Computational Quantum
 Physics Exercise 8

Problem 8.1 Re-solving the hydrogen atom in the GTO basis via variational method

In Born-Oppenheimer approximation, the electronic degree of freedom of the hydrogen atom can be described by the following Hamiltonian in atomic units (length unit: bohr radius $a_{B}=\frac{\hbar^{2}}{m e^{2}}=0.529 \AA$; energy unit: hartree energy $\left.E_{h}=\frac{e^{2}}{a_{B}}=27.211 \mathrm{eV}\right)$

$$
\begin{equation*}
\left[-\frac{1}{2} \nabla^{2}-\frac{1}{r}\right] \Psi(\mathbf{r})=E \Psi(\mathbf{r}) \tag{1}
\end{equation*}
$$

Solve the above equation using a basis of 4 Gaussian type orbital (GTO) basis states (chemists call this STO-4G method) via the variational method. The 4 states relevant to this problem have the following form

$$
\begin{equation*}
\chi_{p}(r)=e^{-\alpha_{p} r^{2}} \tag{2}
\end{equation*}
$$

($\mathrm{p}=1,2,3,4$) with

$$
\begin{align*}
& \alpha_{1}=13.00773 \\
& \alpha_{2}=1.962079 \\
& \alpha_{3}=0.444529 \\
& \alpha_{4}=0.1219492 \tag{3}
\end{align*}
$$

The following may be useful. The elements of the overlap matrix \mathbf{S}, kinetic energy matrix \mathbf{T} and Coulomb matrix \mathbf{A} are,

$$
\begin{align*}
& S_{p q}=\int d^{3} r e^{-\alpha_{p} r^{2}} e^{-\alpha_{q} r^{2}}=\left(\frac{\pi}{\alpha_{p}+\alpha_{q}}\right)^{3 / 2} \\
& T_{p q}=-\frac{1}{2} \int d^{3} r e^{-\alpha_{p} r^{2}} \nabla^{2} e^{-\alpha_{q} r^{2}}=3 \frac{\alpha_{p} \alpha_{q} \pi^{3 / 2}}{\left(\alpha_{p}+\alpha_{q}\right)^{5 / 2}} \\
& A_{p q}=-\int d^{3} r e^{-\alpha_{p} r^{2}} \frac{1}{r} e^{-\alpha_{q} r^{2}}=-\frac{2 \pi}{\alpha_{p}+\alpha_{q}} \tag{4}
\end{align*}
$$

Problem 8.2 Hartree Fock solution of the ground state of the helium atom using Gaussian type orbitals as basis functions

The Schrödinger equation in reduced units for the helium atom is given by

$$
\begin{equation*}
\left[-\frac{1}{2} \nabla_{1}^{2}--\frac{1}{2} \nabla_{2}^{2}-\frac{2}{r_{1}}-\frac{2}{r_{2}}+\frac{1}{r_{12}}\right] \Psi\left(r_{1}, \sigma_{1} ; r_{2}, \sigma_{2}\right)=E \Psi\left(r_{1}, \sigma_{1} ; r_{2}, \sigma_{2}\right) \tag{5}
\end{equation*}
$$

As ansatz for the ground state wave function we take a product state of two identical single particle wave functions ϕ for each electron and an antisymmetric spin-wave function $\chi\left(\sigma_{1}, \sigma_{2}\right)$.

$$
\Psi\left(r_{1}, \sigma_{1} ; r_{2}, \sigma_{2}\right)=\phi\left(r_{1}\right) \phi\left(r_{2}\right) \chi\left(\sigma_{1}, \sigma_{2}\right)
$$

We use a finite basis set (4 elements) of GTOs to approximate $\phi(r)$:

$$
\begin{gather*}
\phi(r)=\sum_{i=1}^{4} d_{i} f_{i}(r) \tag{6}\\
f_{i}(r)=e^{-\alpha_{i} r^{2}} \tag{7}\\
\alpha_{1}=0.297104 \\
\alpha_{2}=1.236745 \\
\alpha_{3}=5.749982 \\
\alpha_{4}=38.216677 \tag{8}
\end{gather*}
$$

One can show that in this special case the Hartree-(Fock) equations in the finite basis set are

$$
\begin{equation*}
\sum_{j}\left(t_{i j}+\sum_{k l} d_{k} d_{l} V_{i j k l}\right) d_{j}=\epsilon \sum_{j} S_{i j} d_{j} \tag{9}
\end{equation*}
$$

with overlap matrix S, non-interacting term t , and the Hartree term V

$$
\begin{gather*}
t_{i j}=\int d^{3} r f_{i}^{*}(r)\left(-\frac{1}{2} \nabla^{2}-\frac{2}{r}\right) f_{j}(r)=3 \frac{\alpha_{i} \alpha_{j} \pi^{3 / 2}}{\left(\alpha_{i}+\alpha_{j}\right)^{5 / 2}}-\frac{4 \pi}{\alpha_{i}+\alpha_{j}} \tag{10}\\
V_{i j k l}=\int d^{3} r \int d^{3} r^{\prime} f_{i}^{*}(r) f_{k}^{*}\left(r^{\prime}\right) \frac{1}{\left|r-r^{\prime}\right|} f_{l}\left(r^{\prime}\right) f_{j}(r)=\frac{2 \pi^{5 / 2}}{\left(\alpha_{i}+\alpha_{j}\right)\left(\alpha_{k}+\alpha_{l}\right) \sqrt{\alpha_{i}+\alpha_{j}+\alpha_{k}+\alpha_{l}}} \tag{11}
\end{gather*}
$$

Equation (9) is not a generalized eigenvalue equation because of the presence of the d_{k} and d_{l} between the brackets on the left hand side. But we can fix d_{k} and d_{l} (with some initial guess) and then determine d_{j}. We then replace d_{k}, d_{l} by the solution found and iterate the procedure until we obtain a self consistent solution. The ground state energy can then be calculated by

$$
\begin{equation*}
E_{0}=2 \sum_{i, j} d_{i} d_{j} t_{i j}+\sum_{i, j, k, l} V_{i j k l} d_{i} d_{j} d_{k} d_{l} \tag{12}
\end{equation*}
$$

Make sure that you normalize your vector d after each step

$$
\begin{equation*}
\sum_{i, j} d_{i} S_{i j} d_{j}=1 \tag{13}
\end{equation*}
$$

Problem 8.3 (Optional): Hartree Fock solution of the ground state of the hydrogen molecule using Gaussian type orbitals as basis functions

We extend the previously discussed helium problem to the hydrogen molecule. As for helium we have only two electrons occupying one orbital, thus we do not need to sum over different orbitals μ like it is described in the lecture notes. We use the same finite basis set as for the single hydrogen atom, but centered at two different locations $R_{A}(=0)$ and $R_{B}(=1)$:

$$
\begin{align*}
& f_{i}(r, R)=e^{-\alpha_{i}\left(r-R_{i}\right)^{2}} \tag{14}\\
& \alpha_{1}=\alpha_{5}=13.00773 \\
& \alpha_{2}=\alpha_{6}=1.962079 \\
& \alpha_{3}=\alpha_{7}=0.444529 \\
& \alpha_{4}=\alpha_{8}=0.121949
\end{align*}
$$

Calculate the overlap matrix $S_{i j}$ and the non-interacting matrix $t_{i j}$ by using the integrals in the hand-out.

The Hartree term V is given by

$$
\begin{equation*}
V_{i j k l}=2 \sqrt{\frac{\left(\alpha_{i}+\alpha_{j}\right)\left(\alpha_{k}+\alpha_{l}\right)}{\pi\left(\alpha_{i}+\alpha_{j}+\alpha_{k}+\alpha_{l}\right)}} S_{i j} S_{l k} F_{0}(q) \tag{15}
\end{equation*}
$$

with

$$
\begin{gather*}
F_{0}(q)=q^{-1 / 2} \frac{\sqrt{\pi}}{2} \operatorname{erf}(\sqrt{q}) \tag{16}\\
q=\frac{\left(\alpha_{i}+\alpha_{j}\right)\left(\alpha_{k}+\alpha_{l}\right)}{\alpha_{i}+\alpha_{j}+\alpha_{k}+\alpha_{l}}\left|\frac{\alpha_{i} R_{i}+\alpha_{j} R_{j}}{\alpha_{i}+\alpha_{j}}-\frac{\alpha_{k} R_{k}+\alpha_{l} R_{l}}{\alpha_{k}+\alpha_{l}}\right|^{2} \tag{17}
\end{gather*}
$$

The error function $\operatorname{erf}(x)$ is given in equation 4.114 in the hand-out.
Proceed in the same way as in the last problem to calculate the ground state energy. You should obtain $E_{0}=-1.07855$ (nuclear repulsion +1 included!)

