
6.4 Pseudo-potentials

The electrons in inner, fully occupied shells do not contribute in the chemical bindings.
To simplify the calculations they can be replaced by pseudo-potentials, modeling the
inner shells. Only the outer shells (including the valence shells) are then modeled using
basis functions. The pseudo-potentials are chosen such that calculations for isolated
atoms are as accurate as possible.

6.5 Effective models

To understand the properties of these materials the Hamilton operator of the full quan-
tum chemical problem (6.1) is usually simplified to effective models, which still contain
the same important features, but which are easier to investigate. They can be used to
understand the physics of these materials, but not directly to quantitatively fit experi-
mental measurements.

6.5.1 The tight-binding model

The simplest model is the tight-binding model, which concentrates on the valence bands.
All matrix elements tij in equation (6.3), apart from the ones between nearest neighbor
atoms are set to zero. The others are simplified, as in:

H =
�

�i,j�,σ

(tijc
†
i,σ
cj,σ +H.c.). (6.17)

This model is easily solvable by Fourier transforming it, as there are no interactions.

6.5.2 The Hubbard model

To include effects of electron correlations, the Hubbard model includes only the often
dominant intra-orbital repulsion Viiii of the Vijkl in equation (6.4):

H =
�

�i,j�,σ

(tijc
†
i,σ
cj,σ +H.c.) +

�

i

Uini,↑ni,↓. (6.18)

The Hubbard model is a long-studied, but except for the 1D case still not completely
understood model for correlated electron systems.

In contrast to band insulators, which are insulators because all bands are either
completely filled or empty, the Hubbard model at large U is insulating at half filling,
when there is one electron per orbital. The reason is the strong Coulomb repulsion U
between the electrons, which prohibit any electron movement in the half filled case at
low temperatures.
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6.5.3 The Heisenberg model

In this insulating state the Hubbard model can be simplified to a quantum Heisenberg
model, containing exactly one spin per site.

H =
�

�i,j�

Jij �Si
�Sj (6.19)

For large U/t the perturbation expansion gives Jij = 2t2
ij
(1/Ui+1/Uj). The Heisenberg

model is the relevant effective models at temperatures T � tij, U ( 104 K in copper
oxides). The derivation will be shown in the lecture.

6.5.4 The t-J model

The t-J model is the effective model for large U at low temperatures away from half-
filling. Its Hamiltonian is

H =
�

�i,j�,σ

�
(1− ni,−σ)tijc

†
i,σ
cj,σ(1− nj,−σ) + H.c.

�
+
�

�i,j�

Jij(�Si
�Sj − ninj/4). (6.20)

As double-occupancy is prohibited in the t-J model there are only three instead of four
states per orbital, greatly reducing the Hilbert space size.

6.6 Exact diagonalization

The most accurate method is exact diagonalization of the Hamiltonian matrix using
the Lanczos algorithm, discussed in appendix A.2. The size of the Hilbert space of an
N -site system (4N for a Hubbard model , 3N for a t-J model and (2S+1)N for a spin-S
model) can be reduced by making use of symmetries. Translational symmetries can be
employed by using Bloch waves with fixed momentum as basis states. Conservation of
particle number and spin allows to restrict a calculation to subspaces of fixed particle
number and magnetization.

As an example we will sketch how to implement exact diagonalization for a simple
one-dimensional spinless fermion model with nearest neighbor hopping t and nearest
neighbor repulsion V :

H = −t
L−1�

i=1

(c†
i
ci+1 +H.c.) + V

L−1�

i=1

nini+1. (6.21)

The first step is to construct a basis set. We describe a basis state using “multi-bit
coding”. A many-body state of fermions can be represented as an unsigned integer
where bit i set to one corresponds to an occupied site i. For spinful fermions we take
either two integers, one for the up and one for the down spins, or two bits per site.

As the Hamiltonian conserves the total particle number we thus want to construct
a basis of all states with N particles on L sites (or N bits set to one in L bits). In the
code fragment below we use the following variables:
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• states is a vector storing the integers whose bit patterns correspond to the basis
states. It can be accessed using the following functions:

– dimension() returns the number of basis states.

– state(i) returns the i-th basis state, where i runs from 0 to dimension()−1.

• index is a much larger vector of size 2L. It is used to obtain the number of a
state in the basis, given the integer representation of the state. It can be accessed
using the function

– index(s) which returns the index i of the state in the basis, or the largest
integer to denote an invalid state, if the bit pattern of the integer does not
correspond to a basis state.

Since this vector is very large, it will limit the size of system that can be studied.
To save space, the index array could be omitted and the index(s) function
implemented by a binary search on the states array.

Here is the C++ code for this class:

#include <vector>

#include <alps/bitops.h>

#include <limits>

#include <valarray>

#include <cassert>

class FermionBasis {

public:

typedef unsigned int state_type;

typedef unsigned int index_type;

FermionBasis (int L, int N);

state_type state(index_type i) const {return states_[i];}

index_type index(state_type s) const {return index_[s];}

unsigned int dimension() const { return states_.size();}

private:

std::vector<state_type> states_;

std::vector<index_type> index_;

};

In the constructor we build the basis states. For N spinless fermions on L sites the
valid basis states are all the ways to place N particles on L sites, which is equivalent
to all integers between 0 and 2L − 1 that have N bits set. The constructor uses the
alps::popcnt function of the ALPS library.
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FermionBasis::FermionBasis(int L, int N)

{

index_.resize(1<<L); // 2^L entries

for (state_type s=0;s<index_.size();++s)

if(alps::popcnt(s)==N) {

// correct number of particles

states_.push_back(s);

index_[s]=states_.size()-1;

}

else

// invalid state

index_[s]=std::numeric_limits<index_type>::max();

}

Finally we want to implement a matrix-vector multiplication v = Hw for our Hamil-
tonian and derive a Hamiltonian class. We do not want to store the matrix at all,
neither in dense nor in sparse form but instead implement a fast function to perform
the matrix-vector multiplication on-the-fly.

class HamiltonianMatrix : public FermionBasis {

public:

HamiltonianMatrix(int L, int N, double t, double V)

: FermionBasis(L,N), t_(t), V_(V), L_(L) {}

void multiply(std::valarray<double>& v, const std::valarray<double>& w);

private:

double t_, V_;

int L_;

};

Finally we show the implementation of the matrix-vector multiplication. It might look
like magic but we will explain it all in detail during the lecture.

void HamiltonianMatrix::multiply(std::valarray<double>& v,

const std::valarray<double>& w)

{

// check dimensions

assert(v.size()==dimension());

assert(w.size()==dimension());

// do the V-term

for (int i=0;i<dimension();++i) {

state_type s = state(i);

// count number of neighboring fermion pairs

v[i]=w[i]*V_*alps::popcnt(s&(s>>1));
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}

// do the t-term

for (int i=0;i<dimension();++i) {

state_type s = state(i);

// inside the chain

for (int r=0;r<L_-1;++r) {

state_type shop = s^(3<<r); // exchange two neighbors

index_type idx = index(shop); // get the index

if(idx!=std::numeric_limits<index_type>::max())

v[idx]+=-t_*w[i];

}

// across the boundary

state_type shop = s^(1|(1<<(L-1))); // exchange the first and last

index_type idx = index(shop); // get the index

if(idx!=std::numeric_limits<index_type>::max())

// watch out for Fermi sign since we hop over some particles

v[idx]+=-t*(alps::popcnt(s&((1<<(L-1))-1))%2==0 ? 1 : -1)*w[i];

}

}

This class can now be used with the Lanczos algorithm to calculate the energies and
wave functions of the low lying states of the Hamiltonian.

In production codes one uses all symmetries to reduce the dimension of the Hilbert
space as much as possible. In this example translational symmetry can be used if
periodic boundary conditions are applied. The implementation gets much harder then.

In order to make the implementation of exact diagonalization much easier we have
generalized the expression templates technique developed by Todd Veldhuizen for array
expression to expressions including quantum operators. Using this expression template
library we can write a multiplication

|ψ� = H|φ� = (−t
L−1�

i=1

(c†
i
ci+1 +H.c.) + V

L−1�

i

nini+1)|φ� (6.22)

simply as:

Range i(1,L-1);

psi = sum(i,(-t*(cdag(i)*c(i+1)+HermitianConjugate)+V*n(i)*n(i+1))*phi);

The advantage of the above on-the-fly calculation of the matrix in the multiplication
routine is that the matrix need not be stored in memory, which is an advantage for the
biggest systems where just a few vectors of the Hilbert space will fit into memory.

If one is not as demanding and wants to simulate a slightly smaller system, where
the (sparse) matrix can be stored in memory, then a less efficient but more flexible
function can be used to create the matrix and store it in memory. Such a program
is available through the ALPS project at http://alps.comp-phys.org/. It allows to
perform the above calculation just by describing the lattice and model in an XML input
file.
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6.7 The Hartree Fock method

6.7.1 The Hartree-Fock approximation

The Hartree-Fock approximation is based on the assumption of independent electrons.
It starts from an ansatz for the N -particle wave function as a Slater determinant of N
single-particle wave functions:

Φ(�r1, σ1; . . . ;�rN , σN) =
1√
N

�������

φ1(�r1, σ1) · · · φN(�r1, σ1)
...

...
φ1(�rN , σN) · · · φN(�rN , σN)

�������
. (6.23)

The orthogonal single particle wave functions φµ are chosen so that the energy is
minimized.

For numerical calculations a finite basis has to be introduced, as discussed in the
previous section. Quantum chemists distinguish between the self-consistent-field (SCF)
approximation in a finite basis set and the Hartree-Fock (HF) limit, working in a com-
plete basis. In physics both are known as Hartree-Fock approximation.

6.7.2 The Hartree-Fock equations in nonorthogonal basis sets

It will be easiest to perform the derivation of the Hartree-Fock equations in a second
quantized notation. To simplify the discussion we assume closed-shell conditions, where
each orbital is occupied by both an electron with spin ↑ and one with spin ↓. We start
by writing the Hartree Fock wave function (6.23) in second quantized form:

|Φ� =
�

µ,σ

c†
µσ
|0�, (6.24)

where c†
µσ

creates an electron in the orbital φµ(r, σ). As these wave functions are or-
thogonal the c†

µσ
satsify the usual fermion anticommutation relations. Greek subscripts

refer to the Hartree-Fock single particle orbitals and roman subscripts to the single
particle basis functions. Next we expand the c†

µσ
in terms of the creation operators â†

nσ

of our finite basis set:

c†
µσ

=
L�

n=1

dµnâ
†
nσ

(6.25)

and find that
ajσ|Φ� = ajσ

�

µ,σ�

c†
µσ� |0� =

�

ν

dνj
�

µσ� �=νσ

c†
µσ� |0�. (6.26)

In order to evaluate the matrix elements �Φ|H|Φ� of the Hamiltonian (6.5) we introduce
the bond-order matrix

Pij =
�

σ

�Φ|a†
iσ
ajσ|Φ� = 2

�

ν

d∗
νi
dνj, (6.27)

where we have made use of the closed-shell conditions to sum over the spin degrees
of freedom. The kinetic term of H is now simply

�
ij
Pijtij. Next we rewrite the
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interaction part �Φ|a†
iσ
a†
kσ�alσ�ajσ|Φ� in terms of the Pij. We find that if σ = σ�

�Φ|a†
iσ
a†
kσ
alσajσ|Φ� = �Φ|a†

iσ
ajσ|Φ��Φ|a†kσalσ|Φ� − �Φ|a†

iσ
alσ|Φ��Φ|a†kσajσ|Φ� (6.28)

and if σ �= σ�:
�Φ|a†

iσ
a†
kσ�alσ�ajσ|Φ� = �Φ|a†

iσ
ajσ|Φ��Φ|a†kσ�alσ� |Φ� (6.29)

Then the energy is (again summing over the spin degrees of freedom):

E0 =
�

ij

tijPij +
1

2

�

ijkl

�
Vijkl −

1

2
Vilkj

�
PijPkl. (6.30)

We now need to minimize the energy E0 under the condition that the |φµ� are
normalized:

1 = �φµ|φµ� =
�

i,j

d∗
µi
dµjSij. (6.31)

Using Lagrange multipliers to enforce this constraint we have to minimize

�

ij

tijPij +
1

2

�

ijkl

�
Vijkl −

1

2
Vilkj

�
PijPkl −

�

µ

�µ
�

i,j

d∗
µi
dµjSij (6.32)

Setting the derivative with respect to dµi to zero we end up with the Hartree-Fock
equations for a finite basis set:

L�

j=1

(fij − �µSij)dµj = 0, (6.33)

where

fij = tij +
�

kl

�
Vijkl −

1

2
Vilkj

�
Pkl. (6.34)

This is again a generalized eigenvalue problem of the form Ax = λBx and looks like a
one-particle Schrödinger equation. However, since the potential depends on the solution
it is a nonlinear and not a linear eigenvalue problem. The equation is solved iteratively,
always using the new solution for the potential, until convergence to a fixed point is
achieved.

The eigenvalues �µ of f do not directly correspond to energies of the orbitals, as the
Fock operator counts the V -terms twice. Thus we obtain the total ground state energy
from the Fock operator eigenvalues by subtracting the double counted part:

E0 =
N�

µ=1

�µ −
1

2

�

ijkl

�
Vijkl −

1

2
Vilkj

�
PijPkl (6.35)
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6.7.3 Configuration-Interaction

The approximations used in Hartree-Fock and density functional methods are based
on non-interacting electron pictures. They do not treat correlations and interactions
between electrons correctly. To improve these methods, and to allow the calculation of
excited states, often the “configuration-interaction” (CI) method is used.

Starting from the Hartree-Fock ground state

|ψHF � =
N�

µ=1

c†
µ
|0� (6.36)

one or two of the c†
µ
are replaced by other orbitals c†

i
:

|ψ0� =
�
1 +

�

i,µ

αi

µ
ci†cµ +

�

i<j,µ<ν

αij

µν
ci†cj†cµcν

�
|ψHF �. (6.37)

The energies are then minimized using this variational ansatz. In a problem with
N occupied and M empty orbitals this leads to a matrix eigenvalue problem with
dimension 1+NM +N2M2. Using the Lanczos algorithm the low lying eigenstates can
then be calculated in O((N +M)2) steps.

Further improvements are possible by allowing more than only double-substitutions.
The optimal method treats the full quantum problem of dimension (N + M)!/N !M !.
Quantum chemists call this method “full-CI”. Physicists simplify the Hamilton operator
slightly to obtain simpler models with fewer matrix elements, and call that method
“exact diagonalization”. This method will be discussed later in the course.

6.8 Density functional theory

Another commonly used method, for which the Nobel prize in chemistry was awarded
to Walter Kohn, is the density functional theory. In density functional theory the
many-body wave function living in R3N is replaced by the electron density, which lives
just in R3. Density functional theory again reduces the many body problem to a one-
dimensional problem. In contrast to Hartree-Fock theory it has the advantage that it
could – in principle – be exact if there were not the small problem of the unknown
exchange-correlation functional.

It is based on two fundamental theorems by Hohenberg and Kohn. The first theorem
states that the ground state energy E0 of an electronic system in an external potential
V is a functional of the electron density ρ(�r) :

E0 = E[ρ] =

�
d3�rV (�r)ρ(�r) + F [ρ], (6.38)

with a universal functional F . The second theorem states that the density of the ground
state wave function minimizes this functional. The proof of both theorems will be shown
in the lecture.
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These theorems make our life very easy: we only have to minimize the energy
functional and we obtain both the ground state energy and the electron density in the
ground state – and everything is exact!

The problem is that, while the functional F is universal, it is also unknown! Thus
we need to find good approximations for the functional. One usually starts from the
ansatz:

F [ρ] = Eh[ρ] + Ek[ρ] + Exc[ρ]. (6.39)

The Hartree-term Eh given by the Coulomb repulsion between two electrons:

Eh[ρ] =
e2

2

�
d3�rd3�r�

ρ(�r)ρ(�r�)

|�r − �r�| . (6.40)

The kinetic energy Ek[ρ] is that of a non-interacting electron gas with the same density.
The exchange- and correlation term Exc[ρ] contains the remaining unknown contribu-
tion, which we will discuss a bit later.

To calculate the ground state density we have to minimize this energy, solving the
variational problem

0 = δE[ρ] =

�
d3�rδρ(�r)

�
V (�r) + e2

�
d3�r�

ρ(�r�)

|�r − �r�| +
δEk[ρ]

δρ(�r)
+

δExc[ρ]

δρ(�r)

�
(6.41)

0 subject to the constraint that the total electron number to be conserved
�

d3�rδρ(�r) = 0. (6.42)

Comparing this variational equation to the one for noninteracting system
�
− 1

2m
∇2 + Veff (�r)

�
φµ(�r) = �µφµ(�r), (6.43)

we realize that they are the same if we define the potential of the non-interacting system
as

Veff (�r) = V (�r) + e2
�

d3�r�
ρ(�r�)

|�r − �r�| + vxc(�r), (6.44)

where the exchange-correlation potential is defined by

vxc(�r) =
δExc[ρ]

δρ(�r)
. (6.45)

The form (6.43) arises because we have separated the kinetic energy of the non-interacting
electron system from the functional. The variation of this kinetic energy just gives the
kinetic term of this Schrödinger-like equation.

The non-linear equation is again solved iteratively, making an ansatz using N/2
normalized single-electron wave functions, which we occupy with spin ↑ and spin ↓
electrons to get the electron density.

ρ(�r) = 2
N/2�

µ=1

|φµ(�r)|2, (6.46)
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6.8.1 Local Density Approximation

Apart from the restricted basis set everything was exact up to this point. As the
functional Exc[ρ] and thus the potential vxc(�r) is not known, we need to introduce
approximations.

The simplest approximation is the “local density approximation” (LDA), which
replaces vxc by that of a uniform electron gas with the same density. Instead of taking
a functional E[ρ](�r) which could be a function of ρ(�r),∇ρ(�r),∇∇ρ(�r), . . . we ignore all
the gradients and just take the local density

Exc[ρ](r) = ELDA(ρ(r)); (6.47)

Defining

r−1
s

= aB

�
4π

3
ρ

�1/3

(6.48)

the exchange correlation potential is

vxc = − e2

aB

�
3

2π

�2/3 1

rs
[1 + 0.0545rs ln(1 + 11.4/rs)] (6.49)

where the first part corresponds to uncorrelated electrons and the last factor is a cor-
relation correction determined by fitting to quantum Monte Carlo (QMC) simulations
of an electron gas.

6.8.2 Improved approximations

Improvements over the LDA have been an intense field of research in quantum chemistry.
I will just mention two improvements. The “local spin density approximation” (LSDA)
uses separate densities for electrons with spin ↑ and ↓. The “generalized gradient
approximation” (GGA) and its variants use functionals depending not only on the
density, but also on its derivatives.

6.9 Car-Parinello molecular dynamics

In the lecture on “Computational Statistical Physics” you have learned about the molec-
ular dynamics method, in which atoms move on classical trajectories under forces, such
as those from the Lennard-Jones potential, which have been previously calculated in
quantum mechanical simulations. It would be nicer, and more accurate, to use a full
quantum mechanical force calculation at every time step instead of using such static
forces that have been extracted from previous simulations.

Roberto Car (currently in Princeton) and Michele Parinello (currently at ETH) have
combined density functional theory with molecular dynamics to do just that. Their
method, Car-Parinello molecular dynamics (CPMD) allows much better simulations of
molecular vibration spectra and of chemical reactions.
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The atomic nuclei are propagated using classical molecular dynamics, but the elec-
tronic forces which move them are estimated using density functional theory:

Mn

d2 �Rn

dt2
= −∂E[ρ(�r, t), �Rn]

∂ �Rn

. (6.50)

Here Mn and �Rn are the masses and locations of the atomic nuclei.
As the solution of the full electronic problem at every time step is a very time

consuming task we do not want to perform it all the time from scratch. Instead CPMD
uses the previous values of the noninteracting electron wave functions {φµ} of the DFT
calculation (6.43) [don’t confuse it with the Hartee-Fock orbitals!] and evolves them
to the ground state for the current positions of the nuclei by an artificial molecular
dynamics evolution. Hence both the nuclei {�Rn} and the wave functions {φµ} evolve in
the same molecular dynamics scheme. The electronic degrees of freedoms are updated
using an artificial dynamics:

m
d2φµ(�r, t)

dt2
= −1

2

δE[ρ(�r, t), �Rn]

δφ†
µ(�r, t)

+
�

ν

Λµνφν(�r, t), (6.51)

where m is an artificial mass that needs to be chosen much lighter than the nuclear
masses so that the electronic structure adapts quickly to the move of the nuclei. The
Lagrange multipliers Λµν need to be chose to ensure proper orthonormalization of the
wave functions.

Since the exact form of the artifical dynamics of the electronic structure does not
matter, we can evolve the expansion coefficients dµn of an expansion in terms of the
basis functions as in equation (6.25) instead of evolving the wave functions. This gives
the equations of motion

m
d2dµn
dt2

= − ∂E

∂dµn
+
�

ν

Λµν

�

l

Snldνl (6.52)

There are various algorithms to determine the Λµν so that the wave functions stay
orthonormal. We refer to text books and special lectures on CPMD for details.

6.10 Program packages

As the model Hamiltonian and the types of basis sets are essentially the same for all
quantum chemistry applications flexible program packages have been written. There
is thus usually no need to write your own programs – unless you want to implement a
new algorithm.
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