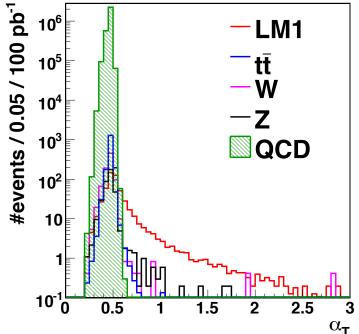
Hadronic searches

- Jets are preselected (ordered in transverse energy):
 - E_T(jet₁, jet₂)> 100 GeV, |η(jet₁)|<2.5
 - For all other jets: $E_T > 50$ GeV, $|\eta| < 3$
 - No leptons and photons allowed
- The scalar sum of the transverse energies of all jets is given by:

$$H_T = \sum_{i=1}^{\#jets} E_T(jet_i)$$

Standard model background from QCD jet production a few order of magnitudes above SuSy signals

SM background suppression


- Residual source of large missing momentum in multi jet events is given by jet energy mismeasurement
 - Detector inefficiencies
 - Miscalibration of calorimeters
- Solution:
 - Exploit different topology of QCD and SuSy events
 - Introducing variable α_T and **trasverse mass**.
 - For a two-jet event:

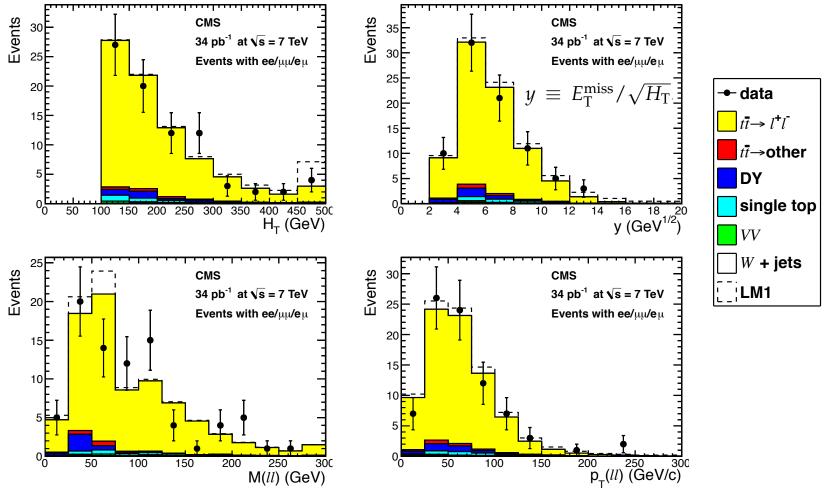
$$\alpha_T = \frac{E_T(jet_2)}{M_T}$$


$$M_{T} = \sqrt{\left[\sum_{i=1}^{2} E_{T}(jet_{i})\right]^{2} - \left[\sum_{i=1}^{2} \vec{p}_{T}(jet_{i})\right]^{2}}$$

Multiple jets can be combined to form a di-jet event

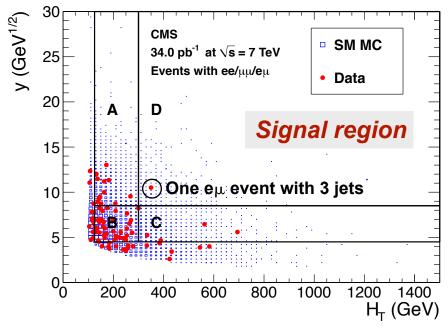
QCD events give balanced jets and $\alpha_T \sim 0.5$ Large missing energy from SuSy gives $\alpha_T > 0.5$

Results



Selection	Data	SM	QCD multijet	$Z \rightarrow \nu \bar{\nu}$	W + jets	tī
$H_{\rm T} > 250 {\rm GeV}$	4.68M	5.81M	5.81M	290	2.0k	2.5k
$E_{\rm T}^{j_2} > 100 {\rm GeV}$	2.89M	3.40M	3.40M	160	610	830
$H_{\rm T} > 350 {\rm GeV}$	908k	1.11M	1.11M	80	280	650
$\alpha_T > 0.55$	37	30.5±4.7	$19.5 {\pm} 4.6$	4.2±0.6	3.9±0.7	2.8±0.1
$\Delta R_{\rm ECAL} > 0.3 \lor \Delta \phi^* > 0.5$	32	24.5 ± 4.2	$14.3 {\pm} 4.1$	4.2±0.6	$3.6{\pm}0.6$	2.4±0.1
$R_{\rm miss} < 1.25$	13	9.3±0.9	$0.03 {\pm} 0.02$	4.1±0.6	3.3±0.6	1.8±0.1

Multi-lepton searches


- Search for events with opposite sign leptons (e⁺e⁻, e[±]μ[±], μ⁺μ⁻), plus jets and missing transverse energy
- Leptonic requirements:
 - First lepton p_T>20 GeV, second lepton p_T>10 GeV
 - Resonance regions are removed (Z, Y)
 - Isolation: no other particle in a cone DR= $\sqrt{(\Delta \phi^2 + \Delta \eta^2)} < 0.3$.
 - Removes leptons from semileptonic heavy-flavor decays
- Hadronic requirements:
 - Two jets with pT>20 GeV and |h|<2.5
 - Missing transverse energy > 50 GeV
 - H_T>100 GeV

Preselected events

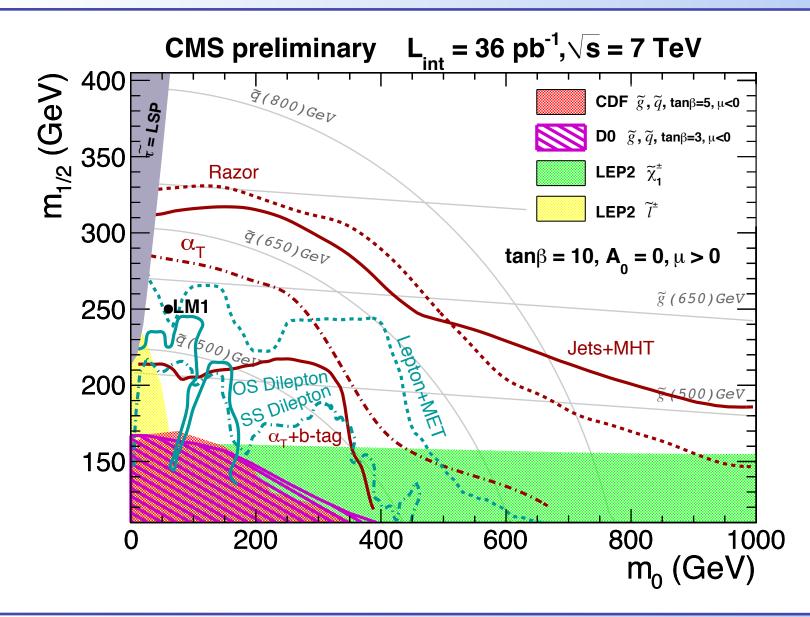
Preselected events dominated by top pair production

"ABCD" method

H_T and y nearly uncorrelated for top pair background.

Expected number of events in the signal region can be extracted from A,B,C

$$\frac{N_A}{N_B} = \frac{N_D}{N_C} \qquad \frac{N_A \times N_C}{N_B} = N_D$$


3.7				
N _A	$N_{ m B}$	NC	$N_{\rm D}$	$N_{\rm A} \times N_{\rm C}/N_{\rm B}$
8.44 ± 0.18	32.83 ± 0.35	4.78 ± 0.14	1.07 ± 0.06	1.23 ± 0.05
0.12 ± 0.02	0.78 ± 0.05	0.16 ± 0.02	0.02 ± 0.01	0.02 ± 0.01
0.17 ± 0.08	1.18 ± 0.22	0.04 ± 0.04	0.12 ± 0.07	0.01 ± 0.01
0.00 ± 0.00	0.09 ± 0.09	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
0.11 ± 0.01	0.29 ± 0.02	0.02 ± 0.01	0.03 ± 0.01	0.01 ± 0.00
0.01 ± 0.00	0.04 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
0.01 ± 0.00	0.02 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
0.29 ± 0.01	1.04 ± 0.03	0.04 ± 0.01	0.01 ± 0.00	0.01 ± 0.00
9.14 ± 0.20	36.26 ± 0.43	5.05 ± 0.14 (1.27 ± 0.10	1.27 ± 0.05
12	37	4	1	1.30 ± 0.78
4.04 ± 0.19	4.45 ± 0.20	13.92 ± 0.36	8.63 ± 0.27	12.63 ± 0.88
0.52 ± 0.02	0.26 ± 0.02	1.64 ± 0.04	3.56 ± 0.06	3.33 ± 0.27
	$\begin{array}{c} 0.12 \pm 0.02 \\ 0.17 \pm 0.08 \\ 0.00 \pm 0.00 \\ 0.11 \pm 0.01 \\ 0.01 \pm 0.00 \\ 0.01 \pm 0.00 \\ 0.29 \pm 0.01 \\ 9.14 \pm 0.20 \\ 12 \\ \hline 4.04 \pm 0.19 \end{array}$	$\begin{array}{c cccc} 8.44 \pm 0.18 & 32.83 \pm 0.35 \\ 0.12 \pm 0.02 & 0.78 \pm 0.05 \\ 0.17 \pm 0.08 & 1.18 \pm 0.22 \\ 0.00 \pm 0.00 & 0.09 \pm 0.09 \\ 0.11 \pm 0.01 & 0.29 \pm 0.02 \\ 0.01 \pm 0.00 & 0.04 \pm 0.00 \\ 0.01 \pm 0.00 & 0.02 \pm 0.00 \\ 0.29 \pm 0.01 & 1.04 \pm 0.03 \\ 9.14 \pm 0.20 & 36.26 \pm 0.43 \\ 12 & 37 \\ \hline 4.04 \pm 0.19 & 4.45 \pm 0.20 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

uzh | eth | züric

CMS

29

mSUGRA exclusion limits

References

- CDF top quark discovery papers:
 - http://www-cdf.fnal.gov/top_status/first_ev.html
 - http://www-cdf.fnal.gov/top_status/top_prl_1994.ps
 - http://www-cdf.fnal.gov/top_status/prl_cdf.ps
- SuSy searches with CMS:
 - Hadronic search: <u>http://arxiv.org/pdf/1101.1628v2</u>
 - UZH PhD thesis: <u>http://www.zora.uzh.ch/45730/1/thesis_Tanja.pdf</u>
 - Leptonic search: <u>http://arxiv.org/pdf/1103.1348</u>