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The aim of this report is to present the supersymmetry algebra. After a presentation
of the Coleman-Mandula theorem which is the starting point of supersymmetry, we will
deduce the general form of the superextension of the Poincaré algebra with a treatment of
the central charges. Then, the Casimir operators for the N = 1 supersymmetry algebra
will be deducted and at the end we will discuss two basic properties of the supersymmetry
algebra: the positivity of energy and the fact that the number of fermions and bosons
should be equal. The appendix includes standard results concerning space-time symmetry
groups for the reader which are not familiar with these results.
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1 Coleman-Mandula theorem

Supersymmetry is a new kind of symmetry in addition of the standard Poincaré and internal sym-
metries, which link bosons and fermions. The bosons are the mediators of interactions and fermions
are the constituents of the matter. The aim of supersymmetry is to provide a uni�ed description of
fermions and bosons, hence of matter and interactions. However we have no direct proof of the real-
ization of supersymmetry in nature, but it is very promising in solving some of the thorny questions in
modern high-energy physics. It is also an interesting approach to unify the gauge couplings of the three
fundamental interactions at high energies. Moreover, the supersymmetry predicts superpartners for all
standard-model particles, which however, at this stage are not observed experimentally. Through the
introduction of supersymmetry in early 1970's, many supersymmetric theories was proposed, essentially
due to the Coleman-Mandula theorem as we will see in the latter.
The Coleman-Mandula theorem discusses the possible symmetries of the S-matrix, under physically

reasonable assumptions. More precisely, a symmetry generator G of the S-matrix is an operator
mapping one-particle states into one-particle states such that

GS |ψ〉 = SG |ψ〉 , (1)

or equivalently
[G,S] = 0 . (2)

Theorem (Coleman-Mandula, 1967). Let G be a connected symmetry group of the S-matrix, and let

the �ve conditions hold,

1. The group G contains a subgroup locally isomorphic to the Poincaré group1 P (3, 1).

2. For each m > 0, there are only a �nite number of one-particle states with mass less than m.

3. The elastic scattering amplitudes are analytic functions of s and t (Mandelstam invariants), in

some neighborhood of the physical region.

4. The scattering matrix is non-trivial in the sense that any two one-particle momentum eigenstates

scatter except perhaps at isolated value of s.

5. The generators of G written as integral operator in momentum space, have distributions for their

kernels.

Then G is locally isomorphic to the direct product of a compact Lie group Int and the Poincaré group

P (3, 1),
G ' P (3, 1)⊗ Int . (3)

In particular, the Lie algebra g of G is the direct sum of the compact Lie algebra int of Int and the

Poincaré algebra p (3, 1),
g ' p (3, 1)⊕ int . (4)

The original proof is given in [1] and a di�erent version discussed in Appendix B of Chapter 24.1 of
[2] provided another proof. Since it is rather complicated it will not be discussed here. To obtain a
more explicit formulation, we choose a basis {Tl} of the internal algebra int, and the structure constants
clmn are de�ned via

[Tl, Tm] = iclmnTn . (5)

1For more information about the Poincaré group and its algebra see the subsections B.5 and B.6.
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Consequently, the generators of the Poincaré algebra2 and of the internal algebra commute as follow,

[Mab,Mcd] = iηadMbc − iηacMbd + iηbcMad − iηbdMac , (6a)

[Pa, Pb] = 0 , (6b)

[Tl, Tm] = iclmnTn , (6c)

[Mab, Pc] = iηbcPa − iηacPb , (6d)

[Pa, Tl] = 0 , (6e)

[Mab, Tl] = 0 . (6f)

The important consequence of the Coleman-Mandula theorem, is that all the possible symmetry gen-
erators except Pa and Mab should be scalars. The idea of the next section is to sidestep this theorem
to obtain symmetry generators which are not scalars.

2 Superalgebra

The Coleman-Mandula does not allow a symmetry group which combine the Poincaré group and the
other symmetries in a non-trivial way as well as acting non-trivially on particle spin. However these
two facts are highly desirable, so the aim will be to evade the Coleman-Mandula by weakening one
or more of its assumptions. Since all the �ve assumptions can not be physically reviewed, we will go
to a more general class of symmetry group. In the theorem, the group G is a Lie group, and so its
generators are in a Lie algebra. Here we will de�ne a new class of algebra, called superalgebra and �nd
in the next section the analogue result of the Coleman-Mandula theorem for this class of algebras.
The notion of superalgebra is a generalization of the concept of Lie algebra. To de�ne a superalgebra,

we �rst need the concept of graded algebra. An associative algebra g is called Z2-graded if it admits
a decomposition

g = g0 ⊕ g1 , (7)

such that the parity function de�ned on g0 t g1 as

κ (a) =

{
0 , if a ∈ g0 ,

1 , if a ∈ g1 ,
(8)

satis�es the relation
κ (a · b) = κ (a) + κ (b) (mod 2) . (9)

The elements of g0, g1 and g0 t g1 are respectively called even, odd and pure.
Every Z2-graded algebra de�nes3 a superalgebra with the supercommutator

[a, b} = a · b− (−1)κ(a)κ(b) b · a , (10)

where a and b are pure elements. By linearity we obtain on arbitrary elements a = a0 ⊕ a1 and
b = b0 ⊕ b1,

[a, b} = [a0, b0] + [a0, b1] + [a1, b0] + {a1, b1} . (11)

From the equation (9), we obtain

[g0, g0] ⊂ g0 , [g0, g1] ⊂ g1 , {g1, g1} ⊂ g0 . (12)

Moreover, we can show by direct calculation the super-Jacobi identity

(−1)κ(a)κ(c) [a, [b, c}}+ (−1)κ(b)κ(a) [b, [c, a}}+ (−1)κ(c)κ(b) [c, [a, b}} = 0 . (13)

In particular these last two properties indicate that the part g0 forms a Lie algebra. Reciprocally, not
every Lie algebra admits an extension to a superalgebra. In the following, our aim will be to �nd a
superextension of the Poincaré algebra. As we will discuss in due course, the latter will not be unique
but there are many inequivalent superalgebras of interest.

2These generators are taken Hermitian as discussed in subsection B.7.
3This de�nition is not the most general one for a superalgebra. From a mathematical point of view, we de�ne a
superalgebra without the product · by taking the properties of the supercommutator as axioms [3].
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3 Supersymmetry algebra

In this section we will deduce the analogue result of the Coleman-Mandula theorem for the class of
superalgebra. The theorem which describes all the possible symmetries of the S-matrix generated by
a superalgebra is known as the Haag-�opusza«ski-Sohnius theorem [4].

3.1 Generators of the supersymmetry algebra4

The Coleman-Mandula theorem together with the Jacobi identity will impose many restrictions on the
possible extensions of the Poincaré algebra. More precisely, we search for the more general superalgebra
g = g0 ⊕ g1 such that

p (3, 1) ⊂ g0 . (14)

The equation (4) of the Coleman-Mandula theorem implies the following form of the even part

g0 ' p (3, 1)⊕ int , (15)

where int is the Lie algebra of the internal symmetry group Int. Consequently, it remains to �nd the
odd part g1.
Any odd generator should be an element of an irreducible representation of the Lorentz group5:

Qα1···αmα̇1···α̇n ∈ (m/2, n/2) . (16)

The commutator {
Qα1···αmα̇1···α̇n , Q̄β̇1···β̇mβ1···βn

}
, (17)

is a tensor of rank m+n, and equation (12) implies that this is an even element of the algebra. By the
Coleman-Mandula theorem, the generators of the even part can be scalars or vectors, so the preceding
commutator is null unless m+ n = 1. On a Hilbert space with positive de�nite norm, the considered
commutator for βj = α̇j and β̇i = αi is positive de�nite because

6

0 ≤
∥∥∥Qα1···αmα̇1···α̇n |ψ〉

∥∥∥2
+
∥∥∥Q̄β̇1···β̇mβ1···βn |ψ〉

∥∥∥2
= 〈ψ|

{
Qα1···αmα̇1···α̇n , Q̄β̇1···β̇mβ1···βn

}
|ψ〉 , (18)

this implies
Qα1···αmα̇1···α̇n = 0 , (19)

for m+ n > 1. Consequently, we have shown that the odd generators should be spinors and therefore
we can choose N spinors QIα such that they form together with Q̄Iα̇ a complete set of generators for
the odd part of the algebra.
For the latter, it will pleasant to switch to spinor notation for the tensors. For the vector like Pa,

the link is done by equation (143),
Pαα̇ =

(
σa
)
αα̇
Pa , (20)

and for the antisymmetric tensor Mab by (151) and (152),

Mαβ =
1
2
(
σab
)
αβ
Mab , M̄α̇β̇ = −1

2
(
σ̄ab
)
α̇β̇
Mab . (21)

The following table summarizes the generators of the supersymmetric extension of the Poincaré algebra,

Tl ∈ (0, 0) , Pαα̇ ∈ (1/2, 1/2) , (22a)

Mαβ ∈ (1, 0) , M̄α̇β̇ ∈ (0, 1) , (22b)

QIα ∈ (1/2, 0) , Q̄Iα̇ ∈ (0, 1/2) . (22c)

4The facts concerning the odd generators is inspired by [5].
5For more information about the spinorial representations of the Lorentz group, see subsection B.4.
6To be more exact, we have to choose a unitary representation T of the algebra for which Q and Q̄ are related by

T
`
Q̄

´
= T (Q)† ,

where † means the adjoint operator. Here, by abuse of notation, we identify T (Q) with Q in order to save writing.
For more details on this point, see the paragraph 2.2 of [3].
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3.2 Commutation and anticommutation relations7

Since the odd generators are in the representation (1/2, 0) or (0, 1/2), we have8[
QIα,Mab

]
= i (σab)

β
α QIβ ,

[
Q̄Iα̇,Mab

]
= i (σ̄ab)

β̇
α̇ Q̄I

β̇
. (23)

The �rst aim is to �nd an explicit form for the commutator{
QIα, Q̄

J
α̇

}
∈ (1/2, 1/2) , (24)

which by equation (12) is an element of the odd part of the algebra. By the Coleman-Mandula theorem
the most general form should be {

QIα, Q̄
J
α̇

}
= CIJPαα̇ , (25)

where CIJ are some complex coe�cients. By taking the adjoint,{
QJα, Q̄

I
α̇

}
= C̄IJPαα̇ , (26)

which proofs that the matrix C is Hermitian. We can choose a basis where C is diagonal and moreover
since the commutator is a positive de�nite operator, we can rescale the generators to have{

QIα, Q̄
J
α̇

}
= δIJPαα̇ . (27)

The most general possible form for the commutator{
QIα, Q

J
β

}
∈ (0, 0)⊕ (1, 0) , (28)

is {
QIα, Q

J
β

}
= XIJεαβ + Y IJMαβ , (29)

where XIJ are some scalar constants and Y IJ some complex constants.
Now we consider the commutator[

QIα, Pa
]
∈ (1, 1/2)⊕ (0, 1/2) . (30)

Since generators in the representation (1, 1/2) are not allowed, the most general possible form is[
QIα, Pββ̇

]
= ZIJεαβQ̄

J
β̇
, (31)

where ZIJ are some complex constants. The super-Jacobi identity (13) for (P, P,Q)[
Pαα̇,

[
Pββ̇, Q

I
γ

]]
+
[
Pββ̇,

[
QIγ , Pαα̇

]]
+
[
QIγ ,

[
Pαα̇, Pββ̇

]]
= 0 , (32)

becomes
ZIJεβγ

[
Pαα̇, Q̄

J
β̇

]
− ZIJεαγ

[
Pββ̇, Q̄

J
α̇

]
= 0 . (33)

By taking the adjoint of (31), [
Q̄Iα̇, Pββ̇

]
= Z̄IJεα̇β̇Q

J
β , (34)

and therefore
ZIJ Z̄

J
Kεα̇β̇

(
εβγQ

K
α + εαγQ

K
β

)
= 0 , (35)

which implies that the matrix Z satis�es
ZZ̄ = 0 . (36)

The super-Jacobi identity (13) for (P,Q,Q) is[
Pαα̇,

{
QIβ, Q

J
γ

}]
+
{
QIβ,

[
QJγ , Pαα̇

]}
−
{
QJγ ,

[
Pαα̇, Q

I
β

]}
= 0 , (37)

7The results given in this section is some synthesis of [6, 7, 5, 8].
8The subsection B.3 proofs that σab are the generators of SL (2,C) and consequently spinors with one undotted index
transform with σab.
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and since scalars commute with Pa it becomes

Y IJ [Pαα̇,Mβγ ] + εγαZ
J
K

{
QIβ, Q̄

K
α̇

}
+ εβαZ

I
K

{
QJγ , Q̄

K
α̇

}
= 0 . (38)

Since Mβγ is symmetric the contraction with εβγ becomes by using (27)(
ZJI − ZIJ

)
Pαα̇ = 0 , (39)

which proofs that the matrix Z is symmetric. By combining with equation (36), we obtain ZZ† = 0
which implies that Z vanishes. Consequently the odd generators are invariant under translations[

QIα, Pa
]

= 0 . (40)

Now the equation (38) is simply
Y IJ [Pαα̇,Mβγ ] = 0 , (41)

which is only possible for Y = 0, entailing{
QIα, Q

J
β

}
= XIJεαβ . (42)

The scalars XIJ are called the central charges and trivially satisfy

XIJ +XJI = 0 . (43)

The commutator [
QIα, Tl

]
∈ (1/2, 0) , (44)

is by (12) an element of the odd part of the algebra and consequently should take the form[
QIα, Tl

]
=
(
Sl
)I
J
QJα , (45)

where
(
Sl
)I
J
are some complex constants. The super-Jacobi identity (13) for (T, T,Q) is[

Tl,
[
Tm, Q

I
α

]]
+
[
Tm,

[
QIα, Tl

]]
+ [Qα, [Tl, Tm]] = 0 , (46)

and becomes with (5)(
Sm
)I
J

(
Sl
)J
K
QKα −

(
Sl
)I
J

(
Sm
)J
K
QKα + iclmn

(
Sn
)I
K
QKα = 0 . (47)

Consequently, we have proved that the Sl form a representation of the internal algebra int,

[Sl, Sm] = iclmnSn . (48)

The super-Jacobi identity (13) for (T,Q, Q̄) gives us[
Tl,
{
QIα, Q̄

J
α̇

}]
+
{
QIα,

[
Q̄Jα̇, Tl

]}
−
{
Q̄Jα̇,

[
Tl, Q

I
α

]}
= 0 . (49)

Since Pa commutes with Tl, the �rst term vanishes, and by using (45) and its conjugate,

0 =
{
QIα, Q̄

K
α̇

} (
S̄l
)J
K
−
{
Q̄Jα̇, Q

K
α

} (
Sl
)I
K

= Pαα̇

((
S̄l
)JI − (Sl)IJ) . (50)

This equation is true only if Sl is Hermitian,

S†l = Sl . (51)

In the following table we summarize the supersymmetric extension of the Poincaré algebra:[
QIα, Tl

]
=
(
Sl
)I
J
QJα , (52a)[

QIα, Pa
]

= 0 , (52b)[
QIα,Mab

]
= i (σab)

β
α QIβ , (52c){

QIα, Q̄
J
α̇

}
= δIJPαα̇ , (52d){

QIα, Q
J
β

}
= XIJεαβ , (52e)

where the matrices Sl are Hermitian and form a representation of the internal algebra int.
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3.3 Anticommutation relations in four-component spinor notation9

We can group together the odd generators QIα and Q̄Iα̇ in a four-component Majorana spinor,

QIr =
(
QIα
Q̄α̇I

)
r

, Q̄Ir =
(
QαI Q̄Iα̇

)
r
, (53)

where the spinors indices are raised and lowered with the totally antisymmetric tensor and the place
of the I has no importance, i.e is raised and lowered with δ. In this notation, we obtain by (52d) and
(52e) {

QIr , Q̄
J
s

}
=

{QIα, QβJ} {
QIα, Q̄

J
β̇

}{
Q̄α̇I , Q

β
J

} {
Q̄α̇I , Q̄

J
β̇

}
rs

=
(

XI
J δIJσaPa

δIJ σ̄aPa X̄ J
I

)
rs

. (54)

If the central charges vanish we obtain{
QIr , Q̄

J
s

}
= δIJ (γa)rs Pa , (55)

where the matrices γa are the in the Weyl representation of the Cli�ord algebra,

γa =
(

0 σa

σ̄a 0

)
. (56)

3.4 Central charges10

In this section we will prove that the central charges XIJ and X̄IJ commute with everything, including
with themselves. Since these central charges are scalars, we can express them in terms of the generators
of the internal symmetries,

XIJ =
(
al
)IJ

Tl , (57)

and this proves that the central charges commute with the generators of the Poincaré algebra Pa and
Mab.
Then the super-Jacobi identity for (Q,Q, Q̄) is[

QIα,
{
QJβ , Q̄

K
γ̇

}]
+
{
QJβ ,

{
Q̄Kγ̇ , Q

I
α

}}
+
[
Q̄Kγ̇ ,

{
QIα, Q

J
β

}]
= 0 , (58)

and becomes with the previous results

εαβ
[
Q̄Kγ̇ , X

IJ
]

= 0 . (59)

On the other hand, the super-Jacobi identity for (X,Q, Q̄) is[
XIJ ,

{
QKα , Q̄

L
α̇

}]
+
{
QKα ,

[
Q̄Lα̇, X

IJ
]}
−
{
Q̄Kα̇ ,

[
XIJ , QLα

]}
= 0 , (60)

and becomes since Pa commutes with Tl,{
Q̄Kα̇ ,

[
XIJ , QLα

]}
= 0 . (61)

By using (57) and (52a), [
XIJ , QLα

]
=
(
al
)IJ(

Sl
)L
M
QMα , (62)

and in view of (27) we should have (
al
)IJ(

Sl
)L
M

= 0 . (63)

Consequently, we have proved[
XIJ , QKα

]
= 0 ,

[
XIJ , Q̄Kα̇

]
= 0 . (64)

9This part is some summary of section 4.1 of [9].
10Most of the properties shown here concerning the central charges can be found in [5].
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The last two equations together with (52e) imply directly[
XIJ , XKL

]
= 0 ,

[
XIJ , X̄KL

]
= 0 , (65)

which shows that the central charges XIJ form an abelian subalgebra of int.
The super-Jacobi identity for (T,Q,Q) gives us[

Tl,
{
QIα, Q

J
β

}]
+
{
QIα,

[
QJβ , Tl

]}
−
{
QJβ ,

[
Tl, Q

I
α

]}
= 0 , (66)

and so with (52a),

εαβ
[
Tl, X

IJ
]

= −
{
QJβ , Q

K
α

} (
Sl
)I
K
−
{
QIα, Q

K
β

} (
Sl
)J
K

= εαβ

(
XJK

(
Sl
)I
K
−XIK

(
Sl
)J
K

)
. (67)

This proofs that the central charges XIJ and X̄IJ form an ideal of the algebra int, which we will now
proof to be abelian.
By the Coleman-Mandula theorem, the internal algebra int is a compact Lie algebra, and conse-

quently admits a decomposition
int = S ⊕A , (68)

where S is a semisimple algebra and A an abelian algebra. Since a semisimple algebra admits no
abelian ideal, the central charges are part of the algebra A, and consequently commute with all the
elements of int, [

XIJ , Tl
]

= 0 ,
[
X̄IJ , Tl

]
= 0 . (69)

We have proved that the central charges XIJ and X̄IJ commutes with everything, namely are in the
center of the supersymmetry algebra.
The last two equations have an important consequence: together with (67) we obtain

XJK
(
Sl
)I
K
−XIK

(
Sl
)J
K

= 0 , (70)

and by using (57) we �nd (
Sl
)I
K

(
am
)JK − (Sl)JK(am)IK = 0 . (71)

Since the central charges are antisymmetric and the Sl are Hermitian matrices (51),

Sla
m + amS̄l = 0 . (72)

We have proved that the Sl form a representation of int, and consequently the last equation tells us
that the matrices am intertwine the representation Sl with its complex conjugate −S̄l. Consequently,
the central charges exists if and only if the algebra int admits such an intertwiner. An example with
non-zero central charges is given by orthonormal groups,

Sl = −Sᵀ
l , [Sl, am] = 0 . (73)

4 Properties of the supersymmetry algebra

4.1 Casimir operators11

The Casimir operators for the Poincaré algebra are P 2 and W 2 as discussed in subsection B.8. Since
Pa commutes with the odd generators QIα, the �rst Casimir operator of the supersymmetry algebra is
still P 2. But the second Casimir operator W 2 for the Poincaré algebra is no more a Casimir operator
of the superalgebra extension, because Mab does not commute with QIα. For simplicity, we consider
the N = 1 case, because in this case the central charges vanishes. A generalization to supersymmetry
algebra with central charges can be found in [10]. In spinors notations, we obtain

[Wαα̇, Qβ] =
1
2
QβPαα̇ −QαPβα̇ . (74)

11This part is highly inspired by the subsection 2.3 of [3].
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Since [[
Qα, Q̄α̇

]
, Qβ

]
=
{
Qα,

{
Qβ, Q̄α̇

}}
−
{
{Qα, Qβ} , Q̄α̇

}
= 2QαPβα̇ , (75)

by de�ning

Zαα̇ = Wαα̇ −
1
2
[
Qα, Q̄α̇

]
, (76)

we obtain

[Za, Qβ] =
1
2
QβPa ,

[
Z[aPb], Qα

]
= 0 . (77)

On the other hand, we can proof that

[Za, Pb] = 0 , [Za, Zb] = iεabcdP
cZd . (78)

Consequently, the operator

C =
−1
2
Z[aPb]Z

[aP b] = (ZaP a)
2 − Z2P 2 , (79)

commutes with Pa, Qα and we can prove that is also the case with Mab. This proves that C is the
second Casimir operator of the supersymmetry algebra.
Like for the Poincaré algebra, we are interested in unitary representations acting on a Hilbert space.

We can choose a basis of H of eigenvectors
{∣∣pa,m2, z2

〉}
with

Pa
∣∣pa,m2, z2

〉
= pa

∣∣pa,m2, z2
〉
, (80a)

P 2
∣∣pa,m2, z2

〉
= −m2

∣∣pa,m2, z2
〉
, (80b)

C
∣∣pa,m2, z2

〉
= z2

∣∣pa,m2, z2
〉
. (80c)

Physically, the ket
∣∣pa,m2, z2

〉
describes a particle of mass m with energy-momentum pa. To �nd an

interpretation of z, we have to distinguish massive and massless particles. In the end of this paragraph,
we consider the action of the operators on the particular state

∣∣pa,m2, z2
〉
of a massive particle at rest,

pa = (−m, 0, 0, 0) . (81)

On such a state, the Casimir operator C takes the form

C = m2Z2
0 +m2Z2 = m4S2 , (82)

where

S0 = 0 , Si =
1
m
Zi . (83)

The equation (78) becomes
[Si, Sj ] = iεijkSk , (84)

and so on Si has the interpretation of an angular momentum. Consequently, the second Casimir
operator is on a massive particle state

C = m4y (y + 1) , (85)

where y ∈ N/2 is the superspin of the representation.
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4.2 Positivity of the energy12

By using (52d), we obtain

Pa = −1
2
(
σ̄a
)α̇α {

QIα, Q̄
I
α̇

}
, (86)

and this proves that the expectation value of the energy P 0 is positive,

2 〈ψ|P 0 |ψ〉 = 〈ψ|
{
QI1, Q̄

I
1̇

}
|ψ〉+ 〈ψ|

{
QI2, Q̄

I
2̇

}
|ψ〉

=
∥∥∥QI1 |ψ〉∥∥∥2

+
∥∥∥Q̄I1̇ |ψ〉∥∥∥2

+
∥∥∥QI2 |ψ〉∥∥∥2

+
∥∥∥Q̄I2̇ |ψ〉∥∥∥2

≥ 0
(87)

The positivity of the energy is a consequence of the supersymmetric extension of the Poincaré algebra;
the Poincaré algebra admits representation with negative energy. Moreover, we have

P 0 |ψ〉 = 0 , (88)

if and only if

QIα |ψ〉 = 0 , Q̄Iα̇ |ψ〉 = 0 . (89)

So a state is supersymmetrically invariant if and only if it has zero energy. This property is important
for the spontaneously breaking of the supersymmetry which is characterized by a vacuum state with
non-zero energy.

4.3 Bosons and fermions13

The Hilbert space H can be divided into two parts: bosons B for which the spin is integer and fermions
F for which the spin is half-integer

H = B t F . (90)

The bosons are transforming under a representation (m/2, n/2) for the Lorentz group for which m+n
is even, and the fermions in a representation (m/2, n/2) with m + n odd. Since the Pauli-Lubanski
vector Wa commutes with all the even generators Mab, Pa and Tl, the spin s de�ned by (175) can not
be changed by the even generators,

PB ⊂ B , PF ⊂ F , (91)

where P denotes any even generator. Since the odd generators are in the (1/2, 0) or (0, 1/2) represen-
tation, for any odd generator Q we have

QB ⊂ F , QF ⊂ B . (92)

For many representations which are physically interesting, the operators Pa are one-to-one and conse-
quently, by using (86) we obtain

F = PaF =
{
QIα, Q̄

I
α̇

}
F ⊂

(
QIα + Q̄Iα̇

)
B ⊂ F . (93)

This prove that the number of bosons is equal to the number of fermions.
Then we consider two one-particle states |b〉 and |f〉 of respective mass mb and mf which are related

by a supersymmetric generator,
QIα |b〉 = |f〉 . (94)

Since P 2 is a Casimir operator,

−m2
f |f〉 = P 2 |f〉 = P 2QIα |b〉 = QIαP

2 |b〉 = −m2
bQ

I
α |b〉 = −m2

b |f〉 , (95)

hence mf = mb. However, we do not observe in nature a boson �eld with the same mass as the
electron, so we conclude that if the Hamiltonian describing these interaction is supersymmetric,[

b†, QIα
]

= f † , (96)

the supersymmetry should be spontaneously broken.

12This subsection comes form the paragraph 3.2 of [11].
13The ideas of this subsection come from subsection 3.1 of [7] and chapter 4 of [8].
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A Notations

A.1 Indices

In general, the Lorentz indices are denoted by a, b, c and d and run form 0 to 3. They are lowered
with the metric ηab and raised with the inverse metric ηab,

η =
(
ηab
)
, η−1 =

(
ηab
)
, (97)

where
η = diag (−1, 1, 1, 1) . (98)

The spinor indices are α, β, γ and δ and run form 1 to 2. The spinor indices are raised and lowered
with the totally antisymmetric tensor14,

ε =
(
εαβ
)
, ε−1 =

(
εαβ
)
, (99)

where

ε =
(

0 1
−1 0

)
. (100)

A.2 Pauli matrices and generators of SL (2, C)

The Pauli matrices are

σ0 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (101)

and we de�ne
σ̄a = εσtaε

−1 . (102)

The aim de�ning the σ̄ is to have the following useful property,

tr (σ̄aσb) = −2ηab . (103)

In components, we write

σa =
((
σa
)
αα̇

)
, σ̄a =

((
σ̄a
)α̇α)

, (104)

and therefore (
σ̄a
)α̇α = εαβεα̇β̇

(
σa
)
ββ̇
. (105)

The generators of SL (2,C) are de�ned as

σab = −1
4

(σaσ̄b − σbσ̄a) , σ̄ab = −1
4

(σ̄aσb − σ̄bσa) . (106)

B Space-time symmetry groups

In this section we will discuss standard results concerning the Lorentz and Poincaré group and their
representations. While studying the representations we will introduce the two-component notation for
spinors, which is useful for supersymmetry.

14The reason of this convention is explained in subsection B.4.
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B.1 Lorentz group15

The Lorentz group is the space-time symmetry which leaves the Lorentzian metric invariant,

O (3, 1) =
{

Λ ∈ GL (4,R) : ‖Ax‖2 = ‖x‖2
}
, (107)

where the norm is de�ned by
‖x‖2 = xtηx . (108)

This group has four connected components which are characterized by

det Λ = ±1 , sign Λ0
0 = ±1 . (109)

The subset of O (3, 1) for which det Λ = 1 is SO (3, 1) and the component connected to the identity
SO0 (3, 1),

SO0 (3, 1) =
{

Λ ∈ SO (3, 1) : det Λ = sign Λ0
0 = 1

}
. (110)

By de�nition, the group SO0 (3, 1) is connected but it can be shown that it is not simply connected16.
Now the aim is to �nd the universal covering17 group Spin (3, 1) of SO0 (3, 1). We are interested in
the universal covering because the representations of a simply connected Lie group are in one-to-one
correspondence to representations of the Lie algebra.

Theorem. We have the identi�cation

Spin (3, 1) ' SL (2,C) , (111)

and moreover SL (2,C) is a double covering of SO0 (3, 1),

SO0 (3, 1) ' SL (2,C) /Z2 . (112)

Proof. Let H denote the space of Hermitian matrices in two dimensions. A basis for H is given by the
four Pauli matrices (101). Consequently, we obtain an isomorphism between R(3,1) and H by

φ : R(3,1) → H

x 7→ xaσa
,

φ−1 : H → R(3,1)

x 7→ −1
2 tr (σ̄ax)

, (113)

where we have used (103). For N ∈ SL (2,C) we consider the map ρ de�ned as

ρ (N) : H → H

x 7→ NxN † .
(114)

Since the map φ satis�es
‖x‖2 = det (φ (x)) , (115)

the map π de�ned as
π (N) = φ−1 ◦ ρ (N) ◦ φ , (116)

has the following property

‖π (N)x‖2 = det (ρ (N) ◦ φ (x)) = det
(
Nφ (x)N †

)
= det (φ (x)) = ‖x‖2 . (117)

Consequently, π (N) ∈ O (3, 1) and since SL (2,C) is connected, we have constructed a map

π : SL (2,C)→ SO0 (1, 3) , (118)

which is an homomorphism. For the latter we can show that

kerπ = {±1} , (119)

and hence this shows the identi�cation

SO0 (3, 1) ' SL (2,C) /Z2 . (120)

Since SL (2,C) is simply connected it is the universal covering of SO0 (3, 1).
15This part is highly inspired by the subsection 1.1 of [3].
16A connected space is said simply connected if any closed path can be shrunk to a point.
17The universal covering of a space X is a simply connected space X̃ together with a local one-to-one map π : X̃ → X.

The universal covering is unique up to an isomorphism. For example, the universal covering of the circle S1 is R with
the map θ 7→ eiθ.
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B.2 Lorentz algebra

The Lorentz algebra of SO0 (3, 1) is

so (3, 1) =
{

Λ ∈ gl (4,R) : Λtη = −ηΛ
}
, (121)

and a basis is given by the six generators Jab de�ned as

(Jab)ij = δaiηbj − δbiηaj . (122)

The commutation relations between the generators are

[Jab, Jcd] = ηadJbc − ηacJbd + ηbcJad − ηbdJac . (123)

B.3 Lie algebra of SL (2, C)

The Lie algebra of SL (2,C) is

sl (2,C) = {N ∈ gl (2,C) : trN = 0} . (124)

The algebra sl (2,C) has a complex-dimension of three. Thus a basis of sl (2,C) viewed as a complex
algebra is given by the three Pauli matrices {σi}3i=1. As a real algebra, a basis is given by the six
generators {σab}a<b de�ned through (106). Consequently, nearly18 all elements N ∈ SL (2,C) can be
expressed as

N = exp
{
aiσi

}
= exp

{
1
2
wabσab

}
, (125)

where ai ∈ C and wab ∈ R, with w(ab) = 0. Form this, the structure constants of sl (2,C) and therefore
also of so (3, 1) are

[σab, σcd] = ηadσbc − ηacσbd + ηbcσad − ηbdσac . (126)

This result can be deduced directly from (123), because the Lorentz group SO0 (3, 1) is locally isomor-
phic to its universal covering SL (2,C) the corresponding Lie algebra are isomorphic

so (3, 1) ' sl (2,C) . (127)

B.4 Representations of the Lorentz group19

Any representation T of SO0 (3, 1) induces a representation T̃ of SL (2,C) by

T̃ (N) = T (π (N)) . (128)

where π is the covering map. The representation T̃ constructed in this way satis�es

T̃ (N) = T̃ (−N) , (129)

but there exist representations of SL (2,C) for which

T̃ (N) = −T̃ (−N) . (130)

Now we will construct the irreducible representations of SL (2,C). The simplest representations of
SL (2,C) are of dimension two,

ρ◦ (N) = N , ρ◦ (N) = (Nᵀ)−1 , ρ• (N) = N̄ , ρ• (N) =
(
N̄ᵀ)−1

. (131)

18More precisely, the exponential map covers SL (2,C) apart a two-dimensional surface
N

„
−1 1
0 −1

«
N−1, N ∈ SL (2,C)

ff
.

Particularly, for each N ∈ SL (2,C) at least N or −N admits such an exponential form.
19This section is inspired by the subsection 4.1 of [12], and by the section 1.2 of [3].
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The representations ρ◦ and ρ
◦ respectively ρ• and ρ

• are equivalent because

ρ◦ (N) = ερ◦ (N) ε−1 , ρ• (N) = ερ• (N) ε−1 , (132)

where ε is given by (100). We denote by V◦, V◦, V• and V• the vectors spaces isomorphic to C2 on
which the corresponding representations act. The elements of these spaces are the two-component
spinors and we adopt the following component notation(

ξα
)
∈ V◦ ,

(
ξα
)
∈ V◦ ,

(
ξ̄α̇
)
∈ V• ,

(
ξ̄α̇
)
∈ V• . (133)

In components, a matrix N ∈ SL (2,C) is denoted

N =
(
N β
α

)
, N̄ =

(
N̄ β̇
α̇

)
. (134)

By deciding to raise and lower indices with the totally antisymmetric tensor (99), the representations
are explicitly given in term of spinors by

ρ◦ (N) : V◦ → V◦
ξα 7→ N β

α ξβ
,

ρ◦ (N) : V◦ 7→ V◦

ξα 7→ Nα
βξ
β
, (135)

ρ• (N) : V• → V•

ξ̄α̇ 7→ N̄ β̇
α̇ ξ̄β̇

,
ρ• (N) : V• 7→ V•

ξ̄α̇ 7→ N̄ α̇
β̇
ξ̄β̇
. (136)

Now we can construct other representations of SL (2,C) by using the tensor product,

ρ◦m•n =
m⊗
i=1

ρ◦ ⊗
n⊗
j=1

ρ• , ρ•
n◦m =

n⊗
j=1

ρ◦ ⊗
m⊗
i=1

ρ• , (137)

and there are equivalent by construction due to (132). A spinor with m undotted indices and n dotted
indices is an element of tensor products,

(
ξα1···αmα̇1···α̇n

)
∈

m⊗
i=1

V◦ ⊗
n⊗
j=1

V• ,
(
ξ̄α̇1···α̇nα1···αm) ∈ n⊗

i=1

V• ⊗
m⊗
j=1

V◦ , (138)

and transforms as

ρ◦m•n (N) : ξα1···αmα̇1···α̇n 7→ N β1
α1

· · ·N βm
αm N̄ β̇1

α̇1
· · · N̄ β̇n

α̇n
ξβ1···βmβ̇1···β̇n , (139a)

ρ•
m◦n (N) : ξ̄α̇1···α̇nα1···αm 7→ N̄ α̇1

β̇1
· · · N̄ α̇n

β̇n
Nα1

β1
· · ·Nαm

βm
ξ̄β̇1···β̇nβ1···βm . (139b)

The �rst equation proves that

ρ◦m•n (N) = (−1)m+n ρ◦m•n (−N) . (140)

The discussion of the previous section tells us that the representation ρ◦m•n of SL (2,C) is associated
to a representation of SO0 (3, 1) if and only if m+n is even. In the case where m = n, we de�ne a real
tensor by the condition

ξα1···αmα̇1···α̇n = ξ̄α̇1···α̇nα1···αm . (141)

By de�ning the components of the Pauli matrices (101) as

σa =
((
σa
)
αα̇

)
, σ̄a =

((
σ̄a
)α̇α)

, (142)

any real vector in the representation (1/2, 1/2) is equivalent to a standard four-vector ξa with

ξαα̇ =
(
σa
)
αα̇
ξa , ξa = −1

2
(
σ̄a
)α̇α

ξαα̇ , (143)
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which is consistent with the completeness relation(
σa
)
αα̇

(
σ̄a
)β̇β = −2δβαδ

β̇
α̇ . (144)

For m > 1 or n > 1 the representation ρ◦m•n on unconstrained spinors ξα1···αmα̇1···α̇n is not reducible.
For example, for m = 2 and n = 0, we can perform the following decomposition,

ξαβ = ξ(αβ) + ξ[αβ] = ξ(αβ) + εαβξ[12] . (145)

Then we de�ne the set of the spinors which are totally symmetric in their undotted indices and
independently in their dotted indices,

(m/2, n/2) =

ξα1···αmα̇1···α̇n ∈
m⊗
i=1

V◦ ⊗
n⊗
j=1

V• : ξα1···αmα̇1···α̇n = ξ(α1···αm)(α̇1···α̇n)

 . (146)

In general, the restriction of the representation ρ◦m•n on (m/2, n/2) is reducible.
For example, we will decompose a tensor of rank two ξab in terms of irreducible representations. In

terms of dotted and undotted indices, we de�ned

ξαβα̇β̇ =
(
σa
)
αα̇

(
σb
)
ββ̇
ξab . (147)

Then we can write the tensor ξαβα̇β̇ as

ξαβα̇β̇ = ξ(αβ)(α̇β̇) + ξ(αβ)[α̇β̇] + ξ[αβ](α̇β̇) + ξ[αβ][α̇β̇]

= ξ(αβ)(α̇β̇) + εα̇β̇ξ(αβ)[1̇2̇] + εαβξ[12](α̇β̇) + εαβεα̇β̇ξ[12][1̇2̇] ,
(148)

and so on is an element of (1, 1) ⊕ (1, 0) ⊕ (0, 1) ⊕ (0, 0). In particular, if the tensor ξab is symmetric
we obtain

ξαβα̇β̇ = ξ(αβ)(α̇β̇) + εαβεα̇β̇ξ[12][1̇2̇] , (149)

and if it is antisymmetric,
ξαβα̇β̇ = εα̇β̇ξ(αβ)[1̇2̇] + εαβξ[12](α̇β̇) . (150)

For the antisymmetric case, we de�ne

ξαβ =
1
2
(
σab
)
αβ
ξab , ξ̄α̇β̇ = −1

2
(
σ̄ab
)
α̇β̇
ξab , (151)

where σab and σ̄ab are the SL (2,C) generators (106). Thus we obtain the explicit forms

ξαβα̇β̇ = 2εα̇β̇ξαβ + 2εαβ ξ̄α̇β̇ , ξab = (σab)
αβ ξαβ − (σ̄ab)

α̇β̇ ξ̄α̇β̇ . (152)

B.5 Poincaré group

The Poincaré group is the space-time group which leaves the distance invariant,

P (3, 1) =
{

Λ : R4 → R4 : ‖Λx− Λy‖2 = ‖x− y‖2
}
. (153)

The Poincaré group is the semi-direct product of the translation group T (4) ' R4 with the Lorentz
group,

P (3, 1) = O (3, 1) n T (4) , (154)

or more explicitly the set O (3, 1)× T (4) with the following product,

(Λ2, a2) (Λ1, a1) = (Λ2Λ1,Λ2a1 + a2) . (155)

The Poincaré group can be realized explicitly as a matrix group,

P (3, 1) '
{(

Λ a
0 1

)
, Λ ∈ O (3, 1) , a ∈ R4

}
, (156)

via which the semi-direct product (155) is realized.
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B.6 Poincaré algebra

The Poincaré algebra is denoted by p (3, 1) and with the explicit realization (156) we simply obtain

p (3, 1) '
{(

Λ a
0 0

)
, Λ ∈ so (3, 1) , a ∈ R4

}
. (157)

A basis for the Poincaré algebra is given by six generators Mab and four Pa de�ned by

Mab =
(
Jab 0
0 0

)
, Pa =

(
0 ea
0 0

)
, (158)

where Jab are the generators (122) of so (3, 1) and (ea)i = δai. Each element of the Poincaré group
viewed as (156) can be expressed as(

Λ a
0 1

)
= exp

{
1
2
wabMab + baPa

}
, (159)

where wab ∈ R with w(ab) = 0, and ba ∈ R. By using the relation (123), the commutation relations
between the generators are

[Mab,Mcd] = ηadMbc − ηacMbd + ηbcMad − ηbdMac , (160a)

[Pa, Pb] = 0 , (160b)

[Mab, Pc] = ηbcPa − ηacPb . (160c)

B.7 Unitary representations

In quantum �eld theory, we are interested in unitary representations which act on a complex Hilbert
space H. In a unitary representation, the generators are antihermitian,

M †ab = −Mab , P †a = −Pa . (161)

From a physical point of view we want to have Hermitian generators. To this end, we de�ne new
generators

Mab 7→ −iMab , Pa 7→ iPa , (162)

and therefore equation (159) becomes

U (Λ, a) = exp
{
i

2
wabMab − ibaPa

}
. (163)

With these new generators, the commutation relations (160) become

[Mab,Mcd] = iηadMbc − iηacMbd + iηbcMad − iηbdMac , (164a)

[Pa, Pb] = 0 , (164b)

[Mab, Pc] = iηbcPa − iηacPb . (164c)

B.8 Casimir operators20

To study the representations of the Poincaré group it is useful to �nd the Casimir operators21. The
�rst Casimir operator for the Poincaré group is the mass operator

P 2 = PaP
a , (165)

20This part is inspired by the section 1.3.5 of [13].
21In a simplistic way, a Casimir operator is an operator of the form CaC

a which commutes with all the element of the
Lie algebra.
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since [
P 2, Pa

]
= 0 ,

[
P 2,Mab

]
= 0 . (166)

The second Casimir operator is more subtle, and for this we introduce the Pauli-Lubanski vector

Wa =
1
2
εabcdM

bcP d . (167)

By using the Poincaré algebra 164, we obtain

[Wa, Pb] = 0 , [Wa,Mbc] = iηabWc − iηacWb , [Wa,Wb] = iεabcdP
cW d , (168)

and therefore [
W 2, Pa

]
= 0 ,

[
W 2,Mab

]
= 0 . (169)

Consequently, W 2 is the second Casimir operator of the Poincaré algebra. The irreducible representa-
tions of the Poincaré group can be classi�ed by P 2 and W 2.
Since the operators Pa, P

2 andW 2 commute, we can choose a basis ofH of eigenvectors
{∣∣pa,m2, w2

〉}
with

Pa
∣∣pa,m2, w2

〉
= pa

∣∣pa,m2, w2
〉
, (170a)

P 2
∣∣pa,m2, w2

〉
= −m2

∣∣pa,m2, w2
〉
, (170b)

W 2
∣∣pa,m2, w2

〉
= w2

∣∣pa,m2, w2
〉
. (170c)

From a physical point of view, the ket
∣∣pa,m2, w2

〉
corresponds to a particle of mass m and momentum

pa. Some representations of the Poincaré group have a negative mass square m2 and are therefore not
physical.
To �nd an interpretation of w, we have to distinguish massive and massless particles. Here we will

only consider a massive particle of mass m at rest,

pa = (−m, 0, 0, 0) . (171)

In this whole section we consider the action of the operators on the particular state
∣∣pa,m2, w2

〉
. On

the latter, the operator Wa takes the form

W0 = 0 , Wi = mSi , (172)

where Si are three operators de�ned as

Si =
1
2
εijkM

ij . (173)

Due to the equation (168), we obtain an su (2) algebra

[Si, Sj ] = iεijkSk , (174)

which proves that Si is an angular momentum. Then, we have

W 2 = m2S2 = m2s (s+ 1) , (175)

where s ∈ N/2, is the spin of the particle. Consequently, for a massive particle, the second Casimir
operator is related to the spin,

w = m
√
s (s+ 1) . (176)

For a massless particle, we can show that the number w is related to the helicity λ ∈ Z/2,

w = m
√
λ . (177)

Consequently, the two Casimir operators classify the irreducible representations in terms of the mass
and the spin for massive particles or helicity for massless particles.
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Nomenclature

(m/2, n/2) Irreducible representation of the Lorentz group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (146)(
al
)IJ

Complex constants linking XIJ to Tl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (57)

[a, b} Super-commutator in a superalgebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (11)

ε Completly antisymmetric tensor in dimension two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (100)

η Lorentzian metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (97)
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