Structure of Hadrons and the parton model

Vincenzo Chiochia

University of Zürich - Physik-Institut
Phenomenology of Particle Physics - FS2011
Lecture: 10/5/2011

Topics in this lecture

- How do we study the structure of composite particles?

E Is the proton an elementary particles?

- If not, what do we see inside the proton?

E Are there only charged partons inside the proton?

Probing a charge distribution

- To probe a charge distribution in a target we can scatter electrons on it and measure their angular distribution
- The measurement can be compared with the expectation for a point charge distribution

$$
\frac{d \sigma}{d \Omega}=\left(\frac{d \sigma}{d \Omega}\right)_{\text {point }} \underset{|F(q)|^{2}}{\text { Form factor }}
$$

Momentum transfer:

$$
q=k_{i}-k_{f}
$$

Structureless target:

$$
\left(\frac{d \sigma}{d \Omega}\right)_{\text {point }}=\frac{(Z \alpha)^{2} E^{2}}{4 k^{4} \sin ^{4}(\theta / 2)}\left(1-\frac{k^{2}}{E^{2}} \sin ^{2} \theta / 2\right)
$$

Proton is not a "point"

Structureless point-like target does not describe the data!

$e^{-}-\mu$ scattering in the lab frame

1) Matrix element
$|\bar{M}|^{2}=\frac{e^{4}}{q^{4}} L_{e}^{\mu \nu} L_{\mu \nu}^{\text {muon }}$
$|\bar{M}|^{2}=\frac{8 e^{4}}{q^{4}} 2 M^{2} E^{\prime} E\left[\cos ^{2} \frac{\theta}{2}-\frac{q^{2}}{2 M^{2}} \sin ^{2} \frac{\theta}{2}\right]$
2) Transferred momentum
$q^{2} \simeq-2 k \cdot k^{\prime} \simeq-4 E E^{\prime} \sin ^{2} \frac{\theta}{2}$

$$
\frac{d \sigma}{d \Omega}=\left(\frac{\alpha^{2}}{4 E^{2} \sin ^{4} \frac{\theta}{2}}\right) \frac{E^{\prime}}{E}\left[\cos ^{2} \frac{\theta}{2}-\frac{q^{2}}{2 M^{2}} \sin ^{2} \frac{\theta}{2}\right]
$$

Target recoil

Electron-proton scattering

- The scattering picture used so far needs to be extended for a composite object
- The invariant mass spectrum shows the elastic peak, excited baryons followed by an inelastic smooth distribution

Invariant mass W

Hadronic tensor - 1

$$
\begin{array}{cc}
d \sigma \sim L_{\mu \nu}^{e} L_{m u o n}^{\mu \nu} \rightarrow d \sigma \sim L_{\mu \nu}^{e} W_{p r o t o n}^{\mu \nu} \\
\text { electron-muon } & \text { parametrizes } \\
\text { scattering } & \text { the current at the proton } \\
\text { vertex }
\end{array}
$$

- The most general form of the tensor W depends on $\mathrm{g}^{\mu \nu}$ and on the momenta p and q

$$
W^{\mu \nu}=-W_{1} g^{\mu \nu}+\frac{W_{2}}{M^{2}} p^{\mu} p^{\nu}+\frac{W_{4}}{M^{2}} q^{\mu} q^{\nu}+\frac{W_{5}}{M^{2}}\left(p^{\mu} q^{\nu}+q^{\mu} p^{\nu}\right)
$$

- From current conservation $\partial_{\mu} J^{\mu}=0$

$$
\begin{aligned}
& W_{5}=-\frac{p \cdot q}{q^{2}} W_{2} \\
& W_{4}=\left(\frac{p \cdot q}{q^{2}}\right)^{2} W_{2}+\frac{M^{2}}{q^{2}} W_{1}
\end{aligned}
$$

Hadronic tensor - 2

E Only two independent inelastic structure functions (W_{1} and W_{2})

$$
W^{\mu \nu}=-W_{1}\left(-g^{\mu \nu}+\frac{q^{\mu} q^{\nu}}{q^{2}}\right)+W_{2} \frac{1}{M^{2}}\left(p^{\mu}-\frac{p \cdot q}{q^{2}} q^{\mu}\right)\left(p^{\nu}-\frac{p \cdot q}{q^{2}} q^{\nu}\right)
$$

- Each structure function has two independent variables

$$
\begin{aligned}
& {\left[\begin{array}{ll}
q^{2} & \begin{array}{l}
\text { square of transferred four-momentum } \\
\text { energy transferred to the nucleon } \\
\text { by the scattering electron }
\end{array} \\
\nu \equiv \frac{p \cdot q}{M}
\end{array}\right.} \\
& {\left[\begin{array}{ll}
x=\frac{-q^{2}}{2 p \cdot q}=\frac{-q^{2}}{2 M \nu} & 0 \leq x \leq 1 \\
y=\frac{p \cdot q}{p \cdot k} & \begin{array}{l}
\text { Bjorken } \\
\text { scaling variable }
\end{array} \\
y \leq y \leq 1
\end{array}\right.}
\end{aligned}
$$

Dimensionless variables

- The invariant mass of the hadronic system in the final state is

$$
W^{2}=(p+q)^{2}=M^{2}+2 M \nu+q^{2}
$$

Kinematic phase-space

Elastic scattering

$$
x=1 \rightarrow-q^{2}=2 M \nu \rightarrow W^{2}=M^{2}
$$

Cross section

- We can now use the hadronic tensor to calculate the matrix element
- In the laboratory frame:

$$
\left(L^{e}\right)^{\mu \nu} W_{\mu \nu}=4 E E^{\prime}\left[\cos ^{2} \frac{\theta}{2} W_{2}\left(\nu, q^{2}\right)+\sin ^{2} \frac{\theta}{2} 2 W_{1}\left(\nu, q^{2}\right)\right]
$$

- Using the flux factor and phase-space factor

$$
\frac{d q}{d E^{\prime} d \Omega}=\frac{\alpha^{2}}{4 E^{2} \sin ^{4} \frac{\theta}{2}}\left[\cos ^{2} \frac{\theta}{2} W_{2}\left(\nu, q^{2}\right)+\sin ^{2} \frac{\theta}{2} 2 W_{1}\left(\nu, q^{2}\right)\right]
$$

E Integrating on the outgoing electron energy

$$
\frac{d q}{d \Omega}=\frac{\alpha^{2}}{4 E^{2} \sin ^{4} \frac{\theta}{2}} \frac{E^{\prime}}{E}\left[\cos ^{2} \frac{\theta}{2} W_{2}\left(\nu, q^{2}\right)+\sin ^{2} \frac{\theta}{2} 2 W_{1}\left(\nu, q^{2}\right)\right]
$$

Increasing spatial resolution

- The key factor for understanding the proton substructure is the wavelength of the probing photon

$$
\lambda \sim \frac{1}{\sqrt{-q^{2}}} \sim 1 \text { Fermi }
$$

$$
\lambda \sim \frac{1}{\sqrt{-q^{2}}} \ll 1 \text { Fermi }
$$

Bjorken Scaling

- In 1968 J.Bjorken proposed that in the structure functions should depend only on the ratio v / q^{2} (proportional to x) in the limit $q^{2} \rightarrow \infty$ and $v \rightarrow \infty$
- In other words: at large $Q^{2} \equiv-q^{2}$ the inelastic e-p scattering is viewed as elastic scattering of the electron on free "partons" within the proton

SLAC-MIT experiment

SLAC-MIT experiment

First hints of Bjorken's scaling

First data at $6^{\circ}: F_{2}$ plotted as function of the scaling variable ν / Q^{2} is roughly independent on Q^{2}

More data at different angles: F_{2} for a fixed ω does not depend on the transferred momentum Q^{2}

$$
\omega=\frac{2 q \cdot p}{Q^{2}}=\frac{2 M \nu}{Q^{2}}
$$

Friedman, Kendal and Taylor - 1969

Parton distributions

- Partons carry a different fraction x of the proton's momentum and energy

- The probability that the struck parton carries a fraction x of the proton momentum is usually called parton distribution or parton density function
- Total probability must be equal to one:

$$
f_{i}(x)=\frac{d P_{i}}{d x} \quad \sum_{i} \int d x x f_{i}(x)=1
$$

Structure function revisited

- In the Feynman's parton model the structure functions are sums of the parton densities constituting the proton

$$
\begin{array}{r}
\nu W_{2}\left(\nu, Q^{2}\right) \rightarrow F_{2}(x)=\sum_{i} e_{i}^{2} x f_{i}(x) \\
M W_{1}\left(\nu, Q^{2}\right) \rightarrow F_{1}(x)=\frac{1}{2 x} F_{2}(x)
\end{array}
$$

- The result $2 x F_{1}=F_{2}$ is known as CallanGross relation and is a consequence of quarks having spin 1/2
- Comparing e-p with $e-\mu$ scattering cross sections (with $m \equiv$ quark mass):

$$
\begin{aligned}
& \frac{2 W_{1}}{W_{2}}=\frac{Q^{2}}{2 m^{2}}, \quad W_{1}=F_{1} / M, \quad W_{2}=F_{2} / \nu \\
& {\left[m=x M, \quad Q^{2}=2 m \nu\right] \rightarrow \frac{F_{1}}{F_{2}}=\frac{1}{2 x} } \\
& \begin{array}{l}
\text { The parton carries } \\
\text { a fraction } x \text { of the } \\
\text { proton mass } M
\end{array}
\end{aligned}
$$

Proton/Neutron parton densities

Gluons
 Valence quarks

Quark-antiquark pairs from gluon splitting ("sea")

$$
\frac{1}{x} F_{2}^{e p}=\left(\frac{2}{3}\right)^{2}\left[u^{p}+\bar{u}^{p}\right]+
$$

$$
\left(\frac{1}{3}\right)^{2}\left[d^{p}+\bar{d}^{p}\right]+
$$

$$
\left(\frac{1}{3}\right)^{2}\left[s^{p}+\bar{s}^{p}\right]
$$

- We write the equivalent structure function for the neutron as

$$
\frac{1}{x} F_{2}^{e n}=\left(\frac{2}{3}\right)^{2}\left[u^{n}+\bar{u}^{n}\right]+\left(\frac{1}{3}\right)^{2}\left[d^{n}+\bar{d}^{n}\right]+\left(\frac{1}{3}\right)^{2}\left[s^{n}+\bar{s}^{n}\right] .
$$

$$
\begin{aligned}
& u^{p}(x)=d^{n}(x) \\
& \equiv u(x) \\
& d^{p}(x)=u^{n}(x) \\
& \equiv d(x) \\
& s^{p}(x)=s^{n}(x)
\end{aligned}
$$

- Proton and neutron parton densities are correlated

Constraints to parton densities

- We assume the three lightest quark flavours ($\mathrm{u}, \mathrm{d}, \mathrm{s}$) occur with equal probability in the sea

$$
\begin{array}{r}
u_{s}=\overline{u_{s}}=d_{s}=d_{s}=s_{s}=s_{s}=S(x) \\
u(x)=u_{v}(x)+u_{s}(x) \\
d(x)=d_{v}(x)+d_{s}(x)
\end{array}
$$

- Combining all constraints:

$$
\begin{aligned}
& \frac{1}{x} F_{2}^{e p}=\frac{1}{9}\left[4 u_{v}+d_{v}\right]+\frac{4}{3} S \\
& \frac{1}{x} F_{2}^{e n}=\frac{1}{9}\left[u_{v}+4 d_{v}\right]+\frac{4}{3} S
\end{aligned}
$$

- At small momenta ($x \sim 0$) the structure function is dominated by low-momentum quark pairs constituting the "sea". For $x \sim 1$ the valence quarks dominate and the ratio $F_{2}{ }^{e n} / F_{2}^{e p}$ becomes

$$
\frac{u_{v}+4 d_{v}}{4 u_{v}+d_{v}} \sim \frac{1}{4}
$$

Ratio of structure functions

Summary of F_{2} proton

If the Proton is
 Three bound valence quarks + some slow

then $F_{2}^{e p}(x)$ is

How about gluons?

- Summing over the momenta of all partons we should reconstruct the total proton momentum:

$$
\int_{0}^{1} d x x(u+\bar{u}+d+\bar{d}+s+\bar{s})=1-\frac{p_{g}}{p}=1-\epsilon_{g}
$$

- Neglecting the small fraction carried by the strange quarks we have and using the results of experimental data

$$
\epsilon_{u} \equiv \int_{0}^{1} d x x(u+\bar{u}) \quad \epsilon_{g} \simeq 1-\epsilon_{u}-\epsilon_{d}=1-0.36-0.18=0.46
$$

Experimental data indicate that about 50\% of the proton momentum is carried by neutral partons, not by quarks!

Gluons and the parton model

Gluon emission: contribution to F_{2}

Experimental techniques

HERA accelerator complex

Kinematic region

HERA experiments: ZEUS

Subdetectors:

1) Central tracker electron momentum charged particles in jet muon momentum
2) Electromagnetic calorimeter electron (and photon) energy
3) Hadronic calorimeter jet energy
4) Muon detectors:
muon ID and momentum

Deep Inelastic Scattering event

ep \rightarrow e jet X

Events with two jets

e $p \rightarrow$ e jet jet $_{2} X$

Only possible with gluons!

 partonic subprocess: $\gamma^{*} g \rightarrow q$ anti- q
Kinematic reconstruction

- To fully characterize a deep inelastic scattering event kinematics both Q^{2} and x (or y) have to be measured

$$
\begin{gathered}
Q^{2}=-q^{2}=-\left(k-k^{\prime}\right)^{2}, \\
x=\frac{Q^{2}}{2 P \cdot q}, \\
y=Q^{2} /(s x)
\end{gathered}
$$

E Both variables can be measured e.g. detecting only the scattered electron

$$
\begin{aligned}
y_{e} & =1-\frac{E_{e}^{\prime}}{2 E_{e}}\left(1-\cos \theta_{e}\right), \\
Q_{e}^{2} & =2 E_{e} E_{e}^{\prime}\left(1+\cos \theta_{e}\right) .
\end{aligned}
$$

- More precise methods combine the measurements (energy and polar angle) of both electron and hadronic system

Measurement of F_{2} proton

- The measurement of F_{2} is given by the double differential e-p cross section as function of x and Q^{2} :

$$
\begin{aligned}
& \frac{d \sigma^{2}}{d x d Q^{2}}=\frac{2 \pi \alpha^{2}}{x Q^{2}}\left[1+(1-y)^{2}\right] F_{2}\left(x, Q^{2}\right) \delta \\
& \delta=\left(1-\delta_{L}-\delta_{3}\right)\left(1+\delta_{r}\right) \begin{array}{l}
\text { to first order } \\
\text { can be neglected }
\end{array} \\
& \begin{array}{c}
\text { Longitudinal structure function }
\end{array} \\
& \begin{array}{c}
\text { Parity-violating term due } \\
\text { to zo exchange }
\end{array} \begin{array}{c}
\text { Electroweak radiative } \\
\text { correction }
\end{array}
\end{aligned}
$$

Measured kinematic range

ZEUS 1994

F_{2} results from HERA

Parton distributions from HERA

References

- F.Halzen, A.Martin, Quarks and Leptons, Wiley, Sections 8/9/10
- C.Amsler, Kern- und Teilchenphysik, UTB

