## Sheet 9

Due: 24/05/11

Question 1 [The $S U(2)_{L} \times S U(2)_{R} \sigma$ model ]:
Consider a theory for which the strong isospin ( T ) is a global $S U(2)$ symmetry.This theory contains the following fields: an isospin triplet of pions $\boldsymbol{\pi}=\left(\pi_{1}, \pi_{2}, \pi_{3}\right)$, with $T=+1$ and $T_{3}=-1,0,+1$, an isoscalar field $\sigma$ with $T=0$ and an isodoublet of nucleons $N=(p, n)$ for which $T=\frac{1}{2}$ and $T_{3}= \pm \frac{1}{2}$.
For this theory we consider the following Lagrangian

$$
\begin{align*}
\mathcal{L} & =\frac{1}{2}\left(\partial_{\mu} \sigma \partial^{\mu} \sigma+\partial_{\mu} \pi^{a} \partial^{\mu} \pi^{a}\right)+\bar{N} i \gamma^{\mu} \partial_{\mu} N+g \bar{N}\left(\sigma+i \tau^{a} \pi^{a} \gamma_{5}\right) N \\
& +\frac{\mu^{2}}{2}\left(\sigma^{2}+\pi^{2}\right)-\frac{\lambda}{4}\left(\sigma^{2}+\pi^{2}\right)^{2} \tag{1}
\end{align*}
$$

with $\tau^{a}(a=1, . .3)$, the Pauli matrices.
(i) Show that the Lagrangian is invariant under the following infinitesimal $S U(2)$ global transformation, called $S U(2)_{V}(V$ : vector $)$

$$
\begin{align*}
\sigma & \rightarrow \sigma^{\prime}=\sigma \\
\pi^{a} & \rightarrow \pi^{\prime a}=\pi^{a}+\varepsilon^{a b c} \alpha^{b} \pi^{c}  \tag{2}\\
N & \rightarrow N^{\prime}=N-i \alpha^{a} \frac{\tau^{a}}{2} N,
\end{align*}
$$

where $\alpha_{i}$ are infinitesimal space-independent group parameters associated to $S U(2)_{V}$. Find the Noether currents $J_{\mu}^{a}$ associated with this symmetry.
(ii) Show that the Lagrangian is also invariant under the infinitesimal axial $S U(2)$ transformation, called $S U(2)_{A}$

$$
\begin{align*}
\sigma & \rightarrow \sigma^{\prime}=\sigma+\beta^{a} \pi^{a} \\
\pi^{a} & \rightarrow \pi^{\prime a}=\pi^{a}-\beta^{a} \sigma  \tag{3}\\
N & \rightarrow N^{\prime}=N+i \beta^{a} \frac{\tau^{a}}{2} \gamma_{5} N,
\end{align*}
$$

where $\beta_{i}$ are infinitesimal space-independent group parameters associated to $S U(2)_{A}$. Find the Noether currents $A_{\mu}^{a}$ associated with this other symmetry.
(iii) Verify that the corresponding charges

$$
\begin{equation*}
Q^{a}=\int \mathrm{d}^{3} x J_{0}^{a}(x) \quad \text { and } \quad Q^{5 a}=\int \mathrm{d}^{3} x A_{0}^{a}(x) \tag{4}
\end{equation*}
$$

are conserved, i.e. show that $\mathrm{d} Q^{a} / \mathrm{d} t=0$ and $\mathrm{d} Q^{5 a} / \mathrm{d} t=0$, and prove that they generate the $S U(2)_{L} \times S U(2)_{R}$ algebra,

$$
\begin{align*}
& {\left[Q^{a}, Q^{b}\right]=i \varepsilon^{a b c} Q^{c}}  \tag{5}\\
& {\left[Q^{a}, Q^{5 b}\right]=i \varepsilon^{a b c} Q^{5 c}}  \tag{6}\\
& {\left[Q^{5 a}, Q^{5 b}\right]=i \varepsilon^{a b c} Q^{c}} \tag{7}
\end{align*}
$$

(iv) For $\mu^{2}>0$ spontaneous symmetry breakdown will happen, since the minimum of the potential is at

$$
\begin{equation*}
\sigma^{2}+\boldsymbol{\pi}^{2}=v^{2} \quad \text { with } \quad v=\left(\mu^{2} / \lambda\right)^{\frac{1}{2}} . \tag{8}
\end{equation*}
$$

Show that, if we choose

$$
\begin{equation*}
\langle 0| \pi^{a}|0\rangle=0 \quad \text { and } \quad\langle 0| \sigma|0\rangle=v \tag{9}
\end{equation*}
$$

and write the Lagrangian in terms of the shifted field $\sigma^{\prime}=\sigma-v$, the $\boldsymbol{\pi}$ s remain massless while the nucleons and the isoscalar acquire a masses $m_{N}=g v$ and $m_{\sigma}=$ $\sqrt{2} \mu$, respectively.
(v) Show that

$$
\begin{equation*}
\left[Q^{5 a}, \pi^{b}\right]=-i \sigma \delta^{a b} \tag{10}
\end{equation*}
$$

and that the choice of eq.(9) implies that the axial charges $Q^{5 a}$ do not annihilate the vacuum while the $Q^{a}$ S do. This means that the axial $S U(2)$ symmetry $\left(S U(2)_{A}\right)$ is broken and therefore that the $S U(2)_{L} \times S U(2)_{R}$ symmetry is broken spontaneously into the $S U(2)_{V}$ symmetry generated by the charges $Q^{a}$.

Hint: Show that $\langle 0| A_{\mu}^{a}(0)\left|\pi^{a}\right\rangle \neq 0$ and $Q^{a}|0\rangle=0$.

