
Chapter 8

An Introduction to Quantum Field

Theory

8.1 Introduction

This chapter is a generalization of Sec. 5.1 on Path Integral Monte Carlo. Instead of
considering one (or N) quantum-mechanical particles as was done there, the idea is
now to consider a quantum field, which contains infinitely many degrees of freedom.
However, in practice, we are going to simulate a large but finite number of degrees
of freedom, and extrapolate at the end. So there really is not much difference with
Sec. 5.1.

The formal basis for Quantum Field Theory is an important subject, which will not
be covered here. The goal of this chapter is to convey some understanding of simulations
of quantum field theories, by appealing to intuition rather than rigor.

8.2 Path integrals: from classical mechanics to field

theory

Consider first the case of a single, classical particle with Hamiltonian H = p2

2m
+ V .

Hamilton’s equations describe the time-evolution of this particle:

dq

dt
= +

∂H

∂p
−→ q̇ =

p

m
(8.1)

dp

dt
= −∂H

∂q
−→ ṗ = −∇V (8.2)

The usual point of view is to start from initial conditions (q, q̇) at time t = 0, and
evolve q and q̇ according to the coupled ODEs above. Note, however, that the boundary
conditions can instead be split between the beginning and the end of the evolution. In
particular, one can specify the beginning and ending coordinates (q(0), q(t)). There
is a unique path q(t′), t′ ∈ [0, t], which satisfies the above equations, and specifies the
initial and final velocities. To find this path, it is convenient to change viewpoint and
consider the action S =

∫ t

0
dt′L(q, q̇), where L is the Lagrangian 1

2
mq̇2 − V (q). One
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Figure 8.1: A field configuration q(x, y), discretized on a square grid of spacing a.

then invokes the principle of stationary (or least) action, from which can be derived the
Euler-Lagrange equations

∂L
∂qi

= ∂µ
∂L

∂(∂µqi)
. (8.3)

Note that the notion of action is more general than the notion of Hamiltonian: some
systems have an action, but no Hamiltonian. This was in fact the original motivation for
Feynman to develop the path integral formalism in his Ph.D. thesis: he was interested
in systems having non-local interactions in time (with an interaction term q(t)q(t′)).

Consider now many particles interacting with each other, with Lagrangian L =
∑

i
1
2
mq̇2i − V ({qi}) and take qi to represent the z-coordinate of particle i, whose x

and y coordinates are fixed on a square grid of spacing a. Furthermore, take the
interaction between particles to be of the form

∑

〈ij〉(qi − qj)
2, where 〈ij〉 stands for

nearest-neighbours on the grid, as if springs were connecting i and j. Low-energy
configurations will then have almost the same q-value at neighbouring grid points, so
that the configuration {qi} will be smooth and look like a “mattress” as in Fig. 8.1.

When the grid spacing a is reduced to zero, the configuration {qi} becomes a classical
field q(~x) (~x ∈ R2 in this example), with infinitely many degrees of freedom. The
action of this field is specified by its Lagrangian density L = 1

2
∂µq∂

µq − 1
2
m2

0q
2 −

V (q) where the first term is the continuum version of (qi − qj)
2 (with ∂µq∂

µq = q̇2 −
|~∇q|2), the second one is a harmonic term corresponding to a mass, and the last term
describes the local (anharmonic) interaction, e.g. ∝ q4 1. The action is then S =
∫ t

0
dt′dxdyL(q(x, y, t′)). Note that the Lagrangian density L satisfies several symmetries:

it is invariant under translations and rotations in the (x, y) plane, and under the sign
flip q(~x) → −q(~x) ∀~x, at least for an interaction ∝ q4. Each continuous symmetry leads
to a conserved quantity: energy-momentum for translations, angular momentum for
rotations. We will see the importance of the discrete symmetry q ↔ −q later.

1One could think of additional interaction terms, constructed from higher derivatives of the field.

They are not considered here because they lead to non-renormalizable theories.
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Now we can consider quantum effects on the above system. As a result of quantum
fluctuations, the path from q(t = 0) to q(t) is no longer unique. All paths contribute,
with an amplitude ∝ exp(− i

~

∫ t

0
dt′L), from which it becomes clear that the magnitude

of relevant fluctuations in the action is ~. One can then follow the strategy of Sec. 5.1
and make time purely imaginary, by introducing τ = −it ∈ R. The immediate result is
that −idt′ above becomes dτ ′, so that the amplitude becomes real. The other change is
q̇2 → −(∂τq)

2, so that an overall minus sign can be taken out, leading to the amplitude

exp(−1

~
SE) (8.4)

where SE =
∫

dτ ′d~xLE is the Euclidean action, and

LE =
1

2
(∂µφ)

2 +
1

2
m2

0φ
2 + V (φ) (8.5)

is the Euclidean Lagrangian density, and the field q is now denoted by φ as is customary.
The first term (∂µφ)

2 = (∂τφ)
2+|~∇φ|2 is now symmetric between space and time, so that

the metric is Euclidean in (d + 1) dimensions (d spatial dimensions, plus “Euclidean”
time).

It is worth summarizing the sign flips which occurred in the kinetic energy T and
the potential energy U during the successive steps we have just taken. We started with
the Hamiltonian H = T + U , then considered the Lagrangian L = T − U . Going to
imaginary time changes the sign of T . Finally, we take out an overall minus sign in the
definition of LE , so that paths with the smallest action are the most likely. This leads
to the Euclidean Lagrangian density LE = T +U , which is identical to the Hamiltonian
we started from, except that the momentum p is replaced by the derivative ∂0φ.

It is also useful to perform some elementary dimensional analysis. Since it appears
in the exponent of the amplitude Eq.(8.4), the Euclidean action SE is dimensionless (we
set ~ = 1). Hence the Euclidean Lagrangian density has mass dimension (d + 1), and
therefore the field φ has mass dimension d−1

2
. This is interesting, because if we take the

“normal” number of spatial dimensions d = 3 and the interaction term V (φ) = g0
4!
φ4,

then g0 is a dimensionless number. It makes sense then to perform a Taylor expansion of
this theory in powers of g0 about the free case g0 = 0: this is the scope of perturbation
theory. Here, we will try to obtain non-perturbative results, by directly simulating the
theory at some finite, large value of g0.

We have so far considered a field φ(~x, τ) which takes values in R. It is easy to
generalize the Lagrangian density Eq.(8.5) to cases when φ takes values in C, or has

several components forming a vector ~φ ≡





φ1

..
φN



, perhaps with a constraint
∑

N φ2
k =

1, depending on the desired symmetries. Typically, the Euclidean Lagrangian density
is the starting, defining point of a quantum field theory.

Finally, we can introduce a finite temperature T , exactly as we did in the quantum-
mechanical case: we make the Euclidean time direction compact: τ ∈ [0, β = 1

T
], and

impose periodic boundary conditions on the field φ: φ(~x, β) = φ(~x, 0) ∀~x. This works
for the same reason as in quantum mechanics: the partition function

Z =

∫

periodic

Dφ exp(−
∫ β

0

dτ ′d~xLE(φ)) (8.6)
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is a weighted sum of eigenstates of the Hamiltonian: Z =
∑

i exp(−βEi). We will be
concerned here with the T = 0 situation. In that case, the two-point correlator provides
a means to measure the mass gap (E1 − E0):

〈φ(~x, τ)φ(~x, 0)〉 − 〈φ〉2 =
τ→∞

c2 exp(−(E1 −E0)τ) (8.7)

or equivalently the correlation length ξ = (E1 − E0)
−1. The lowest energy state, with

energy E0, is the vacuum, which contains particle-antiparticle pairs because of quantum
fluctuations, but whose net particle number is zero. The first excited state, with energy
E1, contains one particle at rest. Call its mass mR = E1 − E0. Then this mass can
be obtained from the decay of the two-point correlator, as mR = 1/ξ. This is the
“true”, measurable mass of the theory, and it is not equal to the mass m0 used in the
Lagrangian density. mR is called the renormalized mass, while m0 is the bare mass.
Similarly, the “true” strength gR of the interaction can be measured from 4-correlators
of φ, and it is not equal to the coupling g0 used in the Lagrangian density: g0 is the
bare coupling, gR the renormalized coupling.

8.3 Numerical study of φ4 theory

Here, we show that very important results in Quantum Field Theory can be extracted
from simulations of the 4d Ising model. Our starting point is the continuum Euclidean
action:

SE =

∫

dτd3x

[

1

2
(∂µφ0)

2 +
1

2
m2

0φ
2
0 +

g0
4!
φ4
0

]

(8.8)

where the subscript 0 is to emphasize that we are dealing with bare quantities (field,
mass and coupling), and the coupling normalization 1/4! is conventional. We discretize
the theory on a hypercubic (4d) lattice with spacing a 2. After the usual replacements
∫

dτd3x → a4
∑

sites x and ∂µφ0 → φ0(x+µ̂)−φ0(x)
a

, we end up with the lattice action

SL =
∑

x

[

−2κ
∑

µ

φ(x)φ(x+ µ̂) + φ(x)2 + λ(φ(x)2 − 1)2 − λ

]

(8.9)

where we use the new variables φ, κ and λ defined by

aφ0 =
√
2κφ (8.10)

a2m2
0 =

1− 2λ

κ
− 8 (8.11)

g0 =
6λ

κ2
(8.12)

Note in particular the multiplication of φ0 by a to form a dimensionless variable, since
φ0 has mass dimension 1. The original formulation had two bare parameters, m0 and
g0. They have been mapped into two bare parameters, κ and λ. This discretized theory
can be simulated by standard Monte Carlo algorithms like Metropolis, on a hypercubic
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Figure 8.2: Phase diagram of the lattice theory defined by Eq.(8.9). The two phases
are separated by a line of second-order transitions.

lattice of L sites in each direction. To minimize finite-size effects, periodic boundary
conditions are usually imposed in each direction.

The behaviour of our system is easy to understand qualitatively in the two limits
λ = 0 and λ = +∞.
• When λ = 0, the interaction is turned off. This is the free theory, which has two
phases depending on the value of κ: a disordered or symmetric phase 〈φ〉 = 0 when κ
is small, and an ordered phase 〈φ〉 6= 0 when κ is large. Thus, the symmetry φ ↔ −φ
is spontaneously broken when κ > κc =

1
8
, which corresponds to the vanishing of the

mass m0.
• When λ = +∞, fluctuations of φ away from the values ±1 cost an infinite amount of
energy. Thus, φ is restricted to ±1, and our theory reduces to the 4d Ising model with
coupling 2κ. As in lower dimensions, the Ising model undergoes a second-order phase
transition corresponding to the spontaneous breaking of the symmetry φ ↔ −φ, for a
critical value κc ≈ 0.075.
For intermediate values of λ, again a second-order transition takes place, leading to the
phase diagram depicted Fig. 8.2.

The existence of a second-order phase transition is crucial: it allows us to define a
continuum limit of our lattice theory. Remember that the “true”, renormalized mass
mR can be extracted from the exponential decay of the 2-point correlator

〈φ(x)φ(y)〉 − 〈φ〉2 ∝
|x−y|→∞

exp(−mR|x− y|) = exp(−|x− y|
ξ

) (8.13)

(see Eq.(8.7)). On the lattice, we can only measure the dimensionless combination

2The lattice spacing is taken to be the same in space and in time for simplicity; one could consider

different values as and aτ .
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Figure 8.3: Two different viewpoints on a second-order phase transition: in solid-state
physics (left), the crystal is “real” and the physical correlation length diverges; in quan-
tum field theory (right), the correlation length is “real”, and the lattice spacing shrinks
to zero.

amR = 1
ξ/a

, and the separation |x− y| can only be measured in lattice units, i.e. |x−y|
a

.

Taking the continuum limit a → 0 (while keeping mR fixed) forces the correlation length
measured in lattice units, i.e. ξ/a, to diverge. This only occurs when the lattice theory
has a second-order phase transition (or higher order).

Therefore, the interpretation of a second-order phase transition is different between
solid-state physics and lattice field theory. In the first case, the lattice spacing has a
physical meaning, like the distance between two ions in a crystal: the lattice is “for
real”, and the correlation length really diverges at a second-order critical point. In the
lattice field theory, the correlation length is “for real”, and the lattice spacing a shrinks
to zero at the critical point. This is illustrated in Fig. 8.3.

In this latter case, one must be careful that the physical box size (La) also shrinks
as a → 0. In order to obtain a controlled continuum limit at constant physical volume,
one must increase the number of lattice points L in each direction keeping (La) fixed.

Going back to our φ4 theory, one sees that a continuum limit can be defined for
any value of the bare coupling λ ∈ [0,+∞], by tuning κ to its critical value κc(λ).
An interesting question is: what is the value of the “true”, renormalized coupling as a
function of λ ? The answer is clear when λ = 0: the theory is free, and the coupling is
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zero, whether bare or renormalized. To obtain a non-zero answer, a reasonable strategy
is to maximize the bare coupling, and thus to consider the Ising limit λ = +∞. The
renormalized coupling is extracted from the strength of the 4-spin correlation, normal-
ized as explained in Exercise 11. The rather surprising answer is that the renormalized
coupling is zero, just like for λ = 0. In fact, the renormalized coupling is always zero for
any choice of λ. In other words, the renormalized φ4 theory is free, no matter the value
of the bare coupling! The formal statement is that the φ4 theory is “trivial”. Note that
this is only true in (3 + 1) dimensions. In lower dimensions, the renormalized coupling
is non-zero.

Now, why is this finding important? The Standard Model of particle interactions
contains a Higgs particle, which gives a mass to all other particles by coupling to them.
The field theory describing the Higgs particle is very much like the φ4 theory we have

just studied, except that the field φ is now a complex doublet

(

φ1 + iφ2

φ3 + iφ4

)

. The bare

parameters are chosen so that the system is in the broken-symmetry phase, where φ
has a non-zero expectation value. The masses of all particles are proportional to 〈φ〉,
therefore it is crucial that 〈φ〉 6= 0. In turn, this symmetry breaking is only possible if
the coupling g is non-zero. But, as we have seen, the “true”, renormalized value of g is
zero. Therefore, we have a logical inconsistency. The consequence is that the Standard
Model cannot be the final, exact description of particle interactions. Some new physics
beyond the Standard Model must exist, and from the numerical study of the lattice
theory near κc(λ), one can set the energy scale for this new physics to become visible at
around 600-800 GeV. This (slightly abridged) argument is so powerful that it has been
used in the design of the Large Hadron Collider (LHC), turned on at CERN in 2009,
and which will study collisions up to about 1000 GeV only.

8.4 Gauge theories

Of the four forces known in Nature, at least three (the strong, the weak and the electro-
magnetic forces) are described by gauge theories. In addition to the usual “matter” fields
(electrons, quarks), these theories contain “gauge” fields (photons, W and Z bosons,
gluons) which “mediate” the interaction: the interaction between, say, two electrons is
caused by the exchange of photons between them. This is analogous to the exchange
of momentum which occurs when one person throws a ball at another, and the other
catches it. In this way, two particles interact when they are far apart, even though
the Lagrangian contains only local interactions. Moreover, gauge theories are invariant
under a larger class of symmetries, namely local (x-dependent) symmetries.

8.4.1 QED

As an example, let us consider here a variant of Quantum ElectroDynamics (QED),
called scalar QED, where electrons are turned into bosons. A simple modification of
the previous φ4 theory is required: in order to represent charged bosons, the field φ,
instead of being real, is made complex, φ(x) ∈ C. The continuum Euclidean action
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Figure 8.4: Graphical representation (left) of the gauge-invariant nearest-neighbour
interaction: φ∗(x)φ(x + µ̂) becomes φ∗(x)Uµ(x)φ(x + µ̂); (middle) an example of a
gauge-invariant 4-point correlation; (right) the smallest closed loop is the plaquette,
with associated matrix Uµ(x)Uν(x+ µ̂)U †

µ(x+ ν̂)U †
ν(x).

becomes

SE =

∫

dτd3x
[

|∂µφ0|2 +m2
0|φ0|2 +

g0
4!
|φ0|4

]

(8.14)

and, after discretization on the lattice:

SL =
∑

x

[

−κ
∑

µ

(φ∗(x)φ(x+ µ̂) + h.c.) + |φ(x)|2 + λ(|φ(x)|2 − 1)2 − λ

]

(8.15)

SL is invariant under the global (x-independent) rotation φ(x) → exp(iα)φ(x) ∀x. The
idea is now to promote this symmetry to a local one, where α may depend on x. It is
clear that the derivative term φ∗(x)φ(x+ µ̂) is not invariant under this transformation.
Invariance is achieved by introducing new degrees of freedom, namely complex phases
(elements of U(1)) which live on the links between nearest-neighbours. Call Uµ(x) =
exp(iθµ(x)) the link variable starting at site x in direction µ. Modify the derivative
term as follows:

φ∗(x)φ(x+ µ̂) → φ∗(x)Uµ(x)φ(x+ µ̂) (8.16)

This term is now invariant under a local transformation φ(x) → exp(iα(x))φ(x), with
α(x) 6= α(x+ µ̂), provided that Uµ(x) also transforms:

φ(x) → exp(iα(x))φ(x) (8.17)

Uµ(x) → exp(iα(x))Uµ(x) exp(−iα(x+ µ̂)) (8.18)

The significance of the new variables Uµ(x) and of the new expression for the discretized
derivative can be elucidated by expressing θµ(x) = eaAµ(x), and considering the con-
tinuum limit a → 0. To lowest order in a, the derivative ∂µ becomes the covariant
derivative Dµ ≡ ∂µ + ieAµ, and the transformation eq.(8.18) is a gauge transformation
for Aµ: Aµ(x) → Aµ(x) − e∂µα(x). Thus, our link variables Uµ(x) represent the dis-
cretized gauge potential Aµ(x) associated with the electromagnetic field, and eq.(8.16)
describes the interaction of our bosonic electrons with the photon. To complete the dis-
cretization of QED, what is missing is the energy of the electromagnetic field, namely
1
2

∫

d~xdτ(| ~E|2(x) + | ~B|2(x)). We identify its lattice version below.
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It becomes simple to construct n-point correlators of φ which are invariant under
the local transformation eq.(8.18): all the fields φ need to be connected by “strings”
of gauge fields, made of products of gauge links Uµ as in Fig. 8.4. Under a local
gauge transformation, the phase changes α(x) will always cancel out between φ and the
attached U , or between two successive U ’s.

There is another type of gauge-invariant object. Consider the product of links
∏

x→x U around a closed loop, starting and ending at x. It transforms as

∏

x→x

U → exp(iα(x))
∏

x→x

U exp(−iα(x)) (8.19)

which is invariant since all the U ’s are complex phases which commute with each other.
Thus, another valid term to add to the [real] lattice action is the real part of any closed
loop, summed over translations and rotations to preserve the other desired symmetries.
The simplest version of such a term is to take elementary square loops of size a, made
of 4 links going around a plaquette: Pµν(x) ≡ Uµ(x)Uν(x + µ̂)U †(x + µ̂)U †(x). Thus,
the complete action of our scalar QED theory is

∑

x

|φ(x)|2 − κ
∑

x

∑

µ

(φ∗(x)Uµ(x)φ(x+ µ̂) + h.c.) + β
∑

x

∑

µ6=ν

Re(Pµν(x)) (8.20)

The plaquette term looks geometrically like a curl. Indeed, substituting Uµ(x) =
exp(ieaAµ(x)) and expanding to leading-order in a yields

Re(Pµν(x)) ≈ 1− 1

2
e2a4(∂µAν − ∂νAµ)

2 (8.21)

so that the last term in eq.(8.20) becomes, up to an irrelevant constant, −βe2 1
2

∫

d~xdτ(| ~E|2+
| ~B|2), where one has expressed the electric and magnetic fields ~E and ~B in terms of
the gauge potential Aµ. It suffices then to set β = 1/e2 to recover the energy of an
electro-magnetic field.

Note that it is our demand to preserve invariance under the local transformation
eq.(8.18) which has led us to the general form of the action eq.(8.20). We could have
considered larger loops instead of plaquettes. But in the continuum limit a → 0,
these loops would yield the same continuum action. So the form of the QED action is
essentially dictated by the local gauge symmetry.

One can now study the scalar QED theory defined by eq.(8.20) using Monte Carlo
simulations, for any value of the bare couplings (κ, β). Contrary to continuum pertur-
bation theory, one is not limited to small values of e (i.e. large β).

8.4.2 QCD

Other gauge theories have basically the same discretized action eq.(8.20). What changes
is the group to which the link variables Uµ(x) belong. For QCD, these variables represent
the gluon field, which mediates the interaction between quarks. Quarks come in 3
different colors and are thus represented by a 3-component vector at each site3. Hence,

3This would be the full story if quarks were bosons. Because they are fermions, each color component

is in fact a 4-component vector, called Dirac spinor.
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the link variables are 3×3 matrices. The gauge-invariant piece associated with a closed
loop is the trace of the corresponding matrix, thanks to cyclic invariance of the trace of
eq.(8.19). No other changes are required to turn lattice QED into lattice QCD!

As emphasized in Sec. 8.3, the Euclidean Lagrangian density defines the lattice
theory. The continuum limit can be obtained by approaching a critical point. For
QCD, the critical point is β → +∞, i.e. g0 = 0 since β ∝ 1/g20 as in QED. As we
have seen, the vanishing of the bare coupling does not imply much about the true,
renormalized coupling.

Figure 8.5: Potential V (r) between a static quark and antiquark, as a function of their
separation r. Data obtained at 2 values of the lattice spacing (finite values of β) are
extrapolated to the continuum limit (β → ∞). At short distance, the potential is
Coulomb-like because the interaction becomes weak (the solid line shows the prediction
of perturbation theory). At large distance, the potential rises linearly, which shows that
it takes an infinite energy to separate the two objects: quarks are confined. A simple
model of a vibrating string (dotted line) gives a good description, down to rather short
distances. From hep-lat/0108008.
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8.5 Overview

The formulation of lattice QCD is due to K. Wilson (1974). First Monte Carlo simula-
tions were performed by M. Creutz in 1980, on a 44 lattice. A goal of early simulations
was to check whether quarks were confined. This can be demonstrated by considering
the potential V (r) between a quark and an anti-quark separated by distance r. Con-
trary to the case of QED where the potential ∝ 1/r saturates as r → ∞, in QCD the
potential keeps rising linearly, V (r) ∼ σr, so that it takes an infinite amount of energy
to completely separate the quark and anti-quark. Equivalently, the force between the
two objects goes to a constant σ. The energy of the quark-antiquark pair grows as if it
was all concentrated in a tube of finite diameter. Describing the quark-antiquark pair
as an infinitely thin, vibrating string is a very good approximation, as shown in the
state-of-the-art Monte Carlo data Fig. 8.5, now performed on 324 lattices. To control
discretization errors, the lattice spacing must be about 1/10th of the correlation length
or less. To control finite-volume effects, the lattice size must be about 3 times the
correlation length or more. This implies lattices of minimum size 304, which have only
become within reach of a reasonable computer budget in recent years.

The above simulations considered only the effect of gluons: since gluons carry a
color charge (in contrast to the photon which is electrically neutral), they can lead to
complex effects like the confinement of charges introduced in the gluon system. But
to study QCD proper, quarks must be simulated also. This is more difficult because
quarks are fermions, i.e. non-commuting variables. The strategy is to integrate them
out analytically. This integration induces a more complicated interaction among the
remaining gluonic link variables. In fact, this interaction is non-local, which increases
the algorithmic complexity of the Monte Carlo simulation. An efficient, exact simulation
algorithm, called Hybrid Monte Carlo, was only discovered in 1987 (see bibliography).
Even so, the simulation of so-called “full QCD”, on lattices of size 304 or larger, requires
a computer effort O(1) Teraflop× year, which has forced the community to evolve into
large collaborations using dedicated computers.

Using these resources, one is now able to reproduce the masses of quark and anti-
quark bound states, i.e. mesons and baryons, to a few percent accuracy. The impact of
neglecting the effect of quarks or including them is nicely illustrated in Fig. 8.6. Some
predictions have also been made for the properties of mesons made of charm or bottom
quarks, currently being studied in particle accelerators.

Another essential purpose of QCD simulations is to quantify QCD effects in exper-
imental tests of the electroweak Standard Model. By checking whether experimental
results are consistent with the Standard Model, one can expose inconsistencies which
would be the signature of new, beyond-the-standard-model physics. To reveal such in-
consistencies, one must first determine precisely the predictions of the Standard Model.
This entails the determination of QCD effects, which can only be obtained from lattice
QCD simulations.

Finally, another direction where QCD simulations have been playing a major role is
that of high temperature. The confinement of quarks, which is an experimental fact at
normal temperatures, is believed to disappear at very high temperatures O(100) MeV
∼ O(1012) K. This new state of matter, where quarks and gluons form a plasma, is
being probed by accelerator experiments which smash heavy ions against each other.
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