Chapter 7

Cluster quantum Monte Carlo
algorithms for lattice models

7.1 World line representations for quantum lattice
models

All quantum Monte Carlo algorithms are based on a mapping of a d-dimensional quan-
tum system to a (d + 1)-dimensional classical system using a path-integral formulation.
We then perform classical Monte Carlo updates on the world lines of the particles. We
will now introduce one modern algorithm for lattice models, the “loop-algorithm” which
is a generalization of the classical cluster algorithms for the Ising model to quantum
models.

We will discuss the loop algorithm for a spin-1/2 quantum XXZ model with the
Hamiltonian

H = — Z (J.S7S; + Juy(SEST + SPSY))
g o
- _ Z (JZSij + 79(5;5]. +S; s;)) . (7.1)
(1,3)

For J = J, = J,, we have the Heisenberg model (J > 0 is ferromagnetic, J < 0
antiferromagnetic). J,, = 0 is the (classical) Ising model and J, = 0 the quantum XY
model.

Continuous-time world lines

In contrast to models in continuous space, where a discrete time step was needed for the
path integral, for lattice models the continuum limit can be taken. The spatial lattice
is sufficient to regularize any ultraviolet divergencies.

We start by still discretizing discretize the imaginary time (inverse temperature)
direction and subdivide § = M AT:

e P — (e — (1 — ArH)M + O(AT) (7.2)
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Figure 7.1: Example of a world line configuration for a spin-1/2 quantum Heisenberg
model. Drawn are the world lines for up-spins only. Down spin world lines occupy the
rest of the configuration.

In the limit M — oo (A7 — 0) this becomes exact. We will take the limit later, but
stay at finite A7 for the derivation.

The next step is to insert the identity matrix, represented by a sum over all basis
states ), |7)(i| between all operators (1 — ATH):

Z = Tre ™ =Tr(1 - ArH)M + O(A7)

Bl eyt M

= ‘Pil,...,iA{ (73)

and similarly for the measurement, obtaining

U1y

If we choose the basis states |i) to be eigenstates of the local S* operators we end
up with an Ising-like spin system in one higher dimension. Each choice 71,... 7y,
corresponds to one of the possible configurations of this classical spin system. The
trace is mapped to periodic boundary conditions in the imaginary time direction of this
classical spin system. The probabilities are given by matrix elements (i,|1 —A7TH |iy41).
We can now sample this classical system using classical Monte Carlo methods.

However, most of the matrix elements (i,|1—A7H]|i, 1) are zero, and thus nearly all
configurations have vanishing weight. The only non-zero configurations are those where
neighboring states |i,) and |i,,41) are either equal or differ by one of the off-diagonal
matrix elements in H, which are nearest neighbor exchanges by two opposite spins. We
can thus uniquely connect spins on neighboring “time slices” and end up with world
lines of the spins, sketched in Fig. 7.1. Instead of sampling over all configurations of
local spins we thus have to sample only over all world line configurations (the others
have vanishing weight). Our update moves are not allowed to break world lines but
have to lead to new valid world line configurations.
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Finally we take the continuous time limit A7 — 0. Instead of storing the configura-
tions at all M — oo time steps, we will not just store the times 7 where a spin flips as
the consequence of an off-diagonal operator acting at that time. The number of such
events stays finite as M — oo: as can be seen from equation (7.2) the probability of H
acting at a given time is proportional to 1/M, and hence the total number of spin flips
will stay finite although M — oo

7.2 Cluster updates

Before discussing cluster updates for quantum systems, we will review the cluster al-
gorithms for the classical Ising model which should be known from the computational
statistical physics course.

7.2.1 Kandel-Domany framework

To provide a general framework, which can be extended to quantum systems, we use
the Fortuin-Kastelyn representation of the Ising model, as generalized by Kandel and
Domany. The phase space of the Ising model is enlarged by assigning a set G of possible
“graphs” to each configuration C' in the set of configurations C. We write the partition

function as
Z=> Y W(CG) (7.5)
CceC Geg

where the new weights W (C, G) > 0 are chosen such that Z is the partition function of
the original model by requiring

> W(C,G) =W(C) := exp(—BE[C]), (7.6)
Geg

where E|[C] is the energy of the configuration C'.
The algorithm now proceeds as follows. First we assign a graph G € G to the
configuration C, chosen with the correct probability

Po(G) = W(C,G)/W(C). (7.7)

Then we choose a new configuration C” with probability p[(C,G) — (C’, G)], keeping
the graph G fixed; next a new graph G’ is chosen

C— (C,G)= (C",G) = C"— (C",G") — ... (7.8)

What about detailed balance? The procedure for choosing graphs with probabilities
P obeys detailed balance trivially. The non-trivial part is the probability of choosing
a new configuration C’. There detailed balance requires:

W(C, G)pl(C,G) — (¢, G)] = W(C",G)pl(C", G) — (C,G)], (7.9)
which can be fulfilled using either the heat bath algorithm

W (C",G)
W(C,G) + W(C", G)

p[(C,G) — (C',G)] = (7.10)
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Table 7.1: Local bond weights for the Kandel-Domany representation of the Ising model.

c =11 c=J1 c=1) c=ll V(g)
A(e, discon.) 1 1 1 1 exp(—pJ)
A(c, con.) 1 0 0 1 exp(BJ) — exp(—SJ)
w(c) exp(8J) exp(=BJ) exp(=BJ) exp(BJ)

or by again using the Metropolis algorithm:
pl(C,G) = (¢, G)] = min(W(C',G)/W(C,G), 1) (7.11)

The algorithm simplifies a lot if we can find a graph mapping such that the graph
weights do not depend on the configuration whenever it is nonzero in that configuration.
This means, we want the graph weights to be

W(C,G) = A(C,G)V(G), (7.12)

where
Lift W(C,G) #0,

0 otherwise. (7.13)

A(C,G) = {
Then equation (7.10) simply becomes p = 1/2 and equation (7.11) reduces to p =1 for
any configuration C” with W (C", G) # 0.

7.2.2 The cluster algorithms for the Ising model

Let us now show how this abstract and general algorithm can be applied to the Ising
model. Our graphs will be bond-percolation graphs on the lattice. Spins pointing
into the same direction can be connected or disconnected. Spins pointing in opposite
directions will always be disconnected. In the Ising model we can write the weights

W(C) and W (C,G) as products over all bonds b:
w(C) = JJw(C) (7.14)
b

W(C,G) = [[w(@ Gy =J]ACH,G)V(G) (7.15)

b

where the local bond configurations C}, can be one of {11, .1, 1}, l}

and the local graphs can be “connected” or “disconnected”. The graph selection
can thus be done locally on each bond.

Table 7.1 shows the local bond weights w(c, g), w(c), A(e, g) and V(g). It can easily
be checked that the sum rule (7.6) is satisfied.

The probability of a connected bond is [exp(8J) — exp(—3J)]/exp(BJ) = 1 —
exp(—26J) if two spins are aligned and zero otherwise. These connected bonds group
the spins into clusters of aligned spins.

A new configuration C” with the same graph G can differ from C only by flipping
clusters of connected spins. Thus the name “cluster algorithms”. The clusters can be

57



flipped independently, as the flipping probabilities p[(C, G) — (C’, G)] are configuration
independent constants.

There are two variants of cluster algorithms that can be constructed using the rules
derived above.

The Swendsen-Wang algorithm

The Swendsen-Wang or multi-cluster algorithm proceeds as follows:

i) Each bond in the lattice is assigned a label “connected” or “disconnected” ac-
cording to above rules. Two aligned spins are connected with probability 1 —
exp(—26J). Two antiparallel spins are never connected.

ii) Next a cluster labeling algorithm, like the Hoshen-Kopelman algorithm is used to
identify clusters of connected spins.

iii) Measurements are performed, using improved estimators discussed in the next
section.

iv) Each cluster of spins is flipped with probability 1/2.

The Wolff single-cluster algorithm

The Swendsen Wang algorithm gets less efficient in dimensions higher than two as the
majority of the clusters will be very small ones, and only a few large clusters exist.
The Wolff algorithm is similar to the Swendsen-Wang algorithm but builds only one
cluster starting from a randomly chosen point. As the probability of this point being
on a cluster of size s is proportional to s the Wolff algorithm builds preferedly larger
clusters. It works in the following way:

i) Choose a random spin as the initial cluster.

ii) If a neighboring spin is parallel to the initial spin it will be added to the cluster
with probability 1 — exp(—28J).

iii) Repeat step ii) for all points newly added to the cluster and repeat this procedure
until no new points can be added.

iv) Perform measurements using improved estimators.
v) Flip all spins in the cluster.

We will see in the next section that the linear cluster size diverges with the corre-
lation length ¢ and that the average number of spins in a cluster is just x7'. Thus the
algorithm adapts optimally to the physics of the system and the dynamical exponent
z & 0, thus solving the problem of critical slowing down. Close to criticality these
algorithms are many orders of magnitudes (a factor L?) better than the local update
methods. Away from criticality sometimes a hybrid method, mixing cluster updates
and local updates can be the ideal method.
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7.2.3 Improved Estimators

In this section we present a neat trick that can be used in conjunction with cluster
algorithms to reduce the variance, and thus the statistical error of Monte Carlo mea-
surements. Not only do these “improved estimators” reduce the variance. They are
also much easier to calculate than the usual “simple estimators”.

To derive them we consider the Swendsen-Wang algorithm. This algorithm divides
the lattice into N, clusters, where all spins within a cluster are aligned. The next
possible configuration is any of the 2" configurations that can be reached by flipping
any subset of the clusters. The idea behind the “improved estimators” is to measure
not only in the new configuration but in all equally probable 2V configurations.

As simplest example we consider the average magnetization (m). We can measure
it as the expectation value (o) of a single spin. As the cluster to which the spin belongs
can be freely flipped, and the flipped cluster has the same probability as the original
one, the improved estimator is

(m) = (307~ 03)) = 0. (7.16)
This result is obvious because of symmetry, but we saw that at low temperatures a
single spin flip algorithm will fail to give this correct result since it takes an enormous
time to flip all spins. Thus it is encouraging that the cluster algorithms automatically
give the exact result in this case.
Correlation functions are not much harder to measure:

(7.17)

(070+) = 1 if i und j are on the same cluster
7371 0 otherwise

To derive this result consider the two cases and write down the improved estimators by
considering all possible cluster flips.

Using this simple result for the correlation functions the mean square of the mag-
netization is

(m?) — % S (o) = %< S S(ctuster)?), (7.18)

- =

i cluster

where S(cluster) is the number of spins in a cluster. The susceptibility above T, is
simply given by 3(m?) and can also easily be calculated by above sum over the squares
of the cluster sizes.

In the Wolff algorithm only a single cluster is built. Above sum (7.18) can be
rewritten to be useful also in case of the Wolff algorithm:

1
(m?) = m( Z S(cluster)?)
cluster
1 1

= — _ S(cluster containing 7)>
N2 4=~ g (cluster containing 1) ( )
(3

1 N |
= N2 Z S(cluster containing Z} = N(S(cluster)). (7.19)

(2
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Table 7.2: The six local configurations for an X X7 model and their weights.

configuration weight
steraok span  seant ¥ sfera)

s,(x)* * S S,(r)+ + ) 1+ % dr
steraob ¥ sferd  sfeaot § sfera)

s,(x)* Y S s@Y * ) 1— % dr
sferan)f | T ¥ sfera)

s,(x)* + SO S,(r)+ * S0 % dr

XX
2) ) (E==) ) . d)

Figure 7.2: The four local graphs: a) vertical, b) horizontal ¢) crossing and d) freezing
(connects all four corners).

The expectation value for m? is thus simply the mean cluster size. In this derivation
we replaced the sum over all clusters by a sum over all sites and had to divide the
contribution of each cluster by the number of sites in the cluster. Next we can replace
the average over all lattice sites by the expectation value for the cluster on a randomly
chosen site, which in the Wolff algorithm will be just the one Wolff cluster we build.

7.2.4 The loop algorithm for quantum spins

We will now generalize these cluster algorithms to quantum systems and present the
loop algorithm. !

This algorithm is best described by first taking the continuous time limit M — oo
(A7 — d7) and by working with infinitesimals. Similar to the Ising model we look at
two spins on neigboring sites ¢ and j at two neighboring times 7 and 7+ dr, as sketched
in Tab. 7.2. There are a total of six possible configurations, having three different
probabilities. The total probabilities are the products of all local probabilities, like in
the classical case. This is obvious for different time slices. For the same time slice it
is also true since, denoting by H;; the term in the Hamiltonian H acting on the bond
between sites ¢ and j we have [, (1 —drH;) = 1—dr} ,  Hij =1—drH. In
the following we focus only on such local four-spin plaquettes. Next we again use the
Kandel-Domany framework and assign graphs. As the updates are not allowed to break
world lines only four graphs, sketched in Fig. 7.2 are allowed. Finally we have to find
A functions and graph weights that give the correct probabilities. The solution for the

'H. G. Evertz et al., Phys. Rev. Lett. 70, 875 (1993); B. B. Beard and U.-J. Wiese, Phys. Rev.
Lett. 77, 5130 (1996); B. Ammon, H. G. Evertz, N. Kawashima, M. Troyer and B. Frischmuth, Phys.
Rev. B 58, 4304 (1998).
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Table 7.3: The graph weights for the quantum-XY model and the A function specifying
whether the graph is allowed. The dash — denotes a graph that is not possible for a
configuration because of spin conservation and has to be zero.

t ot [ o
G Al LG) At 1,.G) Al 1,G)

b tot {

=A(t 1,G)|=AF 4G)| =A@ 1 G) | graph weight

i i 1 1 - 1 — 22 dr
=
= - 1 1 %dT
X 1 - 1 %dT
x 0 0 0 0

—_

total weight ‘ %dT

XY-model, ferromagnetic and antiferromagnetic Heisenberg model and the Ising model
is shown in Tables 7.3 - 7.6.

Let us first look at the special case of the Ising model. As the exchange term is
absent in the Ising model all world lines run straight and can be replaced by classical
spins. The only non-trivial graph is the “freezing”, connecting two neighboring world
lines. Integrating the probability that two neighboring sites are nowhere connected
along the time direction we obtain: times:

B
[J(—dri/2) = Jim (1 ATJ/2)M = exp(—S.J/2) (7.20)
—00
T7=0
Taking into account that the spin is S = 1/2 and the corresponding classical cou-

pling J; = S*J = J/4 we find for the probability that two spins are connected:
1 — exp(—28J4). We end up exactly with the cluster algorithm for the classical Ising
model!

The other cases are special. Here each graph connects two spins. As each of these
spins is again connected to only one other, all spins connected by a cluster form a
closed loop, hence the name “loop algorithm”. Only one issue remains to be explained:
how do we assign a horizontal or crossing graph with infinitesimal probability, such
as (J/2)dr. This is easily done by comparing the assignment process with radioactive
decay. For each segment the graph runs vertical, except for occasional decay processes
occuring with probability (J/2)dr. Instead of asking at every infinitesimal time step
whether a decay occurs we simply calculate an exponentially distributed decay time ¢
using an exponential distribution with decay constant J/2. Looking up the equation
in the lecture notes of the winter semester we have t = —(2/J) In(1 — u) where u is a
uniformly distributed random number.

61



Table 7.4: The graph weights for the ferromagnetic quantum Heisenberg model and the
A function specifying whether the graph is allowed. The dash — denotes a graph that
is not possible for a configuration because of spin conservation and has to be zero.

bt [ ot
G At 4L G) Al 1,G) At 1,G)

Pt tot bt

AN(ERNE AY LG) A(t 4, G) | graph weight

i i 1 1 — 1—2dr
CaS)
Cad) - 0 0 0
X 1 — 1 Zdr
x 0 0 0 0
total weight ‘ 1+ %dT 1— %dT %dT

Table 7.5: The graph weights for the antiferromagnetic quantum Heisenberg model and
the A function specifying whether the graph is allowed. The dash — denotes a graph
that is not possible for a configuration because of spin conservation and has to be zero.
To avoid the sign problem (see next subsection) we change the sign of J,,, which is

allowed only on bipartite lattices.

G At LG) | At 1LG) | A 1G)

bt 4 bt

At 1,G A(Y 4 G) A(t 4, G) | graph weight

i i 1 1 - 1—ar
=
Cad) - 1 1 Y gr
X N
x 0 0 0 0
total weight ‘ 1— %dT 1+ %dT %dT
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Table 7.6: The graph weights for the ferromagnetic Ising model and the A function
specifying whether the graph is allowed. The dash — denotes a graph that is not possible
for a configuration because of spin conservation and has to be zero.

)
b

v 4 4
=A(t 1,G)|=AF 4G)| =A@ 1 G) | graph weight

Cod
Cd
|

Jz
1-— ZdT

XX\

1 0 0 Ldr
- Jz Jz
total weight ‘ 1+ <&dr ‘ 1 — &dr ‘ 0 ‘
— —
world lines world lines + world lines
decay graphs after flips of some

loop clusters

Figure 7.3: Example of a loop update. In a first step decay paths are inserted where
possible at positions drawn randomly according to an exponential distribution and
graphs are assigned to all exchange terms (hoppings of world lines). In a second stage
(not shown) the loop clusters are identified. Finally each loop cluster is flipped with
probability 1/2 and one ends up with a new configuration.
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The algorithm now proceeds as follows (see Fig. 7.3): for each bond we start at time
0 and calculate a decay time. If the spins at that time are oriented properly and an
exchange graph is possible we insert one. Next we advance by another randomly chosen
decay time along the same bond and repeat the procedure until we have reached the
extent §. This assigns graphs to all infinitesimal time steps where spins do not change.
Next we assign a graph to all of the (finite number of) time steps where two spins
are exchanged. In the case of the Heisenberg models there is always only one possible
graph to assign and this is very easy. In the next step we identify the loop-clusters and
then flip them each with probability 1/2. Alternatively a Wolff-like algorithm can be
constructed that only builds one loop-cluster.

Improved estimators for measurements can be constructed like in classical models.
The derivation is similar to the classical models. T will just mention two simple ones
for the ferromagnetic Heisenberg model. The spin-spin corelation is

. ..~ | 1 if (i,7) und (j,7") are on the same cluster
5 (n)85(r) = { 0 otherwise (7:21)
and the uniform susceptibilty is
1 2
= .22
Y= g S (7.22)

where the sum goes over all loop clusters and S(c) is the length of all the loop segments
in the loop cluster c.

7.3 The negative sign problem

Now that we have an algorithm with no critical slowing down we could think that we
have completely solved the problem of quantum many body problems. However, in this
section we will show that the sign problem is NP-hard, following the paper M. Troyer
and U.J. Wiese, Phys. Rev. Lett. 94, 170201 (2005).

The difficulties in finding polynomial time solutions to the sign problem are rem-
iniscent of the apparent impossibility to find polynomial time algorithms for nonde-
terministic polynomial (NP)-complete decision problems, which could be solved in
polynomial time on a hypothetical non-deterministic machine, but for which no poly-
nomial time algorithm is known for deterministic classical computers. A hypothetical
non-deterministic machine can always follow both branches of an if-statement simul-
taneously, but can never merge the branches again. It can, equivalently, be viewed as
having exponentially many processors, but without any communication between them.
In addition, it must be possible to check a positive answer to a problem in NP on a
classical computer in polynomial time.

Many important computational problems in the complexity class NP, including the
traveling salesman problem and the problem of finding ground states of spin glasses
have the additional property of being NP-hard, forming the subset of NP-complete
problems, the hardest problems in NP. A problem is called NP-hard if any problem in
NP can be mapped onto it with polynomial complexity. Solving an NP-hard problem
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is thus equivalent to solving any problem in NP, and finding a polynomial time solution
to any of them would have important consequences for all of computing as well as the
security of classical encryption schemes. In that case all problems in NP could be
solved in polynomial time, and hence NP=P.

As no polynomial solution to any of the NP-complete problems was found despite
decades of intensive research, it is generally believed that NP##P and no deterministic
polynomial time algorithm exists for these problems. The proof of this conjecture
remains as one of the unsolved millennium problems of mathematics for which the Clay
Mathematics Institute has offered a prize of one million US$ . In this section we will
show that the sign problem is NP-hard, implying that unless the NP#P conjecture
is disproved there exists no generic solution of the sign problem.

Before presenting the details of our proof, we will give a short introduction to clas-
sical and quantum Monte Carlo simulations and the origin of the sign problem. In the
calculation of the phase space average of a quantity A, instead of directly evaluating
the sum

(=2 S A@pe), 2= p(c), (7.23)

ce ceN

over a high-dimensional space () of configurations ¢, a classical Monte Carlo method
chooses a set of M configurations {¢;} from €2, according to the distribution p(¢;). The
average is then approximated by the sample mean

(A) ~ A = % Z Ale), (7.24)

within a statistical error AA = \/VarA(274 + 1)/M, where VarA is the variance of A
and the integrated autocorrelation time 74 is a measure of the autocorrelations of the
sequence {A(¢;)}. In typical statistical physics applications, p(c) = exp(—BFE(c)) is the
Boltzmann weight, 5 = 1/kgT is the inverse temperature, and E(c) is the energy of
the configuration c.

Since the dimension of configuration space ) grows linearly with the number N
of particles, the computational effort for the direct integration Eq. (7.23) scales ex-
ponentially with the particle number N. Using the Monte Carlo approach the same
average can be estimated to any desired accuracy in polynomial time, as long as the
autocorrelation time 74 does not increase faster than polynomially with N.

In a quantum system with Hamilton operator H, instead of an integral like Eq.
(7.23), an operator expression

(A) = %Tr[AeXp(—BH)] , Z="Trexp(—0H) (7.25)

needs to be evaluated in order to calculate the thermal average of the observable A
(represented by a self-adjoint operator). Monte Carlo techniques can again be applied
to reduce the exponential scaling of the problem, but only after mapping the quantum
model to a classical one, for example using world line configurations ¢ with weights p(c).
If all the weights p(c) are positive, standard Monte Carlo methods can be applied, as
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Figure 7.4: A configuration of a fermionic lattice model on a 4-site square. The
configuration has negative weight, since two fermions are exchanged in the sequence
liy) — |ia) — |i3) — |ia) — |i1). World lines connecting particles on neighboring slices
are drawn as thick lines.

it is the case for non-frustrated quantum magnets and bosonic systems. In fermionic
systems negative weights p(c) < 0 arise from the Pauli exclusion principle, when along
the sequence |i;) — |is) — -+ = |i,) — |é1) two fermions are exchanged, as shown in
Fig. 7.4.

The standard way of dealing with the negative weights of the fermionic system is to
sample with respect to the bosonic system by using the absolute values of the weights
|p(c)| and to assign the sign s(c) = sign p(c) to the quantity being sampled:

2 Alp(e)
(A) == (7.26)
> Ale)s(d)lp(e)] /2o Ip(e)| _ (As)’

2 s(A)lp()] /22 Ip(e)] (s)"

While this allows Monte Carlo simulations to be performed, the errors increase ex-
ponentially with the particle number N and the inverse temperature 3. To see this,
consider the mean value of the sign (s) = Z/Z’, which is just the ratio of the partition
functions of the fermionic system Z = ) _p(c) with weights p(c) and the bosonic sys-
tem used for sampling with Z’ = > _|p(c)|. As the partition functions are exponentials
of the corresponding free energies, this ratio is an exponential of the differences A f
in the free energy densities:(s) = Z/Z' = exp(—FNAf). As a consequence, the rela-
tive error As/(s) increases exponentially with increasing particle number and inverse
temperature:

As V(D) — () /M _ 1 (s)? PNAI
(s) (s) = s T (7.27)
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Similarly the error for the numerator in Eq. (7) increases exponentially and the time
needed to achieve a given relative error scales exponentially in N and f.

In order to avoid any misconception about what would constitute a “solution” of
the sign problem, we start by giving a precise definition:

e A quantum Monte Carlo simulation to calculate a thermal average (A) of an
observable A in a quantum system with Hamilton operator H is defined to suffer
from a sign problem if there occur negative weights p(c) < 0 in the classical
representation.

e The related bosonic system of a fermionic quantum system is defined as the system
where the weights p(c) are replaced by their absolute values |p(c)|, thus ignoring
the minus sign coming from fermion exchanges:

(A = 23 Ao (7.25)

e An algorithm for the stochastic evaluation of a thermal average such as Eq. (7.28)
is defined to be of polynomial complexity if the computational time t(e, N, ()
needed to achieve a relative statistical error € = AA/(A) in the evaluation of the
average (A) scales polynomially with the system size N and inverse temperature
B, i.e. if there exist integers n and m and a constant x < oo such that

t(e, N, B) < ke 2N"3™. (7.29)

e For a quantum system that suffers from a sign problem for an observable A, and
for which there exists a polynomial complexity algorithm for the related bosonic
system Eq. (7.28), we define a solution of the sign problem as an algorithm of
polynomial complexity to evaluate the thermal average (A).

It is important to note that we only worry about the sign problem if the bosonic
problem is easy (of polynomial complexity) but the fermionic problem hard (of expo-
nential complexity) due to the sign problem. If the bosonic problem is already hard,
e.g. for spin glasses 2, the sign problem will not increase the complexity of the problem.
Also, changing the representation so that all p(c¢) > 0 might not sufficient to solve the
sign problem if the scaling remains exponential, since then we just map the sign prob-
lem to another exponentially hard problem. Only a polynomial complexity algorithm
counts as a solution of the sign problem.

At first sight such a solution seems feasible since the sign problem is not an intrinsic
property of the quantum model studied but is representation-dependent: it depends on
the choice of basis sets {|i)}, and in some models it can be solved by a simple local
basis change.. Indeed, when using the eigen basis in which the Hamilton operator H is
diagonal, there will be no sign problem. This diagonalization of the Hamilton operator
is, however, no solution of the sign problem since its complexity is exponential in the
number of particles N.

2F. Barahona, J. Phys. A 15, 3241 (1982)
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We now construct a quantum mechanical system for which the calculation of a
thermal average provides the solution for one and thus all of the NP-complete problems.
This system exhibits a sign problem, but the related bosonic problem is easy to solve.
Since, for this model, a solution of the sign problem would provide us with a polynomial
time algorithm for an NP-complete problem, the sign problem is NP-hard. Of course, it
is expected that the corresponding thermal averages cannot be calculated in polynomial
time and the sign problem thus cannot be solved. Otherwise we would have found a
polynomial time algorithm for the NP-complete problems and would have shown that
NP=P.

The specific NP-complete problem we consider is to determine whether a state with
energy less than or equal to a bound FEj exists for a classical three-dimensional Ising
spin glass with Hamilton function

H=-— ijajak. (730)
(k)

Here the spins o; take the values 1, and the couplings J;; between nearest neighbor
lattice points 7 and k are either 0 or +J.

This problem is in the complexity class NP since the non-deterministic machine
can evaluate the energies of all configurations ¢ in polynomial time and test whether
there is one with E(c) < Ey. In addition, the validity of a positive answer (i.e. there
is a configuration ¢) can be tested on a deterministic machine by evaluating the energy
of that configuration. The evaluation of the partition function Z = ) _exp(—SE(c))
is, however, not in NP since the non-deterministic machine cannot perform the sum in
polynomial time.

This question whether there is a state with energy E(c) < Ey can also be answered
in a Monte Carlo simulation by calculating the average energy of the spin glass at a
large enough inverse temperature 3. Since the energy levels are discrete with spacing J
it can easily be shown that by choosing an inverse temperature 5J > N In2 + In(12N)
the thermal average of the energy will be less than Fy+ J/2 if at least one configuration
with energy Ej or less exists, and larger than Fjy 4 J otherwise.

In this classical Monte Carlo simulation, the complex energy landscape, created by
the frustration in the spin glass (Fig. 2a), exponentially suppresses the tunneling of the
Monte Carlo simulation between local minima at low temperatures. The autocorrelation
times and hence the time complexity of this Monte Carlo approach are exponentially
large T o< exp(alN), as expected for this NP-complete problem.

We now map this classical system to a quantum system with a sign problem. We do
so by replacing the classical Ising spins by quantum spins. Instead of the common choice
in which the classical spin configurations are basis states and the spins are represented
by diagonal oF Pauli matrices we choose a representation in which the spins point in
the £z direction and are represented by o7 Pauli matrices:

H=-Y Jpojo}, (7.31)
(J,k)

Here the random signs of the couplings are mapped to random signs of the off-diagonal
matrix elements which cause a sign problem (see Fig. 2b). The related bosonic model
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Figure 7.5: a) A classically frustrated spin configuration of three antiferromagnetically
coupled spins: no configuration can simultaneously minimize the energy of all three
bonds. b) A configuration of a frustrated quantum magnet with negative weights: three
antiferromagnetic exchange terms with negative weights are present in the sequence
li1) — |ia) — [i3) — [i1). Here up-spins with z-component of spin 0% = 1 and down-
spins with o7 = —1 are connected with differently colored world lines.

is the ferromagnet with all couplings J;, > 0 and efficient cluster algorithms with
polynomial time complexity are known for this model. Since the bosonic version is easy
to simulate, the sign problem is the origin of the NP-hardness of a quantum Monte
Carlo simulation of this model. A generic solution of the sign problem would provide
a polynomial time solution to this, and thus to all, NP-complete problems, and would
hence imply that NP=P. Since it is generally believed that NP#P, we expect that
such a solution does not exist.

By constructing a concrete model we have shown that the sign problem of quan-
tum Monte Carlo simulations is NP-hard. This does not exclude that a specific sign
problem can be solved for a restricted subclass of quantum systems. This was indeed
possible using the meron-cluster algorithm 3 for some particular lattice models. Such
a solution must be intimately tied to properties of the physical system and allow an
essentially bosonic description of the quantum problem. A generic approach might scale
polynomially for some cases but will in general scale exponentially.

In the case of fermions or frustrated quantum magnets, solving the sign problem
requires a mapping to a bosonic or non-frustrated system — which is, in general, almost
certainly impossible for physical reasons. The origin of the sign problem is, in fact, the
distinction between bosonic and fermionic systems. The brute-force approach of taking
the absolute values of the probabilities means trying to sample a frustrated or fermionic
system by simulating a non-frustrated or bosonic one. As for large system sizes N and
low temperatures the relevant configurations for the latter are not the relevant ones for
the former, the errors are exponentially large.

3S. Chandrasekharan and U.-J. Wiese, Phys. Rev. Lett. 83, 3116 (1999)
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Given the NP-hardness of the sign problem one promising idea for the simula-
tion of fermionic systems is to use ultra-cold atoms in optical lattices to construct
well-controlled and tunable implementations of physical systems, such as the Hubbard
model, and to use these “quantum simulators” to study the phase diagrams of cor-
related quantum systems. But even these quantum simulators are most likely not a
generic solution to the sign problem since there exist quantum systems with exponen-
tially diverging time scales and it is at present not clear whether a quantum computer
could solve the NP-complete problems.

7.4 Worm and directed loop updates

The quantum loop algorithm, like the classical cluster algorithms work only for models
with spin-inversion symmetry: a configuration of spins and the flipped configuration
need to have the same weight. Applying a magnetic field breaks this spin-inversion
symmetry, and the loop algorithm cannot be applied. For that case, Nikolay Prokof’ev
and coworkers invented the worm algorithm.? The worm algorithm is based on a very
simple idea: while local updates on world lines are not ergodic (since knots cannot be
created or undone), the worm algorithm proceeds by cutting a world line, and then
moves the open ends in local updates until they meet again and the world line is glued
together once more.

4N. V. Prokof’ev, B. V. Svistunov and I. S. Tupitsyn, Sov. Phys - JETP 87, 310 (1998).
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