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Abstract

We review the procedure for constructing supersymmetric Lagrangians. First, the Lagrangian is
constructed from a given basic field content, the supermultiplet, and the Wess-Zumino model is pre-
sented in this framework. Then the superfield formalism is introduced, which simplifies the algebraic
manipulations of the fields. Supersymmetric Lagrangian for chiral superfields are constructed from
a general sum of field components which transform as a 4-divergence under supersymmetry. Finally
the general renormalizable Lagrangian for chiral superfields is introduced.
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1 Introduction

The standard model of high-energy particle physics (with the addition of neutrino masses and mixing)
gives a description in very good agreement with the experimental data up to the TeV scale. However,
we know it must be incomplete at least from the Planck scale on,

MPlanck =
1√

8πG
≈ 1018 GeV,

since gravitation must be treated quantum mechanically. Let’s consider the cut-off of the model Λ
and recall that it can be identified with the scale at which new physics appears. Assuming that
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the electroweak theory gives a complete description of the physics in the 16 orders of magnitudes of
energy between the electroweak scale,

MEW ≈ 100 GeV,

and the Planck scale, we would expect Λ ≈ MPlanck. The squared-mass correction induced by a
Yukawa coupling of the form −λfHf̄f becomes,

(∆m2
H)f = −|λf |

2

8π2
Λ2 + · · · ,

whereas for a Higgs-scalar coupling of the form −λs|H|2|s|2, it has the form,

(∆m2
H)s = +

λs
16π2

Λ2 + · · · .

This suggests that mH ≈ MPlanck, since the corrections to mH are of this order of magnitude. The
experimentally preferred value for mH is however of the order of the electroweak scale, which would
need an extremely good fine tuning of the parameters of the standard model.

In (unbroken) supersymmetry each fermion is associated 2 (complex) scalars with λs = |λf |2,
impling that the divergences would cancel exactly. Even if supersymmetry is softly broken (since we
do not observe superpartnets of the same mass it must be the case) the quadratic divergence still
cancel, and there is only a much milder logarithmic divergence. Supersymmetry also ensures that
this cancellation property persists at higher orders [6].

The LHC at CERN will investigate the TeV scale and could observe some of the supersymmetric
partners (e.g. the MSSM 1 ones) if they exist. The mass of the supersymmetric partners should be
of the order of the scale of the soft supersymmetry breaking which cannot be much larger than the
TeV scale in order for the above cancellation to occur on indirect constraint grounds.

In this report we will concentrate on a procedure to construct Lagrangian exhibiting supersym-
metry, i.e. mixing fermionic and bosonic degrees of freedom. We will skip many of the details of the
supersymmetry algebra and of its representation.

Recipe to construct a quantum field theory The modern method for constructing a quan-
tum field theory is the following [1, 2]: First, one chooses a field content for the theory, with given
transformations under a symmetry group G, typically containing the Poincaré group P as a subgroup.
States of the system correspond to irreducible representations of G. A (linear) representation of a
group G is a group homomorphism U : G→ GL(V ), where V is a vector space – the representation
space – to which the fields belong, and GL(V ) is the group of all linear invertible transformations of
V to itself, satisfying,

U(g1)U(g2) = U(g1g2) ∀g1, g2 ∈ G.

Then, one builds a Lagrangian (density) L[ϕ] out of the fields such that the action S =
∫
d4xL[ϕ] is

invariant under the action of G. This is the case if,

L[U(g)ϕ] = L[ϕ] + ∂µf
µ ∀g ∈ G,

with f : R1,3 → R, a function over space-time. In a slightly misleading terminology, one speaks then
of a Lagrangian invariant under G, although it is the action which is truly invariant. One then gets
the Euler-Lagrange equations of motion for the classical field from of the principle of least action,

∂L
∂ϕ
− ∂µ

(
∂L

∂(∂µϕ)

)
= 0.

Quantization is then achieved by imposing commutation relations or through the path-integral for-
malism.

2 The Coleman-Mandula theorem

Up to now, we have not made any comment about the symmetry group G. Typically, it takes the
form of a direct product,

G ∼= P ×H,

1Minimal Supersymmetric Standard Model.
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where H is a Lie group called the internal symmetry group. The Lie algebra g of G is (isomorphic
to) the tangent space of G at the identity TidG. It is a vector space spanned by the generators of
the group, which is closed under the Lie bracket [·, ·] [5]. Since the group is a direct product, we can
write,

g ∼= TidG = TidP ⊕ TidH ∼= p⊕ h.

The generators 2 of G are thus the union of the usual generators of translation Pµ (µ = 0, 1, 2, 3)
and Lorentz boost Mµν = −Mνµ from p,

[Pµ, Pν ] = 0

[Pµ,Mρσ] = i(ηµρPσ − ηµσPρ) (1)

[Mµν ,Mρσ] = i(ηνρMµσ − ηνσMµρ − ηµρMνσ + ηµσMνρ),

and the generators of the internal symmetry group from h,

[Ti, Tj ] = fijkTk. (2)

The direct product structure means that each element of G cann be written as (p, h) with p ∈ P
and h ∈ H, and that the multipication rule is simply,

(p1, h1)(p2, h2) = (p1p2, h1h2) ∀p1, p2 ∈ P, h1, h2 ∈ H,

i.e. P and H do not interfere with each other. Or, using the generators, with a slight abuse of
notation,

[Pµ, Ti] = [Mµν , Ti] = 0, (3)

which we can summarize schematically as,

[p, p] = p [h, h] = h [p, h] = 0.

Typical examples are a single Dirac field with H = U(1)charge, an isospin doublet with H =
SU(2)isospin and the quark color triplet with H = SU(3)color.

Now, one might ask oneself, if it would not be possible to combine the Poincaré and internal
symmetry groups in a non-trivial way. The answer under very general assumptions is no, at least not
with Lie groups. This is the content of the 3

Theorem 1 (Coleman-Mandula theorem [3], 1967) Let G be the symmetry group of an S-
matrix, a connected Lie group with a subgroup isomorphic to the Poincaré group P, such that,

1. for any M there is only a finite number of particle types with mass less than M ,

2. any two particle state undergoes some reaction at all energies except perhaps an isolated set,

3. the amplitudes for elastic two-body scattering are analytic functions of the scattering angle at
almost all energies and angles.

Then G is locally isomorphic to P ×H for a Lie group H.

Hence it looks like there is no way to knit the two parts together in a non trivial way.
From the commutation relation (3), one can see that the Casimir operators of the Poincaré group

– the mass-square operator, P 2 = PµP
µ, and the generalized spin operator, W 2 = WµW

µ with
Wµ = 1

2
εµνρσPνMρσ – take constant values within a irreducible multiplet of the internal symmetry,

since,

[Ti, P
2] = [Ti,W

2] = 0,

i.e. all particle in the multiplet have the same mass (O’Raifeartaigh’s theorem) and spin. In order
to combine fermions and bosons inside a same multiplet, we thus need to focus on another type of
generators.

2We use η = diag(−1, 1, 1, 1), µ, ν = 0, 1, 2, 3, α, α̇ = 1, 2; Summation over repeated indices is implied. γ5 ≡ iγ0γ1γ2γ3,
with γ25 = 1.

3A proof can be found in Ref. [9], pp. 12-22.
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The way out The first appearance of supersymmetry was pointed out by Gol’fand and Likhtman
in an attempt to explain why so few of the Lagrangians authorised by imposing only Poincaré invari-
ance are realized in Nature [4]. They introduced new generators Qα, Q̄

α̇ satisfying the commutation
relations,

[Pµ, Qα] = [Pµ, Q̄α̇] = 0, [Mµν , Qα] = i(σµν) β
α Qβ , [Mµν , Q̄

α̇] = i(σµν)α̇β̇Q̄
β̇ , (4)

and the anticommutation relation (in order to circumvene the Coleman-Mandula theorem),

{Qα, Q̄β̇} = 2(σµ)αβ̇Pµ, {Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0. (5)

These new generators change the spin by 1/2 and thus transform a fermionic state into a bosonic

state and vice-versa. This can be shown remembering M12 ≡ J3, Q̄1̇ = ε1̇β̇Q̄β̇ = −(Q2)† and

Q̄2̇ = ε2̇β̇Q̄β̇ = (Q1)†,

[J3, Q1] = +
1

2
Q1, [J3, Q2] = −1

2
Q2, [J3, (Q1)†] = −1

2
(Q1)†, [J3, (Q2)†] = +

1

2
(Q2)†,

which implies, if J3|ψ〉 = s|ψ〉, for example,

J3Q1|ψ〉 = (Q1J3 + [J3, Q1])|ψ〉 =

(
s+

1

2

)
Q1|ψ〉.

So, instead of having, say, a fermion multiplet and a boson multiplet not talking to each other, the
new generators knit them into a single supermultiplet.

The simplest model exhibiting N = 1 supersymmetry is the so-called Wess-Zumino model, de-
scribing a chiral field in self interaction [10, 11]. As the ϕ4-theory (Klein-Gordon field in quartic
self-interaction), it is the basic toy model of supersymmetry. We shall derive it in two different ways.

3 Supermultiplet method

In this section we investigate the consequences of the supersymmetry algebra that we can use in order
to construct supersymmetric Lagrangians.

3.1 Tools : “Fermion = boson” rule and graded Jacobi identity

Our representation includes particles satisfying different statistics which are mixed together by the
action of supersymmetry transformations. The supersymmetry generators can be grouped in two
categories bosonic (satisfying commutation relations, like Pµ and Mµν) and fermionic (satisfying
anticommutation relations, like Qα and Q̄α̇). Bosonic operators do not affect the spin of the particle,
whereas fermionic do, as can be seen from the commutation relations (4),

[Qα, P
2] = [Q̄α̇, P

2] = 0, [Qα,W
2] 6= 0, [Q̄α̇,W

2] 6= 0.

For unbroken supersymmetry, the generators of supersymmetry transformations commute with P 2

so there is a common set of eigenstates, and states of the same supermultiplet have the same mass.
We are now ready to show the

Theorem 2 (“Fermion = boson” rule) Let the fields be in a linear representation of supersym-
metry, in which the momentum generator Pµ is a one-to-one map of the representation space onto
itself. Then a supermultiplet always contains an equal number of bosonic and fermionic degrees of
freedom.

Proof [12] Let’s take w.l.o.g. a arbitrary field in the bosonic sector B. As already stated, a fermionic
generator, say Qα, will map it to a field of the fermion sector, hence Qα(B) ⊂ F . Applying now
another fermionic operator, say Q̄β̇ , will map it back to a field the boson sector, and thus Q̄β̇Qα(B) ⊂
B. Based on the anticommutation relation (5), we can thus conclude that the map {Qα, Q̄β̇} is one-to
one as Pµ. Therefore, the two composing maps must be one-to-one themselves, which implies that
there are as many bosonic degrees of freedom as fermionic ones. �

This theorem applies as well ‘on-shell’ (when the fields satisfy their equations of motion) as well
as ‘off-shell’. As we will see, some field loose degrees of freedom when they go on-shell, and one must
ensure that for each lost bosonic degree of freedom, a fermionic also dissapear.

Another useful tool is
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Theorem 3 (Graded Jacobi identity) Let Bi, Bj , Bk and Fα, Fβ , Fγ be bosonic resp. fermionic
generators. Then,

[[Bi, Bj ], Bk] + [[Bk, Bi], Bj ] + [[Bj , Bk], Bi] = 0 (6)

[[Fα, Bi], Bj ] + [[Bj , Fα], Bi] + [[Bi, Bj , Fα] = 0 (7)

[{Fα, Fβ}, Bi] + {[Bi, Fα], Fβ} − {[Fβ , Bi], Fα} = 0 (8)

[{Fα, Fβ}, Fγ ] + [{Fγ , Fα}, Fβ ] + [{Fβ , Fγ}, Fα] = 0. (9)

3.2 Supermultiplets

Now, that we have a few restricting tools at hand, we can start by building the basic building blocks for
expressing a Lagrangian, the construction of the supermultiplet. A supermultiplet is an arrangement
of the component fields (basic field that we “observe”, like a Dirac field or a complex scalar field),
and can be pictured as a vector, with each field as components. Because of theorem 2, we are not
free to give any field content we wish to the supermultiplet, but must instead pay attention to the
number of fermionic and bosonic degrees of freedom. Furthermore, the fields themselves must yield
a representation of the supersymmetric algebra.

An explicit construction : the N = 1 chiral supermultiplet This is the most important
case since the matter fields of the standard model are chiral fermions. The other important case
being the construction of the vector supermultiplet for the interaction fields which are vector bosons.
We review the computation here, in order to get a feeling of how the general case goes 4.

We start with the field with the lowest spin, in this case a complex scalar field A. We impose that
A satisfy the constraint [A, Q̄α̇] = 0. Using this, (8), (5) and the fact that [ϕ, Pµ] = i∂µϕ, we get,

{[A,Qα], Q̄β̇} = 2i(σµ)αβ̇∂µA. (10)

Then we “rise the spin by 1/2” using the fermionic generator, to get a complex femionic field through,

[A,Qα] ≡ 2iψα. (11)

From this field we construct 2 bosonic fields through,

{ψα, Qβ} ≡ −iFαβ , {ψα, Q̄β̇} ≡ Xαβ̇ . (12)

At this stage we use the supersymmetry algebra – consisting now only in the insertion of (11) into
(10) – to reexpress Xαβ̇ = (σµ)αβ̇∂µA. Inserting, (11) in (12) and using theorem 3, we get,

2Fαβ = {[A,Qα], Qβ} = {[Qβ , A], Qα} − [{Qα, Qβ}︸ ︷︷ ︸
=0

, A] = −2i{ψβ , Qα} = −2Fβα,

which implies that Fαβ = εαβF for a complex scalar field F , with εαβ = −εβα. Having “eliminated”
Xαβ̇ , we start the game again for F , by defining,

[F,Qα] ≡ λα, [F, Q̄α̇] ≡ χ̄α̇,

and again, using (9) we find that χ̄α̇ = 2∂µψ
β(σµ)βα̇ and λα = 0. Finally, we need to check that all

the independent fields A,ψ, F satisfy theorem 3 (notice that some of the identities have already been
used in the construction of the component fields). We have thus found the N = 1 chiral supermultiplet
φ = (A;ψ;F ).

We now want to see how the fields transform under supersymmetry for this will be relevant when
we will study the variation of the Lagrangian constructed from such fields. Since we are dealing with
fermionic operators (unlike for other transformations which would come from an internal Lie symme-
try group), we need to introduce infinitesimal fermionic (or Grassmannian) variation parameters ζα

and ζ̄α̇ ≡ (ζα)† which make it possible to define the variation under a supersymmetry transformation
ϕ→ ϕ′ = ϕ+ δϕ through,

δϕ ≡ −i[ϕ, ζQ+ Q̄ζ̄] ζQ ≡ ζαQα, Q̄ζ̄ ≡ Q̄α̇ζ̄α̇ = −Q̄α̇ζ̄α̇, (13)

yielding,

δA = 2ζψ, δψα = −ζαF − i∂µA(σµ)αβ̇ ζ̄
β̇ , δF = −2i∂µψ

α(σµ)αβ̇ ζ̄
β̇ .

4It can be found in Sect. 3.6 of Ref. [8] (or in Sect. 26.1 of Ref. [9]).
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Using the supermultiplet notation, we see that the the commutator of two supersymmetry transfor-
mations is simply,

[δ1, δ2]φ ≡ δ1(δ2φ)− δ2(δ1φ) = 2i(ζ1σ
µζ̄2 − ζ2σµζ̄1)∂µφ (14)

= 2i
(

(ζ1)α(σµ)αβ̇(ζ̄2)β̇ − (ζ2)α(σµ)αβ̇(ζ̄1)β̇
)
∂µφ,

where we last line is just the spelling out of the first with all indices, in order to avoid confusion.
We can now check the validity of theorem 2 for the case of the chiral supermultiplet. We have 2

complex scalar fields and thus 4 bosonic degrees of freedom. The complex 2-spinor yields in turn 4
fermionic degrees of freedom. This supermultplet is irreducible in 4-dimensional space-time.

The anti-chiral supermultiplet is constructed by imposing [A,Qα] = 0 instead of [A, Q̄α̇] = 0 and
it can be shown by direct computation, that φ̄ = (A†; ψ̄;F †).

4-component notation Up to now, we have used 2-component or chiral notation for the op-
erators and fields. For the rest of the discussion about supermultiplet, we are going to switch to
4-component notation. It is easier than it seems, if we remember that fermionic operators and fields
can simply be expressed as Majorana operators and fields. The 4-component notation consists in just
putting the Q and Q̄ operators together,

Q ≡


Q1

Q2

Q̄1̇

Q̄2̇

 , Q̄ ≡


Q1

Q2

Q̄1̇

Q̄2̇


T

, (15)

yielding the supersymmetry algebra (4) in 4-component notation (/a ≡ γµaµ),

{Q, Q̄} = 2/P , [Q,Pµ] = 0, [Q,Mµν ] =
1

2
σµνQ, . . . (16)

Defining a 4-spinor ζ, we can then rewrite (13) and (14) in,

δφ = −i[φ, ζ̄Q] (17)

[δ1, δ2]φ = 2iζ̄1γ
µζ2∂µφ. (18)

Since we are going to enconter it again in what follows, we reexpress the chiral supermultiplet in
terms of real fields Ã ≡ ReA, B ≡ ImA, F̃ ≡ ReF and G ≡ ImF as well as a real Dirac 4-spinor ψ
(dropping immediately the ∼),

X ≡ (A,B;ψ;F,G),

with transformations,

δA = ζ̄ψ, δB = −iζ̄γ5ψ, δψ =
(
F − iγ5G+ i/∂(A− iγ5B)

)
ζ, δF = ζ̄ /∂ψ, δG = −iζ̄γ5 /∂ψ.

(19)

The N = 1 general supermultiplet In the previous derivation of an N = 1 supermultiplet, we
made explicit use of the chirality condition. We did thus get the most general N = 1 supermultiplet.
There are two reasons to have looked at this special case first. The first is purely “pedagogical” : not
imposing the chirality condition would have lead us to lengthier calculations. The second is that the
chiral supermultiplet is irreducible – one can thus interpret its field content as particles –, while the
general supermultiplet is not.

The general supermultiplet is 5,

G ≡ (C;χ;M,N,Aµ;λ;D).

We can impose a reality/Majorana condition G† = G, thus getting the N = 1 real general multiplet.
This means that the scalar field M , pseudoscalar fields C, N and D, vector field Aµ are real, and
that the Dirac spinors χ and λ satisfy the Majorana condition. The aim of introducing this reality
condition comes from the fact that we will become clear in a moment since one of the component

5Remember that although the Dirac 4-spinors χ, λ do no “wear” indices like the vector Aµ, each of them has a 4 real
degrees of freedom. So G has 8 bosonic and 8 fermionic degrees of freedom and we fulfill theorem 2.
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fields will be used to construct a Lagrangian which should be real. The component fields of this
supermultiplet transform as,

Spin 0 : δC = iζ̄γ5χ, δM = −ζ̄(λ+ /∂χ), δN = iζ̄γ5(λ+ /∂χ), δD = ζ̄γ5 /∂λ,

Spin
1

2
: δχ = (−iγ5 /∂C −M + iγ5N + /A)ζ, δλ = (iσµν∂µAν + iγ5D) ζ, (20)

Spin 1 : δAµ = ζ̄(γµλ+ ∂µχ).

We chose to write the transformation in this form to make a few remarks, some of which will be
of great importance in what follows. First, we remark that each modification of the field depends
only on the fields of the line above and/or below. This is a wonderful occurence of the fact that the
supersymmetry mixes particle states with different spins. Second, of all the component fields, only
D transforms as a total spacial derivative, while the other either do not contain derivatives or mix
them with other fields.

The fields D, λ and Aµ mix almost only among themselves. By defining Fµν ≡ ∂µAν − ∂νAµ to
get rid of χ, we get a true submultiplet of the general supermultiplet, called the curl submultiplet,

Gcurl ≡ (λ;Fµν ;D).

Another more involved submultiplet is the chiral submultiplet,

Gchiral ≡ (M,N ;λ− i/∂χ; /A;D + �C).

By imposing Gcurl = 0, we get (rearranging the fields) a chiral supermultiplet, that we have
already computed earlier,

X = (A,C;χ;−M,−N),

with A being the solution of Aµ = ∂µA.
As the notation suggests, the tranformation of each component field corresponds to the transfor-

mation for the corresponding “slot” of the chiral supermultiplet given above; e.g. in this case −M is
the “F -component” of X, denoted (X)F , and thus transforms as δ(−M) = δ(X)F = ζ̄ /∂(X)ψ = ζ̄ /∂χ.
The superfield formalism presented in the next section makes it possible to avoid such esoteric and
perhaps confusing nomenclature.

Analogously, setting Gchiral = 0, we obtain the (irreducible) linear supermultiplet,

L ≡ (C;χ;Aµ),

with the transformations given by the corresponding transformation in the general supermultiplet,
using the constraint Gchiral = 0.

3.3 Constructing invariants

Combining supermultiplets Now that we have taken a look to the building blocks, we want
to see how one can construct new supermultiplets from the basic ones.

The explicit mixing of the component fields of the multiplet products are rather algebraically
involved and can be found in sections 4.4 of Ref. [8], we shall give only the content of the first
component. This complexity is one of the reason of introducing the superfields to “take care of the
algebra”.

There are three possibilities to construct a product of two chiral supermultiplets. The first results
in a chiral supermultiplet,

A3 = A1A2 −B1B2, . . .⇒ X1 · X2 = X3.

This product is associative, and thus we can combine as many chiral supermultiplet as we want. The
second and the third are symmetric resp. antisymmetric in the multiplicants and define a general
supermultiplet,

C3 = A1A2 +B1B2, . . .⇒ X1 × X2 = G3,

C3 = A1B2 −B1A2, . . .⇒ X1 ∧ X2 = G3,

We can also combine general supermultiplets together to form another general supermultiplet
through,

C3 = C1C2, . . .⇒ G1 ·G2 = G3.
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The kinetic supermultiplet In the chiral supermultiplet φ, we have two complex scalars.
Earlier, we started from the A to construct the supermultiplet. What would happen if we repeated
the construction of the supermultiplet from the F †? The obtained supermultiplet is again chiral, and
called the kinetic multiplet,

TX = (F,G; /∂ψ;�A,�B).

The name comes from the fact that T can be interpreted as generalisation of the Dirac operator
i/∂. Indeed,

TTX = T(F,G; /∂ψ;�A,�B) = (�A,�B; /∂ /∂︸︷︷︸
=1�

ψ;�F,�G) = �X.

“Dimensional” analysis As we did in quantum field theory, we want to construct the La-
grangians out of pieces that we sum up. In order for this to make sense, we need to have a guideline
which of these terms are allowed and which ones are not. Doing a “dimensional” analysis allows
us to restrict the possible terms (and will be later used for renomalizability using a power counting
argument).

Let us define the (mass) dimension of a supermultiplet as the mass dimension of its “generating”
component, i.e. the A-component in the case of a chiral supermultiplet and the C-component for a
general supermultiplet,

d(X) ≡ d(A), d(G) ≡ d(C).

From (18), using that d(∂µ) = d([L−1]) = d([M ]) ≡ 1, we must have,

d(ζ) = d(ζ̄) = −1

2
,

in order to have the same dimensionality on both sides of the equation.
Using the same type of argument with the transformations of the chiral and general supermulti-

plets, we get,

X : d(A) = d(B) = d(X), d(ψ) = d(X) +
1

2
, d(F ) = d(G) = d(X) + 1,

G : d(C) = d(G), d(χ) = d(G) +
1

2
, d(M) = d(N) = d(Aµ) = d(G) + 1,

d(λ) = d(G) +
3

2
, d(D) = d(G) + 2.

We now turn on to the dimensionality of product and kinetic supermultiplets,

d(X1 · X2) = d(X1 × X2) = d(X1 ∧ X2) = d(X1) + d(X2),

d(G1 ·G2) = d(G1) + d(G2),

d(TX) = d(X)F = d(X) + 1.

“Invariant” components and supersymmetric Lagrangians We can finalize our reflec-
tion as follows. Let Φ be the component field of a supermultiplet with the highest mass dimension.
The transformation δΦ being linear in ζ̄ (we look at infinitesimal transformations), Φ itself cannot
appear in the transformation because ζ̄ changes the statistics.

The transformation must hence be proportional to the field with next-to-highest mass dimension
Ψ of the opposite statistics, with,

d(Ψ) = d(Φ)− 1

2
.

The only operator we can include in order to get a dimensional match is a derivative, since d(∂µ) = 1.
Hence the transformation of Φ must take the form of a total divergence δΦ = ∂µK

µ.
By looking at the transformation properties of the chiral and general multiplets, we see that this

is the case and we can conclude that,

• (X)F transforms as a total divergence with Kµ = ζ̄γµ(X)ψ,

• (G)D transforms as a total divergence with Kµ = ζ̄γ5γ
µ(G)λ.

8



If we now define a Lagrangian through LX = (X)F or LG = (G)D, the corresponding action
would be invariant under supersymmetry transformations. In this case we speak of a supersymmetric
Lagrangian.

Since the action is a dimensionless quantity, d(S) = 0, the Lagrangian must have d(L) = 4.
We will now focus on (combinations of) the chiral supermultiplet since we want primarily to

describe matter particles. Other supermultiplets are not irreducible or – as L – contain vector fields,
which becomes useful when we want to implement supersymmetric gauge theories. This needs the
implementation of a supersymmetric version of gauge invariance, which goes beyond the scope of this
report.

3.4 The Wess-Zumino model with the supermultiplet method

We have now all the tools we need to formulate our first supersymmetric model. This model is based
on the N = 1 chiral supermultiplet and is the most general renormalizable Lagrangian involving a
single supermultiplet in self-interaction. It was originally found by Wess and Zumino [10, 11] and is
therefore called the Wess-Zumino model.

We need a kinetic term (with derivatives), and we want it to “survive” when we apply the Euler-
Lagrange equations. The term 1

2
(X ·TX)F is the simplest such term and it implies that d(X) = 1. In

order to have a renormalizable theory, all couplings must have a non-negative dimension. This allows
to write the Wess-Zumino Lagrangian,

LWZ =

(
1

2
X · TX +

m

2
X · X +

g

3
X · X · X

)
F

, (21)

where d(m) = 1 and d(g) = 0.
Carrying out the supermultiplet multiplication and expressing everything as a function of the

component fields of X, we find the Wess-Zumino Lagrangian 6,

LWZ = − 1

2

[
(∂µA)(∂µA) + (∂µB)(∂µB) + iψ̄ /∂ψ

]
+

1

2
(F 2 +G2)

−m
(
AF +BG− 1

2
ψ̄ψ

)
− g

[
(A2 +B2)F + 2ABG− ψ̄(A− iγ5B)ψ

]
, (22)

where we removed a total divergence to bring the kinetic part in its usual form. The equations of
motion become then, using the supermultiplet notation,

TX = mX + gX · X. (23)

One remarks that with this notation, the equality of the masses and couplings of all the fields is
explicit. If we had taken (22) with different masses and couplings for each term, we would have been
forced to set them all equal to m resp. g in order to have a supersymmetric Lagrangian.

3.5 On-shell Lagrangians and auxiliary fields

By looking at the Lagrangian (22), we notice that the equations of motion of F and G are purely
algebraic (they do not involve derivatives). As a consequence, when on-shell – i.e. satisfying their
equations of motion – F and G can be expressed in terms of the other fields (in this case A and B),
and “forgotten” from the point of view of the physics involved. For this reason, F and G are called
auxiliary fields.

The “on-shell Lagrangian” is then free of these auxiliary fields,

L̃WZ =− 1

2

[
(∂µA)(∂µA) +m2A2]− 1

2

[
(∂µB)(∂µB) +m2B2]− 1

2
ψ̄(i/∂ +m)ψ (24)

−mgA(A2 +B2)− gψ̄(A+ iγ5B)ψ − g2

2
(A2 +B2)2, (25)

where the fields satisfy the “on-shell transformations” of supersymmetry,

δ̃A = ζ̄ψ δ̃B = −iζ̄γ5ψ δ̃ψ = −
[
i/∂ +m+ g(A− iγ5B)

]
(A− iγ5B)ζ.

In appendix B, we show that this algebra only closes if the fields satisfy their equations of motion.
In cases where the complete field content is not yet known, one starts by constructing an on-shell

Lagrangian L̃ with fields satisfying some on-shell transformation rules. The next (highly non trivial)
step consists in trying to find auxiliary fields to close the algebra off-shell. This is in particular the
case in extended N 6= 1 supersymmetries.

6A linear term c(X)F can be absorbed in a redefinition of the fields. It would generate a vacuum expectation value which
plays a role in spontaneous breaking of supersymmetry.
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4 Superfield method

After having fought with some esoteric transformations properties and representations of the super-
symmetry algebra, one might ask oneself if there is a way to “geometrize” supersymmetry or if the
correspondence principle can be extended the supersymmetry generators.

This approach was implemented very shortly after the supermultiplet approach of Wess and
Zumino by Salam and Strathdee [7]. The formalism shows many advantages over the supermultiplet
method, as now the algebraic structure of supersymmetry is “coded” in the theory and not in some
weird multiplications and transformation rules.

4.1 Tools : Grassmann variables

As seen in quantum field theory [1], the action of generators of the Poincaré group on a quantum field
can be expressed by differential operators operating on them. Since supersymmetry is characterized
by anticommuting generators, one must find a way to encapsulate this feature in a convenient way.

To this end one defines the N = 1 superspace as an 8-dimensional space, where the first 4
coordinates are the usual space-time coordinates, denoted by x, and the remaining four coordinates
are described by a 4-tuple of Grassmann numbers, denoted by θ.

Grassmann numbers and power expansion Grassmann numbers are characterized by,

{α, β} = 0⇔ αβ = −βα ∀α, β ∈ G. (26)

This has a very important implication for the power series expansion of a function depending on
Grassmann parameters. Let us first handle the case when there is only one Grassmann parameter
involved, and let f(α) be a function of the Grassmann parameter α. Then, since αα = −αα = 0, the
power series stops after the first order, and,

f(α) = f(0) + α
∂f

∂α

∣∣∣∣
α=0

.

We emphazise here that the Taylor expansion in α is terminated and that no approximation is made.
The case of a functions of multiple Grassmann parameters {αi}i=1,...,n must be handled with a

bit more care. First it is clear from the above example that monomials of Grassmann parameters can
contain at most once each parameter. Hence a polynomial in n Grassmann parameters can have at
most degree n, the monomial being α1 · · ·αn (since Grassmann parameters do not commute, the order
is important!). Then, with a certain amount of arbitrariness, one defines the partial (left) derivative
with respect to αk of a function of many Grassmann parameters “as usual” with the supplementary
prescription of having to move the corresponding Grassmann parameter directly after the derivative,
e.g.,

∂

∂α
(αβ) = β,

∂

∂β
(αβ) = − ∂

∂β
(βα) = −α.

4.2 Superfields

We can now define superfields as being functions on superspace. From the properties of Grassmann
algebra, each such function must have an expansion of the form 7,

G(x, θ) =C(x)− iθ̄γ5χ(x)− i

2
(θ̄γ5θ)M(x)− 1

2
(θ̄θ)N(x) +

i

2
(θ̄γ5γ

µθ)Aµ(x)

− i(θ̄γ5θ)
[
θ̄

(
λ(x) +

1

2
/∂χ(x)

)]
− 1

4
(θ̄γ5θ)

2

(
D(x) +

1

2
�C(x)

)
, (27)

with C(x), M(x), N(x), D(x) complex scalar fields, Aµ(x) complex vector field, and χ(x), λ(x)
complex 4-spinor fields.

Imposing that for any two Grassmann numbers (αβ)† ≡ β†α†, we get from the reality condition
G† = G that, C, M , N and D are real, whereas χ and λ are Majorana spinors.

7We follow in this section the notations of Ref. [9]. θ̄ ≡ θT εγ5, ε ≡ 1 ⊗ (iσ2). The properties of Majorana spinors are
described in the appendix of chapter 26, pp. 107-111.
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Representation of the supersymmetry algebra on the superfields The action of a
supersymmetry generator on G can be represented using the superspace differential operator,

Q ≡ − ∂

∂θ̄
+ γµθ

∂

∂xµ
, Qν = (γ5ε)

ρ
ν

∂

∂θρ
+ (γµ) σ

ν θσ
∂

∂xµ
, (28)

as,

δG ≡ −i[G, ζ̄Q] = (ζ̄Q)G = −
(
ζ̄
∂G

∂θ̄

)
+ (ζ̄γµθ)

∂G

∂xµ
. (29)

The transformation of the components arise then naturally by comparing the θ-coefficients of,

δG = δC − iθ̄γ5δχ+− i
2

(θ̄γ5θ)δM −
1

2
(θ̄θ)δN +

i

2
(θ̄γ5γ

µθ)δAµ

− i(θ̄γ5θ)
[
θ̄δ

(
λ+

1

2
/∂χ

)]
− 1

4
(θ̄γ5θ)

2δ

(
D +

1

2
�C

)
,

with those of the left hand side of (29). Computationnally, we need to use the identities listed in
appendix A. One then gets the same “weird” transformation rules (20) as in the supermultiplet case.

Covariant superderivative It is useful to define a superderivative,

D ≡ − ∂

∂θ̄
− γµθ ∂

∂xµ
, Dν = (γ5ε)

ρ
ν

∂

∂θρ
− (γµ) σ

ν θσ
∂

∂xµ
, (30)

which is “supersymmetrically covariant”, i.e.

δ(DµG) = −i[ζ̄Q,DνG] = −iDν [ζ̄Q,G] = Dν(ζ̄Q)G = (ζ̄Q)DνG.

This superderivative commutes with the supersymmetry generators, as can be shown by a direct
computation:

{Qµ,Dν} = 0⇒ [ζ̄Q,Dν ] = 0.

Chiral superfield The chiral superfield is defined by imposing,

λ = 0, D = 0, Fµν ≡ ∂µAν − ∂νAµ = 0,

where the last condition ensures that the first is invariant under supersymmetry transformations.
Making the identifications,

C = A, λ = −iγ5ψ, M = G, N = −F, Aµ = ∂µB,

we get from the (general) superfield, the chiral superfield expression,

X(x, θ) =A(x)− θ̄ψ(x) +
1

2
(θ̄θ)F (x)− i

2
(θ̄γ5θ)G(x) (31)

+
i

2
(θ̄γ5γµθ)∂

µB(x) +
1

2
(θ̄γ5θ)

[
θ̄γ5 /∂ψ(x)

]
− 1

8
(θ̄γ5θ)

2�A(x). (32)

By defining,

φ ≡ A+ iB√
2

, φ̃ ≡ A− iB√
2

, F ′ ≡ F − iG√
2

, F̃ ′ ≡ F + iG√
2

, xµ± ≡ x
µ ± 1

2
(θTRεγ

µθL)

(dropping immediately the ′), where as usual for 4-spinors,

ψL,R =
1

2
(1± γ5)ψ,

we can decompose,

X(x, θ) =
1√
2

[
Φ(x, θ) + Φ̃(x, θ)

]
,

with,

Φ(x, θ) = φ(x+)−
√

2θTLεψL(x+) + (θTLεθL)F (x+) (33)

Φ̃(x, θ) = φ̃(x−) +
√

2θTRεψR(x−)− (θTRεθR)F̃ (x−). (34)

Those two components are called left- and right-chiral superfields. The name comes from,

DRΦ = DLΦ̃ = 0, DL,R =
1

2
(1± γ5)D,

and any chiral superfield is the sum of a left-chiral and of a right-chiral superfield. A chiral superfield
X is called left-chiral if DRX = 0 and analogously for a right-chiral superfield.
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4.3 Constructing invariants

Combining supermultiplets The product of two superfields is again a superfield:

δ(G1G2) = −i[G1G2, ζ̄Q] = −i[G1, ζ̄Q]G2 − iG1[G2, ζ̄Q] =
[
ζ̄QG1

]
G2 + G1

[
ζ̄QG2

]
= ζ̄Q(G1G2).

By using the properties of Grassmann numbers and the ones listed in appendix A, we can bring
them in the superfield “normal form”. In doing that, we remark that the complicated multiplication
structure is now automatically taken care of.

Furthermore, the covariant superderivative of a supefield is a superfield (see the definition above).
We can thus conclude that an arbitrary polynomial of superfields and their covariant superderivatives
is again a superfield.

We also have the stronger statement, that an arbitrary polynomial of a left-chiral superfields is a
left-chiral superfield and analogously for right-chiral superfields.

Superspace integrals As in the case of supermultiplets, the components with the highest power
of θ transforms as a total divergence under supersymmetry transformations. If we use this term to
build a Lagrangian, the action constructed from it is invariant, and supersymmetry is a symmetry of
the system.

In the case of a general superfield, it is the term proportional to− 1
4
(θ̄γ5θ)

2, known asD-term which
can play this role. For a chiral superfield, the component with the highest θ power is proportional –
in the case of a left-chiral superfield to θTLεθL and is called F -term.

An elegant way to get these components directly from the underlying superfield uses integration
over the superfield coordinates θ. In doing this, the anticommutativity of Grassmann numbers need
to be considered, in particular regarding integration order. We use the shortcut notation,

d4θ ≡ dθ4dθ3dθ2dθ1,

and integrate always over the left most component first, having brought the corresponding coefficient
in contact with it. We also note that the integration over dnθ only keeps monomials of degree n.

To get a D-term of G, we decompose,

−1

4
(θ̄γ5θ)

2 = −1

4
(θT εθ)2 = −1

4




θ1
θ2
θ3
θ4


T 

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0




θ1
θ2
θ3
θ4




2

= −1

4
[θ1θ2 − θ2θ1 + θ3θ4 − θ4θ3]2 = −1

4
· 22 · (θ1θ2θ3θ4 + θ3θ4θ1θ2) = −2θ1θ2θ3θ4,

and hence,

(G)D = −1

2

∫
d4θG(x, θ). (35)

In the same fashion, in order to get the F -term of Φ, we do the identical decomposition game,

d2θL ≡ d(θL)2d(θL)1, θTLεθL = 2(θL)1(θL)2,

yielding,

(Φ)F =
1

2

∫
d2θL Φ(x, θ). (36)

5 General Lagrangian for chiral superfields

As before, we focus our attention on Lagrangians built out of chiral superfields only. It takes the
form,

L = (W)F + (W)∗F +
1

2
(K)D = 2Re (W)F +

1

2
(K)D = Re

∫
d2θL W(x, θ)− 1

4

∫
d4θK(x, θ),

where the properties of W and K are discussed below.

Superpotential W is called the superpotential. It is a function of elementary left-chiral super-
fields Φ = {Φi}i=1,...,n only (each corresponding to a multiplet of particles linked together through
supersymmetry transformations) but not on their covariant superderivatives or spacial derivatives,
and is hence itself left-chiral. We could also have picked the right-chiral part; it is only important to
choose one chirality and stick to it.
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Kahler potential K is a real general superfield called the Kahler potential. It is a function of
the elementary left-chiral superfields Φ = {Φi}i=1,...,n, their complex conjugates Φ∗ = {Φ∗i }i=1,...,n,
their covariant superderivatives as well as their spacial derivatives.

There is an equivalence relation on the class of Kahler potentials : given two Kahler potentials
K,K′, with K − K′ = X for a chiral superfield X, their D-term will be identical since (X)D = 0 and
they will yield the same Lagrangian.

Kahler potentials are specially interesting when we want to consider effective theories whose
Langrangians are not constrained to be renormalizable. A discussion of this general case can be
found in section 26.8 of Ref. [9].

5.1 Renormalizable Lagrangian for chiral superfields

Using the same type of “dimensional” analysis as in section 3.3, we can restrain the form of the
superpotential and of the Kahler potential to look specifically to renormalizable Lagrangians.

Elementary superfields and spacial derivatives have dimension 1, whereas covariant superderivative
dimension 1/2. Since d(L) = d(W)F = d(W) + 1, d(W) = 3 and the most general renormalizable
superpotential must be of the form,

W(Φ) = ciΦi +mijΦiΦj + λijkΦiΦjΦk. (37)

Analogously d(L) = d(K)D = d(K) + 2, and since it must be real, we have,

K(Φ,Φ∗) = gijΦiΦ
∗
j + · · · , (38)

with g∗ij = gji, i.e. the matrix (gij) is Hermitian. The dots represent terms making no contribution
to the D-term : they contain a pair of covariant superderivatives or a spacial derivative and are
therefore linear in the fields, making them be left- or right-chiral.

Carrying out the multiplication and superspace integration using (33), (36) and (35) we get,

[W(Φ)]F =
1

2

∫
dθL W(Φ) = −1

2

∂2W

∂φi∂φj

(
ψ̄iLψjL

)
+ Fi

∂W

∂φi

1

2
[K(Φ,Φ∗)]D = −1

4

∫
d4θK(Φ,Φ∗) = gij

[
−∂µφ∗i ∂µφj + F ∗i Fj −

1

2
(ψiL /∂ψjL) +

1

2
(∂µ(ψiL)γµψjL)

]
,

where W is the same function as W with the scalar components {φi}i=1,...,n as arguments instead of
the superfields. By redefining the fields through Φi = NijΦ

′
j , we get the same expression, with gij

replaced by g′ij = (N†gN)ij . Since (gij) is Hermitian, it is possible to find an N such that g′ij = δij .
Dropping the primes, we get the most general renormalizable Lagrangian for n chiral superfields,

L = − ∂µφ∗i ∂µφi + F ∗i Fi −
1

2
(ψiL /∂ψiL) +

1

2
(∂µ(ψiL)γµψiL),

− 1

2

∂2W

∂φi∂φj

(
ψ̄iLψjL

)
− 1

2

(
∂2W

∂φi∂φj

)∗ (
ψ̄iLψjL

)∗
+ Fi

∂W

∂φi
+ F ∗i

(
∂W

∂φi

)∗
. (39)

The fields Fi, F
∗
i are auxiliary fields and only appear algebraically in the Lagrangian and we can

thus eliminate them using their equations of motion,

Fi = −
(
∂W

∂φi

)∗
F ∗i = −

(
∂W

∂φi

)
,

yielding the on-shell Lagrangian,

L̃ = − ∂µφ∗i ∂µφi −
1

2
(ψiL /∂ψiL) +

1

2
(∂µ(ψiL)γµψiL),

− 1

2

∂2W

∂φi∂φj

(
ψ̄iLψjL

)
− 1

2

(
∂2W

∂φi∂φj

)∗ (
ψ̄iLψjL

)∗ − (∂W
∂φi

)∗
∂W

∂φi
,

with the scalar potential,

V (φ) =
∑
i

∣∣∣∣∂W∂φi
∣∣∣∣2 .
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Assuming that V has a maximum at φ0 = (φ1,0, . . . , φn,0) (this is the case if supersymmetry is
not spontaneously broken), and expanding the scalar field by writing φi = φi,0 + ξi, we get for the
quadratic part of the Lagrangian,

L̃0 = − ∂µξ∗i ∂µξi −
1

2
(ψiL /∂ψiL) +

1

2
(∂µ(ψiL)γµψiL),

− 1

2
Mij

(
ψ̄iLψjL

)
− 1

2
M∗ij

(
ψ̄iLψjL

)∗ − (M†M)ijξ
∗
i ξj

with the symmetric matrix (Mij) with components given by,

Mij =
∂2W

∂φi∂φj

∣∣∣∣
φ0

.

By a redefinition of the fields, this matrix can be brought in the diagonal form Mij = miδij , showing
that the particle of the same supermultiplet represented by the superfield Φi have all the same
mass mi.

The Wess-Zumino model with superfields It is straightforward to show that the Wess-
Zumino model can be obtained as a special case of the general renormalizable Lagrangian by choosing
the parameters,

n = 1, c1 = 0, m11 =
m

2
, λ111 =

g

3
.

A Properties of spinor bilinears

The 16 Dirac matrices,

1 (1), γµ (4), σµν ≡
i

2
[γµ, γν ] (6), γµγ5 (4), γ5 (1),

form a basis of the space of 4×4-matrices, i.e. every 4×4-matrix can be written as a linear combination
of them. For two Majorana 4-spinors ζ, ψ consisting of Grassmann numbers, we have the identities,

ζ̄ψ = ψ̄ζ, ζ̄γµψ = −ψ̄γµζ, ζ̄σµνψ = ψ̄σµνζ, ζ̄γµγ5ψ = ψ̄γµγ5ζ, ζ̄γ5ψ = ψ̄γ5ζ,

Using these properties, we can prove the Fierz rearrangement formula,

ψζ̄ = −1

4
(ζ̄ψ)1− 1

4
(ζ̄γµψ)γµ −

1

8
(ζ̄σµνψ)σµν +

1

4
(ζ̄γµγ5ψ)γµγ5 −

1

4
(ζ̄γ5ψ)γ5.

B On-shell algebra of the Wess-Zumino model : an ex-
plicit calculation

We show that the behaviour of the on-shell algebra (18) for each component field of section 3.5. In
the case of the scalar component fields, it is not difficult to see that the algebra closes,

[δ̃1, δ̃2]A = δ̃1(ζ̄2ψ)− δ̃2(ζ̄1ψ)

= −ζ̄2
[
i/∂ +m+ g(A− iγ5B)

]
(A− iγ5B)ζ1 + ζ̄1

[
i/∂ +m+ g(A− iγ5B)

]
(A− iγ5B)ζ2

= −iζ̄2γµζ1∂µA− ζ̄2γµγ5ζ1∂µB + iζ̄1γ
µζ2∂µA+ ζ̄1γ

µγ5ζ2∂µB

= 2iζ̄1γ
µζ2∂µA,

[δ̃1, δ̃2]B = δ̃1(−iζ̄2γ5ψ)− δ̃2(−iζ̄1γ5ψ)

= iζ̄2γ5
[
i/∂ +m+ g(A− iγ5B)

]
(A− iγ5B)ζ1 − iζ̄1γ5

[
i/∂ +m+ g(A− iγ5B)

]
(A− iγ5B)ζ2

= −ζ̄2γ5γµζ1∂µA− iζ̄2 γ5γµγ5︸ ︷︷ ︸
=−γµ

ζ1∂µB + ζ̄1γ5γ
µζ2∂µA+ iζ̄1 γ5γ

µγ5︸ ︷︷ ︸
=−γµ

ζ2∂µB

= 2iζ̄1γ
µζ2∂µB,

where as for the spinor field,

[δ̃1, δ̃2]ψ = δ̃1
(
−
[
i/∂ +m+ g(A− iγ5B)

]
(A− iγ5B)ζ2

)
− δ̃2

(
−
[
i/∂ +m+ g(A− iγ5B)

]
(A− iγ5B)ζ1

)
= −g(δ̃1A− iγ5δ̃1B)(A− iγ5B)ζ2 −

[
i/∂ +m+ g(A− iγ5B)

]
(δ̃1A− iγ5δ̃1B)ζ2

+ g(δ̃2A− iγ5δ̃2B)(A− iγ5B)ζ1 +
[
i/∂ +m+ g(A− iγ5B)

]
(δ̃2A− iγ5δ̃2B)ζ1

= −g
[
(ζ̄1ψ)1− (ζ̄1γ5ψ)γ5

]
(A− iγ5B)ζ2 −

[
i/∂ +m+ g(A− iγ5B)

] [
(ζ̄1ψ)1− (ζ̄1γ5ψ)γ5

]
ζ2

+ g
[
(ζ̄2ψ)1− (ζ̄2γ5ψ)γ5

]
(A− iγ5B)ζ1 +

[
i/∂ +m+ g(A− iγ5B)

] [
(ζ̄2ψ)1− (ζ̄2γ5ψ)γ5

]
ζ1

= 2iζ̄1γ
µζ2∂µψ − γµ

[
i/∂ −m− 2g(A+ iγ5B)

]
ψζ̄1γµζ2,
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where the last line is obtained by using the Fierz rearrangement formula (appendix A)for the square
brackets containing fields bilinear and looking at the surviving terms. For the algebra to close, we
need the second term to vanish, which is true, provided that ψ satisfies its equation of motion,

(i/∂ −m)ψ = 2g(A+ iγ5B)ψ,

the Euler-Lagrange equation for the on-shell Lagrangian (24).
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ators and violations of P invariance, JETP Letters 13, 323 (1971)

[5] J. M. Lee, Introduction to smooth manifolds, Springer (2006)

[6] S. P. Martin, A supersymmetry primer, arXiv:hep-ph/9709356

[7] A. Salam and J. Strathdee, Superfields and Fermi-Bose symmetry, Physical Review D 11,
1521 (1975)

[8] M. F. Sohnius, Introducing supersymmetry, Physics Reports 128, 39 (1985)

[9] S. Weinberg, The quantum theory of fields, Vol. III : Supersymmetry, Cambridge University
Press (2005)

[10] J. Wess and B. Zumino, Supergauge transformations in four dimensions, Nuclear Physics B
70, 39 (1974)

[11] J. Wess and B. Zumino, A Lagrangian model invariant under supergauge transformations,
Physics Letters 49B, 52 (1974)

[12] P. West, Introduction to supersymmetry and supergravity, World scientific (1990)

15

http://www.phys.ethz.ch/~babis/Teaching/QFTI/qft1.pdf
http://www.phys.ethz.ch/~babis/Teaching/QFTII/script.pdf
http://lanl.arxiv.org/abs/hep-ph/9709356

	Introduction
	The Coleman-Mandula theorem
	Supermultiplet method
	Tools : ``Fermion = boson'' rule and graded Jacobi identity
	Supermultiplets
	Constructing invariants
	The Wess-Zumino model with the supermultiplet method
	On-shell Lagrangians and auxiliary fields

	Superfield method
	Tools : Grassmann variables
	Superfields
	Constructing invariants

	General Lagrangian for chiral superfields
	Renormalizable Lagrangian for chiral superfields

	Properties of spinor bilinears
	On-shell algebra of the Wess-Zumino model : an explicit calculation
	References

