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Abstract

In this report we concentrate on the (N = 1) supersymmetry alge-
bra, its representations and how to build supersymmetric Lagrangians
starting from superfield formalism.
This will be followed by a discussion of gauge symmetries in supersym-
metric models leading us to a master Lagrangian for renormalizable
supersymmetric gauge theories. Finally we have a look at super-QED
as a simple example of a supersymmetric Abelian gauge theory.
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1 Introduction

Today the most common method for describing particle propagations and
interactions is through the use of quantum field theories: We consider a field
content together with a symmetry group G that contains the Poincare group
as a subgroup. Next we try to build an action that is invariant under G or,
equivalently, a Lagrangian density that changes at most by a total derivative.
We can then make use of the usual machinery of the action principle which
gives rise to the equations of motion and hence the dynamical behaviour of
the particles that are associated to the quantum fields.
Various attempts in extending the usual Poincare group by a further internal
symmetry group that does not just come as a direct product G = P × H
failed. This product-form has the property that the generators of the Lie
algebra of each factor do not interfere:

Let Pµ be the translation generators and Mµν the generators of Lorentz trans-
formations. They form the Lie algebra of P and satisfy the usual Poincare
commutation relations. Let then Hi be the generators of the Lie algebra of
our internal symmetry group that satisfy the relation

[Hi, Hj] = ifijkHk (1)

where fijk are the structure constants of the Lie algebra. Then the product
form manifests itself in the vanishing of the commutators

[Pµ, Hi] = [Mµν , Hi] = 0 (2)

so that internal symmetry generators are translational invariant Lortentz
scalars. It also follows that they commute with the mass-squared P 2 and
generalized spin operator W 2, where W µ = −1

2
εµνσPνMσ[

P 2, Hi

]
=
[
W 2, Hi

]
= 0 (3)

and all components of an irreducible multiplet of the internal symmetry group
have the same mass and spin.

The most general theorem in which was shown that it is impossible to
enlarge the symmetry group without the product form was given by Coleman
and Mandula ([CM]). Altough they made reasonable assumptions for a phys-
ical theory there was found a way out by considering a graded Lie algebra:
The use of the usual commutation relations is extended by anticommutation
relations of the form

tAtB − (−1)ηAηB tBtA = ifABCtC (4)

3



where ηA ∈ {1, 0} is called the grading of the generator tA
1. This extended

Lie algebra gives rise to the so called ‘supersymmetry’ generators Q. They are
now fermionic, i.e. they change the spin by a half-odd amount and change
fermions into bosons and vice versa:

Q|B〉 = |F 〉, Q|F 〉 = |B〉 (5)

This means that supersymmetry models involve symmetry transformations
involving particles with diffent spin and hence different statistics which leads
to a unified description of fermions and bosons.

2 Supersymmetry algebra

For the first part we will use the two component notation. The Lorentz group
has a variety of representations, corresponding to particles with integer or
half-integer spins. The Haag-Lopuszanski-Sohnius theorem2 states then that
the supersymmetry generators can only belong to the

(
0, 1

2

)
or
(

1
2
, 0
)

repre-
sentations of the algebra of the Lorentz group and as two-spinors we label
them as Qa, a ∈

{
1
2
,−1

2

}
. The Hermitian adjoint of a

(
0, 1

2

)
or
(

1
2
, 0
)

opera-
tor is a linear combination of

(
1
2
, 0
)

or
(
0, 1

2

)
respectively. Using this notation

the fundamental anticommutation relations (for N = 1 supersymmetry) are:

{Qa, Q
∗
b} = 2σµabPµ, (6)

{Qa, Qb} = 0. (7)

We can see that Eq.(6) is a sensible expression when we recognize that Pµ is
in the

(
1
2
, 1

2

)
representation.

Later we will mainly use the dirac 4-component notation in which the fun-
damental (anti-)commutation relations read

{
Q, Q̄

}
= −2iPµγ

µ, (8)

[Pµ, Q] =
[
Pµ, Q̄

]
= 0, (9)

[Q,Mµν ] =
1

4
[γµ, γν ]Q. (10)

1ηA is zero or even for bosonic and odd for fermionic generators
2R. Haag, J. T. Lopuszanski, and M. Sohnius, Nucl. Phys.B88, 257 (1975).
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Here Q is the 4-component generator of the supersymmetry algebra

Q =


Q1

Q2

Q3

Q4

 (11)

Q1 = Q∗− 1
2
, Q2 = −Q∗1

2
, Q3 = Q 1

2
, Q4 = Q− 1

2
. (12)

Equations (8)-(10) build together with the standard Poincare algebra the
algebra for supersymmetry. From (9) we see that also the mass-squared
operator P 2 will commute with Q and it follows that all particles in our
multiplet will have the same mass.

2.1 Representations of N=1 SUSY algebra

Now we can start to construct a ‘supermultiplet’ which contains the minimal
field content for our theory that is used to build a Lagrangian density. Its
component fields should give rise to an irreducible representation of the SUSY
algebra. As an example for such a representation we have a look at the
construction of field supermultiplets.

We start with a complex spin-0 (scalar) field φ(x) as a ‘ground state’ of
our representation. The SUSY generators Qa annihilate it3 so we expect the
scalar field to commute with the Qa but not with the complex conjugates Q∗a

[Qa, φ(x)] = 0, (13)

[Q∗a, φ(x)] = σab2 ζb(x) 6= 0 (14)

where ζb(x) is a two-component spinor field in the (1
2
, 0) representation. From

this and (6) follows that

{Qa, ζb(x)} = −2i(σµσ2)ab∂µφ(x) (15)

By the use of (7) it can be shown further that

{Q∗a, ζb(x)} = −2iδabF(x) (16)

where F(x) is a scalar field. Using the previous results we find that

[Q∗a,F(x)] = 0, (17)

[Qa,F(x)] = −σµab∂µζb(x). (18)

3[WB] 25.5.

5



Equations (6) - (18) show that the fields φ, ζa and F form a representation
for the SUSY algebra and they give us the field content to derive an invariant
action. The multiplet

Φchiral = (φ, ζa,F) (19)

is known as the chiral multiplet for reasons that become clear later. It is
however not unique, we only need a set of fields that mix entirely among
themselves under a supersymmetry transformation.

Another important representation is the vector supermultiplet which con-
tains the field content to describe interactions of vector bosons. Accordingly
we are looking for a mutliplet that contains a (four-component) Majorana
spinor λ and a massless vector field Aµ. These are enough if we are on-shell,
i.e. when λ and Aµ satisfy their (free field) equations of motion:

/∂λ = 0, ∂µ(∂µAν − ∂νAµ) = 0. (20)

Yet if we want the SUSY algebra to close off-shell, we need to introduce an
auxiliary pseudoscalar field4 D. The complete vector multiplet is then

Φvector = (Aµ, λ,D) (21)

Finally there is a further multiplet that appears to be useful for our later
considerations, namely the curl supermultiplet

Φcurl = (Fµν , λ,D) (22)

where Fµν = ∂µAν − ∂νAµ.

All the mentioned multiplets furnish a complete irreducible representation
of the SUSY algebra.

3 Superfield formalism

We can construct our supermultiplets always directly as explained above.
However it turns out that the easiest way to calculate products of supermul-
tiplets, which should form other supermultiplets, is through the use of so
called superfields defined on a superspace. A superfield combines the field
content of our supermultiplet in one single field.
In N = 1 superspace we have the usual spacetime coordinates xµ together

4[WE] Chapter 6.
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with four anticommuting parameters θ known as Grassmann numbers. Grass-
mann numbers anticommute with themselves and other fermionic quantities
like spinors:

{θa, θb} = {θa, ψb} = 0 (23)

and commute with all bosonic quantities (c-numbers, scalars etc.). These
relations also imply that θaθa = 0 (no summation), so that any power series
in θ will terminate after a finite number of terms.

In the same way that we have defined the four-component momentum
operators Pµ as the generators of translations of the ordinary spacetime co-
ordinates xµ

φ(x)→ φ′(x) = φ(x+ a) = eia
µPµφe−ia

µPµ ∼= φ+ aµ
∂φ

∂xµ
= φ+ δφ (24)

⇔ [Pµ, φ] = −i∂µφ (25)

we can see the supersymmetry generators Q as the translation generators
of the fermionic superspace coordinates. The action on a superfield is now
described not just by the translation operator ∂

∂θ
but by a superspace differ-

ential operator D:

D = − ∂

∂θ
+ γµθ

∂

∂xµ
. (26)

This is because the symmetry generators have now non-vanishing anticom-
mutators (see Eq.(8)).
For an infinitessimal transformation we get

[ᾱQ, S] = iᾱDS = iδS (27)

where α is a Majorana spinor parameter.

3.1 General Superfields

In our case θ is a four component Majorana spinor and because each of the
components anticommutes we get a power series that terminates after the
quartic term. We can therefore express the most general function of xµ and
anticommuting grassmann parameter θ as

S(x, θ) =C(x)− i(θγ5ω(x))− i

2
(θγ5θ)M(x)− 1

2
(θθ)N(x)

+
i

2
(θγ5γµθ)V

µ(x)− i(θγ5θ)(θ[λ(x) +
1

2
/∂ω(x)])

− 1

4
(θγ5θ)

2(D(x) +
1

2
�C(x)),
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which we call a ‘general superfield’. If S(x, θ) is a scalar then C(x), M(x),
N(x) and D(x) are (pseudo-)scalars, ω(x) and λ(x) are 4-component spinor
fields and V µ is a vector field. The superfield S(x, θ) transforms under a
supersymmetry transformation as iδS = [ᾱQ, S]. In components this reads:

δC = i(αγ5ω) (28)

δω = (−iγ5/∂C −M + iγ5N + /V )α (29)

δM = −
[
α(λ+ /∂ω)

]
(30)

δN = i
[
αγ5(λ+ /∂ω)

]
(31)

δVµ = (αγµλ) + (α∂µω) (32)

δλ =

(
1

2

[
∂µ /V , γ

µ
]

+ iγ5D

)
α (33)

δD = i(αγ5/∂λ). (34)

As expected for a SUSY transformation, the variation of a bosonic/fermionic
field is proportional to a fermionic/bosonic field. Given two superfields S1

and S2 their product S = S1S2 is also a superfield:

δS = [ᾱQ, S1S2] = S1 [ᾱQ, S2] + [ᾱQ, S1]S2

= (ᾱDS1)S2 + S1 (ᾱDS2) = ᾱDS

3.2 Chiral Superfields

If we now compare the field content of our general superfield S(x, θ) with
the one in the supermultiplet we constructed in chapter (2.1), we find that it
contains more fields than we need. In other words it is a reducible represen-
tation of the supersymmetry algebra. We should try then to find a smaller
set of component fields which mix only among themselves under SUSY trans-
formations.
Consider a superfield with λ = D = 0. Although D remains zero under these
transformations if λ = 0, the condition that λ vanishes is invariant only if we
impose Vµ = ∂µZ. A superfield satisfying these conditions is called a ‘chiral
superfield’ X(x, θ) and may be decomposed further as

X(x, θ) =
1√
2

[
Φ(x, θ) + Φ̃(x, θ)

]
(35)

with
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Φ(x, θ) =φ(x)−
√

2(θψL(x)) + F(x)

(
θ

(
1 + γ5

2

)
θ

)
+

1

2
(θγ5γµθ)∂

µφ(x)

− 1√
2

(θγ5θ)(θ/∂ψL(x))− 1

8
(θγ5θ)

2�φ(x)

Φ̃(x, θ) =φ̃(x)−
√

2(θψR(x)) + F̃(x)

(
θ

(
1− γ5

2

)
θ

)
− 1

2
(θγ5γµθ)∂

µφ̃(x)

+
1√
2

(θγ5θ)(θ/∂ψR(x))− 1

8
(θγ5θ)

2�φ̃(x)

and component fields

φ =
A+ iB√

2
, ψL =

(
1 + γ5

2

)
ψ, F =

F − iG√
2

, (36)

φ̃ =
A− iB√

2
, ψR =

(
1− γ5

2

)
ψ, F =

F + iG√
2

. (37)

To avoid confusion with the names of the component fields of a general
superfield we made the identifications

C = A, ω = −iγ5ψ, M = G, N = −F, Z = B. (38)

Notice that the field content of these superfields corresponds to the chiral
multiplet constructed in chapter (2.1) when we identify the two-component
Majorana spinor ζa as

ψL =
1

2

(
ζa

−(iσ2)abζ
∗
b

)
. (39)

These superfields are known as left- and right-chiral superfields respectively
because they satisfy the conditions

DRΦ = DLΦ̃ = 0, (40)

where DR,L are the right- and left-handed parts of the superderivative (26):

DR,L =

(
1∓ γ5

2

)
D. (41)

The component fields of either Φ or Φ̃ give rise to a complete and irreducible
representation of the SUSY algebra. By a similar argument as for the gen-
eral superfield, the product of two left-chiral superfields (or of right-chiral
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superfields) is again a left-(or right-)chiral superfield. This also means that
any function of only left-chiral superfields is again a left-chiral superfield.
The transformation laws for the component fields of the left chiral superfield
under a SUSY transformation read:

δφ =
√

2 (αRψL) (42)

δψL =
√

2∂µφγ
µαR +

√
2FαL (43)

δF =
√

2
(
αL/∂ψL

)
(44)

4 Construction of SUSY invariant Lagrangians

From equations (34) and (44) we see that the D-term of a general and the
F-term of a chiral superfield transform as total derivatives under SUSY trans-
formations. Therefore they are good candidates for building a SUSY invari-
ant action. The left-chiral superfield5 f(Φ) is called the superpotential. Since
the superderivative of a chiral superfield is not chiral we cannot include them
into f(Φ). By power counting arguments it can be shown that for a renor-
malizable theory each term in f(Φ) can contain at most three factors of Φ.
The general6 real superfield K(Φ,Φ∗) is known as the Kahler potential.
Again by power counting it can be shown that for a renormalizable theory
K(Φ,Φ∗) must be of the form

K(Φ,Φ∗) =
∑
n,m

gnmΦ∗nΦm (45)

and without loss of generality we can choose a basis such that gnm = δnm.
The D-term of the Kahlerpotential is then:

1

2
[K(Φ,Φ∗)]D =− ∂µφ∗n∂µφn + F∗nFn

− 1

2
(ψnLγ

µ(∂µψL)n) +
1

2
((∂µψL)nγ

µψnL)

= : LD.

and the F-term of f(Φ) is

5Equivalently we could always use right-chiral superfields.
6Note that conjugate of a left-chiral superfield is a right-chiral superfield.
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[f(Φ)]F =− 1

2

(
∂2f(φ)

∂φn∂φm

)
(ψnLψmL) + Fn

∂f(φ)

∂φn

= : LF .

Note here that also the conjugate of [f(Φ)]F is SUSY invariant so we include
it into LF .
The complete Lagrangian density is the sum of these contributions

L = LD + LF (46)

Notice also that no derivatives of F and F∗ appear. Therefore, when they
satisfy their classical equations of motion, we can express them by other fields
in our multiplet. For this reason F and F∗ are called auxiliary fields that we
had to introduce in order for the algebra to close offshell (see [MA], p. 18).

4.1 The Wess-Zumino Model

The most general model involving only a single chiral multiplet in renor-
malizable self-interaction was found first by Wess and Zumino ([WZ]). The
off-shell Lagrangian for this model reads:

LWZ = L0 + Lg

=
1

2

(
(∂µA)2 + (∂µB)2 + iψ̄ /∂ψ + F 2 +G2

)
−m

(
AF +BG+

1

2
ψ̄ψ

)
− g[(A2 −B2)F + 2ABG+ ψ̄(A− γ5B)ψ]

We will meet the free Wess-Zumino Lagrangian density L0 again in chapter
(6) when we construct a model involving Abelian gauge interactions.

5 Supersymmetric Gauge Theories

The most interesting models are based on gauge symmetries following from
different underlying symmetrygroups. We would like to include these sym-
metries in our model in order to find a connection with the standard model.
Consequently we have to construct actions that are simultaneously invariant
under supersymmetry and gauge transformations.
We consider a set of Abelian or non-Abelian gauge transformations that
leave the supersymmetry generator Q invariant. Because supersymmetry
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and gauge transformations must commute, each component field in our su-
permultiplet has to transform in the same way under such gauge transforma-
tions. Without loss of generality we may restrict ourselves in the following
to left-chiral superfields:

φn(x) → [exp(itAΛA(x))]nmφm(x) (47)

ψnL(x) → [exp(itAΛA(x))]nmψmL(x) (48)

Fn(x) → [exp(itAΛA(x))]nmFm(x) (49)

where the tA are Hermitian matrices representing the generators of the gauge
group and ΛA(x) are real functions that parametrize a finite gauge transfor-
mation.

Although our general left-chiral superfield involves derivatives which com-
plicates the transformations we may avoid that complication by a redefinition
of variables:

x̂µ := xµ +
1

2
(θγ5γ

µθ) (50)

in terms of this new variable the superfield can be written without derivatives

Φ(x, θ) = φ(x̂)−
√

2 θψL(x̂) + iθF(x̂) (51)

and transforms as

Φn(x, θ)→ (eitAΛA(x̂))nmΦm(x, θ) (52)

Since the superpotential f(Φn) depends only on left-chiral superfields it will
be invariant under local gauge transformations if it is invariant under global
transformations. Nevertheless we have a problem with the Kahler potential

K(Φn,Φ
∗
n) =

∑
n

Φ∗nΦn (53)

which is no longer gauge invariant: The Hermitian adjoint of (52) is

Φ†n(x, θ)→ Φ†m(x, θ)(e−itAΛA(x̂)∗)mn. (54)

Observe that the matrices tA are Hermitian and the ΛA(x̂) are in general
complex (ΛA(x̂) 6= ΛA(x̂)∗) because x̂ contains a complex part. To overcome
this problem let us introduce a ‘gauge connection matrix’ Γ(x, θ) which has
the transformation property

Γ(x, θ)→ eitAΛA∗(x̂)Γ(x, θ)e−itAΛA(x̂) (55)
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This matrix is not unique and we can take it to be Hermitian Γ† = Γ. One
special form of Γ can be taken to be

Γ(x, θ) = e−2tAV
A(x,θ) (56)

where the V A are a set of real ‘gauge superfields’. As a consequence all
bosonic component fields of V A are real and all fermionic components are
Majorana. This ensures that the vector potential and the gauge field strength
are real. Redefining the Kahler potential

K → K ′ =
∑
n

Φ∗nLe
−2tAV

A(x,θ)ΦnL (57)

will render it gauge invariant:

Φ∗n(x, θ)
[
e−itPΛP (x̂)e−2tAV

A(x̂)eitQΛQ(x̂)
]

Φn(x, θ)

= Φ∗n(x, θ)
[
e−2tAV

A(x̂)
]

Φn(x, θ).

Furthermore if some function of Φ and Φ†Γ is invariant under global gauge
transformations it is also invariant under an extension of the usual gauge
where we take instead of ΛA(x̂) an arbitrary left-chiral superfield ΩA(x, θ):

ΦnL(x, θ)→ (eitAΩA(x,θ))nmΦmL(x, θ). (58)

5.1 Abelian Gauge Transformations

Let us first consider the case of Abelian gauge transformations where we have
only one gauge potential superfield and one coupling parameter7. First we
want to construct a kinetic part of the Lagrangian for V. It transforms as

e−2tAV
A → e+itPΩP (x̂)e−2tAV

A(x̂)e−itQΩQ(x̂) (59)

⇔ V → V +
i

2
[Ω− Ω∗]. (60)

Since the second term is real we see that V remains real under such trans-
formations. Ω then is a left-chiral superfield and can hence be expanded as
before

7We absorb it into the parameter superfield for simplicity.
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Ω(x, θ) =W (x)−
√

2(θ
1 + γ5

2
w(x)) +W(x)(θ

1 + γ5

2
θ) +

1

2
(θγ5θ)∂

µW (x)

− 1√
2

(θγ5θ)(θ/∂
1 + γ5

2
w(x))− 1

8
(θγ5θ)

2�W (x).

We also expand V in its component fields

V (x, θ) =C(x)− i(θγ5ω(x))− i

2
(θγ5θ)M(x)− 1

2
(θθ)N(x) +

i

2
(θγ5γ

µθ)Vµ(x)

− i(θγ5θ)(θ[λ(x) +
1

2
/∂ω(x)])− 1

4
(θγ5θ)

2(D(x) +
1

2
�C(x))

and find using the expansions of Ω in (60) that the component fields undergo
the transformations

C(x) → C(x)− Im(W (x))

ω(x) → ω(x) +
1√
2
w(x)

M(x) → M(x)−Re(W(x))

N(x) → N(x) + Im(W(x))

Vµ(x) → Vµ(x) + ∂µRe(W (x))

λ(x) → λ(x)

D(x) → D(x).

We can now use a gauge transformation to put the gauge field in a more
convenient form by setting some of the component fields to zero:

C(x) = ω(x) = M(x) = N(x) = 0. (61)

This particular gauge is called the Wess-Zumino gauge and we recognize the
usual Yang-Mills gauge transformation for an Abelian theory: The gauge
field changes by a gradient and the transformation parameter is the real part
of the scalar component of the chiral superfield whereas λ and D remain
gauge invariant.

We are still left to find a gauge invariant supersymmetric kinetic term for
the gauge fields.
In QED the field-strength tensor

14



Fµν = ∂µVν − ∂νVµ (62)

appears and we expect it to enter the Lagrangian density in the combination
FµνF

µν since this is the only parity conserving gauge invariant function of
the gauge field Vµ. We may normalize this by a factor of −1

4
for conventional

reasons. In the same manner we may guess the form of the Lagrangian up
to prefactors of the remaining terms. These can be determined from the
supersymmetry condition on LGK and we get

LGK = −1

4
FµνF

µν − 1

2
(λ/∂λ) +

1

2
D2. (63)

5.1.1 Curl Superfields

As a more systematic approach for constructing the gauge kinetic part we
should ask what kind of superfield W has Fµν , λ and D as component fields.
We know that such a superfield exists because we saw in section (2.1) that
an adequate multiplet exists, namely the curl multiplet. It turns out that W
is a spinorfield so we may add a spinor index. It takes the form:

Wα(x, θ) =

[
λ(x) +

1

2
γµγνθFµν(x)− iγ5θD(x)− 1

2
(θT εθ)/∂γ5λ(x)

+
1

2
(θT εγ5θ)/∂λ(x) +

1

2
(θT εγµθ)γ5∂µλ(x)

− 1

4
(θT εθ)γ5γ

µγνγσθ∂σFµν(x)

+
1

2
i(θT εθ)γσθ∂σD(x)− 1

8
(θT εθ)2�λ(x)

]
α

which is the usual expansion for a general superfield with the identifications:

C(α) = λα

ω(α)β(x) =
1

2
i(γµγνε)αβFµν(x) + (γ5ε)αβD(x)

V(α)µ(x) = −i∂µ (γ5λ(x))α
M(α)(x) = −i

(
/∂γ5λ(x)

)
α

N(α)(x) = −
(
/∂λ(x)

)
α

λ(α)β(x) = D(α)(x) = 0.

It can also be expressed with the help of superspace differential operators
(see appendix Eq.(96)) as
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Wα(x, θ) =
i

4
(DT εD)DαV (x, θ) (64)

The desired term for the Lagrangian can be obtained by splitting it up into
left- and right-chiral superfields

W = WL +WR =
1 + γ5

2
W +

1− γ5

2
W. (65)

The left-chiral part takes the form

WL = λL(x̂) +
1

2
γµγνθLFµν(x̂) + (θTLεθL)/∂λR(x̂)− iθLD(x̂). (66)

Next we take the F-term of W 2
L:

−1

2
Re
[
εαβWLαWLβ

]
F

= −1

2
(λ/∂λ)− 1

4
FµνF

µν +
1

2
D2 (67)

and recognize the same term that we derived before in Eq.(63). The gen-
eralization of the field strength tensor to a so called ‘curl superfield’ Wα is
a useful tool for constructing gauge kinetic parts. The extension to non-
Abelian theories is straight forward.

5.1.2 Fayet-Iliopoulos term

As shown above the D-term transforms as a total derivative (Eq.(34)) and
hence yields a supersymmetric term in the action. For Abelian theories there
is a further term coming from the D-term of the gauge superfield

LFI = ξPDp (68)

where p runs over each U(1) factor of the gauge group and the coupling
constants ξP have mass dimension 2. It is called the Fayet-Iliopoulos term
and plays an important role in the spontaneous breaking of supersymmetry
([WB], 27.5).

5.2 Non-Abelian Gauge Transformations

Again the gauge potential superfield transforms as

e−2tAV
A → e+itPΩP (x̂)e−2tAV

A(x̂)e−itQΩQ(x̂) (69)

⇔ V A → V A +
i

2
[ΩA − ΩA∗] + ... (70)
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but this time we also find further terms which arise from the Campbell-Baker-
Hausdorff formula (see appendix Eq.(97)) indicated by ellipsis. Consequently
there will also be more terms in each of the component fields so getting to
the Wess-Zumino gauge is more complicated than in the Abelian case: We
have to correct the needed gauge transformations which can be done by an
iterative procedure to all orders.
We express the left-chiral superfields ΩA(x̂) as8

ΩA(x̂) = ΛA(x) +
1

2
(θγ5γµθ)∂

µΛA(x)− 1

8
(θγ5θ)

2�ΛA(x). (71)

Inserting (71) into (70) we find for an infinitesimal gauge that V A(x, θ) trans-
forms as

V A(x, θ)→ V A(x, θ) + CA
BCV

B(x, θ)ΛC(x) +
i

2
(θγ5γµθ)∂

µΛA(x). (72)

In terms of the component fields this reads

V A
µ (x) → V A

µ (x) + ∂µΛA(x) + CA
BCV

B
µ ΛC(x) (73)

λA(x) → λA(x) + CA
BCλ

B(x)ΛC(x) (74)

DA(x) → DA(x) + CA
BCD

B(x)ΛC(x) (75)

with structure constants [tB, tC ] = iCA
BCtA and implicit summation over all

double indices. As expected we find the Yang-Mills gauge transformation for
a non-Abelian theory and also that λA and DA transform covariantly.
By virtue of physical intuition we write down the generalization of (63) for
a non-Abelian theory immediately:

LGK = −1

4
FAµνF

µν
A −

1

2
λA /DACλC +

1

2
DADA (76)

where F µν
A is the usual gauge covariant field-strength tensor

FAµν = ∂µVAν − ∂νVAµ + CABCVBµVCν (77)

and (Dµλ)A = ∂µλA + CABCVB,µλC is the gauge covariant derivative of the
gaugino field in the adjoint representation. The spin zero fields DA enter
without derivatives and turn out to be auxiliary fields with purely algebraic
equations of motion.
We could have derived LGK from the extended curl superfield WA

α in the
same manner as we did for the Abelian case in section (5.1.1).

8This is the usual expansion of a left-chiral superfield but with F- and ψL-components
set to zero. This is because after WZ-gauge the only left gauge-freedom corresponds to
the scalar field.
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5.3 Master Lagrangian for SUSY gauge theories

In order to construct a gauge invariant Lagrangian for the scalar and spinor
components of a left-chiral superfield we have to extract the D-term from the
redefined Kahlerpotential (Eq.(57)). This reads ([WB] p.122)

1

2

[
Φ†ΓΦ

]
D

=−
[
(Dµφ)†Dµφ

]
− 1

2

[
(ψLγ

µDµψL)
]

+
1

2

[
(DµψLγ

µψL)
]

+
[
F †F

]
+ i
√

2
[
(ψLtAλ

A)φ+ h.c.
]

−DA

[
φ†tAφ

]
= : Lgauge

where we used the gauge invariant derivative

DµψL = ∂µψL − itAV A
µ ψL, Dµφ = ∂µφ− itAV A

µ φ

to see that this term is indeed gauge invariant.

We can now collect the various contributions to the Lagrangain density
that we have obtained so far

L = Lgauge + LGK + LF + LFI

= −(Dµφ)∗n(Dµφ)n −
1

2
(ψnγ

µ(Dµψ)n) + F∗nFn − φ∗n(tA)nmφmDA

− 2
√

2Im
(
(tA)nm(ψnLλA)φm

)
+ 2
√

2Im
(
(tA)mn(ψnRλA)φ∗m

)
− 1

4
FAµνF

Aµν − 1

2
λA( /Dλ)A +

1

2
DADA

−Re
(
∂2f(φ)

∂φn∂φm
(ψTnLεψmL)

)
+ 2Re

(
∂f(φ)

∂φn
Fn
)

− ξADA.

To obtain a Lagrangian density that contains only physical fields we eliminate
the auxiliary fields Fn and DA by using their respective equations of motion.
We get:

Fn = −
(
∂f(φ)

∂φn

)
, (78)

DA = ξA + φ∗n(tA)nmφm. (79)
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Substituting into L we arrive at the master formula for renormalizable su-
persymmetric gauge theories:

L =− (Dµφ)∗n(Dµφ)n −
1

2
(ψnLγ

µ(DµψL)n) +
1

2
((DµψL)nγ

µψnL)− 1

4
FAµνF

µν
A −

1

2
(λA( /Dλ)A)

+ i
√

2(ψnL(tA)nmλA)φm − i
√

2φ∗n(λA(tA)nmψmL)

−
∣∣∣∣∂f(φ)

∂φn

∣∣∣∣2 − 1

2
(ξA + φ∗n(tA)nmφm)2

− 1

2

(
∂2f(φ)

∂φn∂φm

)
(ψTnLεψmL)− 1

2

(
∂2f(φ)

∂φn∂φm

)∗
(ψTnLεψmL)∗.

Let us discuss the relevant features of this Lagrangian density:

• The first line represents the usual gauge invariant kinetic parts for the
components of the chiral and gauge superfields. It describes how all
particles couple to gauge bosons through minimal coupling in the gauge
covariant derivatives.

• The second line describes interactions of gauginos with scalar and
fermion components of the chiral superfield. Gauginos couple matter
fermions to their respective superpartners.

• The thrid line gives us the scalar potential which receives two contri-
butions:

1. an ‘F-term contribution’ from the superpotential

2. a ‘D-term contribution’ that has its origin in the auxiliary fields
DA

• The last line describes non-gauge superpotential interactions of scalar
and spinor fields. In the standard model this corresponds to Yukawa
interactions of matter and Higgs fields.

6 Super-QED

To give an example of a supersymmetric Abelian gauge theory we consider
the supersymmetric extension of QED. In usual QED the gauge invariance
ψ → eieα(x)ψ of the matter Lagrangian is achieved by a minimal substitution
of the partial derivative by a covariant derivative that contains a gauge field
Aµ:
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Lmatter = iψ /Dψ +mψψ, Dµ = ∂µ − ieAµ(x) (80)

and requiring the gauge field to transform covariantly

Aµ → Aµ + ∂µα. (81)

Finally we have to add a gauge kinetic part to the Lagrangian to let the
gauge field propagate given by

LGK = −1

4
FµνF

µν . (82)

From what we learned in section (2.1) we expect for a supersymmetric
version that we have a chiral multiplet interacting with a vector multiplet.
Since the superpartner of the photon has spin-1

2
it has two physical degrees

of freedom. Hence it must be described by either a chiral or a Majorana
spinor, where the only possible gauge transformation has negative parity.
However for QED we expect a field to transform with positive parity and we
are therefore forced to introduce two chiral multiplets Φ1 and Φ2 such that
the complex spinor ψ = ψ1 + iψ2 transforms as

ψ → ψ′ = e−iα(x)(ψ1 + iψ2) ≈ (ψ1 + α(x)ψ2) + i(ψ2 − α(x)ψ1) (83)

⇔ δgψ1 = α(x)ψ2, δgψ2 = −α(x)ψ1

The easiest choice for the matter part is the free Wess-Zumino Lagrangian
for the two multiplets:

Lmatter =
1

2

2∑
i=1

(∂µAi)
2 + (∂µBi)

2 + iψi/∂ψi + F 2
i +G2

i −m(2AiFi + 2BiGi +
1

2
ψiψi).

(84)
Because supersymmetry and gauge transformations must commute, the mul-
tiplets transform according to the same transformation rules as the Majorana
spinor

δgΦ1 = α(x)Φ2, δgΦ2 = −α(x)Φ1. (85)

This Lagrangian is already gauge invariant under global transformations.
The next step is to introduce the extension of the gauge field Aµ. The gauge
superfield V (x, θ) transforms as stated in (60) as V → V − i

2
(Ω − Ω∗) with

Ω (left-)chiral. The role of the parameter field α(x) is played by the W-
component of Ω. We can now define a doublet from the chiral multiplets:
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Φ =
1√
2

(
Φ1 + iΦ2

Φ1 − iΦ2

)
(86)

such that gauge transformations become Φ → e−iΩΦ with Ω =

(
Ω 0
0 −Ω

)
.

Afterwards we build an invariant Kahler potential

K = Φ†e−2V Φ, V =

(
V 0
0 −V

)
(87)

and in order to get rid of superfluous gauge freedoms we choose the Wess-
Zumino gauge C(x) = ω(x) = M(x) = N(x) = 0. The matter Lagrangian
(84) becomes

Lmatter =
1

2

2∑
i=1

[
(∇µAi)

2 + (∇µBi)
2 + iψiγ

µ∇µψi + F 2
i +G2

i −m(2AiF + 2BiGi + ψiψi)
]

− λ(A1 + γ5B1)ψ2 + λ(A2 + γ5B2)ψ1 − (A1B2 −B1A2)D)

with

∇µX1 = ∂µX1 − AµX2, ∇µX2 = ∂µX2 − AµX1 (88)

where X = A,B, ψ. The first line contains the analogues of the covari-
ant derivative in QED. Because we introduced a doublet which mixes both
multiplets, we now have also a mixture in the covariant derivatives. The
contributions in the second line are non-minimal coupling terms and are fea-
tures of our supersymmetric extension.

The gauge kinetic part of the Lagrangian can be constructed from the
gauge invariant curl superfield (64) and reads

LGK = −1

4
FµνF

µν +
i

2
λ/∂λ+

1

2
D2. (89)

Our new physical spectrum now contains not only the photon but also its
superpartner the photino represented by the field λ(x). We recognize further
that we have propagating charged scalar partner fields A1, A2, B1 and B2 for
the electron field ψ(x). No derivatives of D, Fi and Gi appear so they are
auxiliary fields.

The full super-QED Lagrangian is then

LsQED = Lmatter + LGK . (90)
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7 Conclusion

To conclude our discussion we should summarize how to construct renormal-
izable supersymmetric gauge theories.
First of all we have to choose a gauge group and representations for the var-
ious supermultiplets. Matter fermions and Higgs bosons are parts of chiral
scalar supermultiplets whereas gauge bosons are parts of the real gauge su-
permultiplet.
Next we have to choose a globally gauge invariant function of the left chi-
ral superfields which forms our superpotential f(φn). The interactions of
particles with gauge bosons are given by the usual ‘minimal coupling’ and
the coupling of gauginos to matter by gauge interactions is described in the
second line of our master Lagrangian.
Additional self interactions of scalar matter fields are given by the third line
and non-gauge interactions of matter fields from the superpotential come
from the last line.

8 Appendix

Throughout the text we used a few mathematical notation that is shown here
in detail.

The pauli matrices σµ are:

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(91)

Then the epsilon matrix is

ε =

(
iσ2 0
0 iσ2

)
. (92)

We chose a representation for the Dirac algebra such that the γ5-matrix reads

γ5 =

(
1 0
0 −1

)
. (93)

For Majorana spinors the relation

θ̄ = θTγ5ε (94)

holds. We also introduced in (26) the superspace differential operator

D = − ∂

∂θ
+ γµθ

∂

∂xµ
(95)
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in more detail this reads

Dα = (γ5ε)αγ
∂

∂θγ
+ γµαγθγ

∂

∂xµ
. (96)

The Campbell-Baker-Hausdorff formula

eAeB = exp

[∑
n

1

n!
Cn(A,B)

]
(97)

C1 = A+B, C2 = [A,B] , C3 =
1

2
[[A,B] , B] +

1

2
[A, [A,B]] , ...

is the origin of the additional terms in section 5.2. In the Abelian case all
commutators vanish and the sum terminates after the first term.
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