QFT II - FS 11 - Profs. M. Gaberdiel and A. Gehrmann-De Ridder

Sheet I

Due: 15/03/11

Question 1 [Path integral of the harmonic oscillator]: For the harmonic oscillator the Lagrangian is given by

$$
L(q, \dot{q})=\frac{m}{2}\left(\dot{q}^{2}-\omega^{2} q^{2}\right) .
$$

(i) Determine the propagator kernel,

$$
K\left(t, q, q_{0}\right)=\langle q| e^{-i t H / \hbar}\left|q_{0}\right\rangle
$$

using path integral methods.
Hints:

- Introduce the $(n-1)$ dimensional vectors

$$
\xi=\left(q_{n-1}, q_{n-2}, \ldots, q_{1}\right), \quad \eta=(q, \underbrace{0, \ldots, 0}_{n-3}, q_{0})
$$

and rewrite the action as

$$
S(\xi, \eta)=\frac{m}{2}\left[\frac{1}{\epsilon}(\eta, \eta)+\frac{1}{\epsilon}(\xi, C \xi)-\frac{2}{\epsilon}(\xi, \eta)-\epsilon \omega^{2} q_{0}^{2}\right]
$$

where C is a $(n-1) \times(n-1)$ matrix.

- Expand around the extremum (i.e. the classical path) and integrate over ξ, using the generalized Gaussian integration formula.
- To compute the determinant $\operatorname{det}(C)$ one has to solve a recurrence relation of the form

$$
a_{n}=A a_{n-1}+B a_{n-2} .
$$

Use the ansatz $a_{n}=r^{n}$ to get the characteristic equation of the recurrence relation, and solve for r to obtain the two roots λ_{1}, λ_{2}. In our case the roots are distinct, so we have the general solution

$$
a_{n}=C \lambda_{1}^{n}+D \lambda_{2}^{n} .
$$

- Expand $\operatorname{det}(C)$ for small ϵ, i.e. show that

$$
\operatorname{det}(C)=\frac{\sin \omega t}{\epsilon \omega}+\mathcal{O}(1), \quad t / n=\epsilon
$$

(ii) At time $t=0$ the particle is described by the wave-function

$$
\psi\left(q_{0}\right)=\left(A+B q_{0}\right) e^{-m \omega q^{2} / 2 \hbar}
$$

(Note that this is a certain linear combination of the ground state and the first excited state wave-function.) Using the propagator kernel, calculate the wave-function at time t. Compare with what you expect based on the usual solution of the harmonic oscillator.

Question 2 [Four point function in free Klein-Gordon theory]: By evaluating the path-integral formula

$$
\begin{aligned}
& \langle\Omega| \mathcal{T}\left(\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right)|\Omega\rangle \\
& \quad=\lim _{T \rightarrow \infty(1-i \epsilon)} \frac{\int \mathcal{D} \phi \phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right) \exp \left[i \int_{-T}^{T} d^{4} x \mathcal{L}(\phi)\right]}{\int \mathcal{D} \phi \exp \left[i \int_{-T}^{T} d^{4} x \mathcal{L}(\phi)\right]}
\end{aligned}
$$

determine the 4-point function in the free Klein-Gordon theory.
Hint: The calculation can be done as for the case of the two-point function (see the lecture). However, you have to keep track carefully of the various terms that contribute (and their combinatorial factors). The final result is

$$
\begin{aligned}
\langle\Omega| \mathcal{T}\left(\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right)|\Omega\rangle & =D_{F}\left(x_{1}-x_{2}\right) D_{F}\left(x_{3}-x_{4}\right) \\
& +D_{F}\left(x_{1}-x_{3}\right) D_{F}\left(x_{2}-x_{4}\right) \\
& +D_{F}\left(x_{1}-x_{4}\right) D_{F}\left(x_{2}-x_{3}\right)
\end{aligned}
$$

where $D_{F}\left(x_{1}-x_{2}\right)$ is the Feynman propagator.

