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Abstract

After a short review of general relativity, the supergravity lagrangian is
derived and discussed. When applying iteratively the Noether method on
the supersymmetric Wess-Zumino model, we will find the need to introduce
spin 3/2 and spin 2 fields, interpreted as gravitino and graviton, to obtain a
lagrangian invariant under local supersymmetric transformation. We discuss
the pure gravitational kinematic lagrangian, its gauge algebra and coupling
to the Wess-Zumino model.
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1 Introduction

In this semester, FS10, a proseminar on supersymmetry is being organised by
Babis Anastasiou. The objective of this proseminar is to discuss theoretical and
phenomenological implications of supersymmetric theories. Previous talks derived
rigid (or global) supersymmetry. In this framework it was shown how to incorpo-
rate gauge theories, which are invariant under global supersymmetry transforma-
tions.

In this report we wish to discuss the implications of making the supersymmetry
transformation parameter local, ε→ ε(x). We will find that local supersymmetry
implies gravitation in a natural way, thus deserving the name ”supergravity”.
Another motivation for including gravity in a supersymmetric theory is that, as
can be observed, gravity is a force existing in our everyday world.

This report is organized as follows. After a short review of General Relativity in
a field-theoretic approach using the Einstein-Hilbert-Lagrangian and a discussion
of the spin statistics of gravitational interactions, it is reformulated in the vierbein
formalism enabling us to include spinors which arise naturally in the context of
quantum theories describing fermions.

In section 3 supergravity is introduced as a locally supersymmetric gauge the-
ory. The gravitino, described by the Rarita-Schwinger field, is a hypothetical spin 3

2

particle, introduced to gauge locally supersymmetric transformations, which then
forces us to introduce interactions involving the metric gµν or vierbein as we apply
the Noether method to gauge the theory. When discussing commutators acting on
the supergravity multiplet, formed by the gravitino and vierbein, we are forced to
add auxiliary fields to ensure the closure of the algebra.

Afterwards, the Wess-Zumino model of supersymmtry is coupled to gravity,
which forces us to add additional terms to the lagrangian and modify the corre-
sponding transformation properties.

2 Review of General Relativity

In this section we present a short review of Einstein’s general relativity in a field-
theoretic approach in four space-time dimensions. Here we use the convention that
the signature of the space-time metric is (+,−,−,−). We follow [MO] and [WA].

The gravitational action is S = SE + SM , where SM is the matter part of the
action which we will leave unspecified for the moment while SE is the Einstein-
Hilbert-Action given by

SE =
1

16πG

∫
d4x
√
−gR. (1)
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Here G is Newton’s gravitational constant, g = det gµν , and R denotes the Ricci
Scalar R = Rµ

µ as contractions of the Ricci tensor, which is the contraction of the
Riemann tensor, Rµν = Rλ

µλν . The Riemann tensor is defined by

Rµ
νρσ = ∂ρΓ

µ
νσ − ∂σΓµνρ + ΓµαρΓ

α
νσ − ΓµασΓανρ (2)

where Γρµν are the Christoffel symbols(the torsion-free affine connection on the
tangent bundle) are given by

Γρµν =
1

2
(∂µgσν + ∂νgσµ − ∂σgµν). (3)

The energy momentum tensor T µν describing the matter by the action SM is
defined from the variation of SM under a variation of the metric gµν → gµν + δgµν ,
according to

δSM =
1

2

∫
d4x
√
−gT µνδgµν . (4)

Taking the variation of the total action with respect to gµν , one finds the Einstein
field equations,

Rµν −
1

2
gµνR = 8πGTµν . (5)

As one observes, general relativity is invariant under diffeomorphisms,

xµ → x′µ(x). (6)

Under which the metric transforms as

gµν(x)→ g′µν(x
′) =

∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x). (7)

The linearized theory is defined by the expansion using flat-space metric ηµν =
diag(+1,−1,−1,−1)

gµν = ηµν + hµν , |hµν | � 1. (8)

This approximation is valid due to the principle of equivalance. It states that we
can choose for each space-time point a locally inertial system to describe physics.
Geometrically, it means that for all points on our manifolds we can use the tangent
space of a sufficiently large region around this point to describe physics.
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Figure 1: The tangent space

2.1 Why a spin-2 field?

From a field-theoretical point of view, all forces are mediated by exchange particles
with integer spin, bosons, e.g. the photon for electromagnetism. In this subsection
we assume the existence of such a particle mediating gravitation, called graviton
and want to answer the question whether there are any physical constraints on its
spin.

To be more precise, we try to write matter interactions for trial gravitons with
spin 0, 1 and 2 and sketch their implications. To this end one can study tree-
level scattering processes of matter fields with the trial gravitons and extract the
gravitational potential in the non-relativistic limit. For more details see e.g. [MM].

The simplest trial graviton with even integer spin is a scalar particle φ (spin 0,
hence scalar and without Lorentz index) described by the Klein Gordon equation.
The only way to couple the field φ linearly to the energy-momentum tensor Tµν is
by coupling to its the trace, T = T µµ . Thus we have the Klein-Gordon lagrangian
with coupling constant g,

L = −1

2
∂µφ∂

µφ+ gφT.

Note that the energy-momentum tensor is quadratic in matter fields, thus the
vertex gφT describes two matter field lines and one scalar φ. Calculating the
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potential yields with the identification g2

4π
= G,

V (r) = −Gm1m2

r
, (9)

the correct non-relativistic description of gravity by Newton. However, we know
that the energy-momentum tensor of the electromagnetic field is tracless, thus no
coupling between this scalar gravity and electromagnetism is possible, which is in
contradiction to experiments. Thus scalar gravity has to be ruled out.

The next step would be trying to construct a theory of gravity mediated by
spin 1 particles, Aµ, similar to electromagnetism. Unfortunately, a coupling given
by

AµAνT
µν (10)

is not gauge invariant and would also yield a potential proportional to 1
r3

because
of the exchange of two particles. A derivative coupling,

∂µAνT
µν (11)

has to be excluded as well because after integration by parts, energy-momentum
conservation would be violated. Another reason against a vector particle is a
possible repulsive potential between two particles with positive mass, as described
by the Coulomb force in electromagnetism (see [MM]).

Values of spin > 2 must be ruled out as well because of further inconsistencies.
Thus, the only possibility is a spin 2 field.

2.2 Tetrad formalism

An alternative formulation of general relativity, more suitable for local super-
symmetry, is the vierbein (or tetrad) formalism, where we define the vierbein
emµ = emµ (x) where m is a tangent space-time index while µ is a curved space-time
index. This alternative formulation is possible because of the principle of equiv-
alence, with the same reasoning as the weak-field approximation discussed. Of
course, the vierbein will differ from point to point, as the tangent space will differ
point to point.

The motivation for introducing tetrads, or vierbeins, is the necessity to describe
spinors in space-time. From quantum field theory we know that spinors describe
fermionic particles which model fundamental matter particles, and if we wish to
have a theory of gravity coupling to matter, we need to be able to handle these
spinors in space-time. In ordinary gravity using the metric gµν one can only de-
scribe couplings to integer spin particles. When coupling to spinors, one is forced
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to introduce a spin connection ωabµ . For a more detailed discussion on tetrads and
spinors we refer to [WA], ch. 13.

We can rewrite the metric as

gµν = emµ (x)enν (x)ηmn (12)

where η is the metric in flat space-time and under transformations we have

emµ → e′mν =
∂xν

∂x′µ
emν . (13)

We can use the vierbein to express any contravariant vector Aµ as a vector in the
locally inertial coordinate system,

Am = emµ A
µ. (14)

We can raise and lower indices on emµ by using gµν and ηmn to obtain the dual
vielbein eµm with the following properties,

eµme
n
µ = δnm, eµme

m
ν = δµν . (15)

The principle of equivalence requires that special relativity should apply in locally
inertial frames; therefore, the index m will transform as a flat space vector under
Lorentz transformation Λm

n ,

emµ → Λm
n e

n
µ. (16)

To write down the lagrangian in this formalism we will have to express the
curvature tensor in terms of the vierbeins.

We also need to redefine the covariant derivative such that it transforms appro-
priately under coordinate and Lorentz transformations. To this end we introduce
the spin connection (also called Lorentz connection):

ωabµ = eaν∂µe
νb + eaνe

σbΓνσµ. (17)

Since the covariant derivative of the metric is zero, the same must be true for the
vierbein,

Dρe
m
σ = ∂ρe

m
σ + ωmnρ enσ − Γλρσe

m
λ = 0. (18)

Using this we can express the spin connection in terms of the vierbein,

ωmnµ =
1

2
emν(∂µe

n
ν − ∂νenµ) +

1

4
emρenσ(∂σe

l
ρ − ∂ρelσ)elµ − (a↔ b). (19)
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The curvature tensor can then be rewritten as

Rmn
µν = ∂µω

mn
ν − ∂νωmnµ + ωmlµ ωnνl − ωmlν ωnµl. (20)

Note that Rmn
µν is an equivalent formulation of the previously introduced Riemann

curvature tensor Rµνρσ,

Rµνρσe
ρ
me

σ
n = Rµνmn. (21)

The Einstein-Hilbert lagrangian is expressed using tetrads and e = det emµ by

L2 = − 1

2κ2
eR(e, ω). (22)

The infinitesimal transformation under xµ → x′µ = xµ + ξµ implies for the
metric

gµν → g′µν = gµν + gµσ∂σξ
ν + gρν∂ρξ

µ + ξρ∂ρgµν +O(ξ2) (23)

which then implies

emµ → e′mµ = emµ + emλ ∂
µξλ + ξρ∂

ρemµ +O(ξ2). (24)

3 Supergravity

After a short review of local gauge transformations, the Noether method is applied
to the Wess-Zumino model. Gauging locally supersymmetric transformation intro-
duces spin 3

2
fields identified with the Rarita-Schwinger field of the gravitino whose

properties are quickly reviewed. Continuing applying Noether method yields terms
proportional to the energy-momentum tensor of the Wess-Zumino fields, thus forc-
ing us to introduce a coupling to a spin 2 particle, the graviton, to cancel additional
terms. Then the free Lagrangian for supergravity is stated.

After a discussion of the gauge algebra properties, which indicates the need
for auxiliary fields because of the non-closure of commutators of locally super-
symmetric transformations applied on the gravitino, we discuss the coupling to
the simple Wess-Zumino model consisting of two scalar particles and one fermion.
We observe a gravitational coupling with mass dimension, as in the case of clas-
sical General Relativity in the field-theoretic approach, which is an indicator for
non-renormalizability by superficial powercounting arguments.

For motivational purposes, we give a small hint for including gravity in a local
supersymmetric theory: When applying two rigid supersymmetric transformations
on the pseudoscalar B in the Wess-Zumino model, we find

[δ(ε1), δ(ε2)]B ∼
1

2
(ε̄2γ

µε1)∂µB. (25)
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From the discussion of rigid supersymmetry we know that the application of two su-
persymmetric transformations yields a translation ∂µ by the distance dµ = 1

2
ε̄2γ

µε1.
Naively writing ε→ ε(x) in both sides of the equation, we find

[δ(ε1(x)), δ(ε2(x))]B ∼ 1

2
(ε̄2(x)γµε1(x))∂µB (26)

and can interpret the distance as a function of a space-time point x, dµ(x) =
1
2
ε̄2(x)γµε1(x). Now we have a situation where the amount of translation depends

on the point discussed, which hints at the fact that space-time has become curved.
As discussed before, this is precisely what happens when gravity is taken into
account.

In this section we closely follow the arguments of [VN] and [MO]. For an
introduction to supergravity using superspace formalism, the reader is referred to
[WB]. [BL, BT, WE] present pedagogical introductions as well.

3.1 Gauge Theories

3.1.1 General Strategy and an Example

From the perspective of a field theory, supergravity is a gauge theory of three
different symmetries and thus requires three different connections. The tetrad emµ
gauges space-time transformation, the spin-connection ωabµ Lorentz transformation
and the gravitino ψµ supersymmetric transformations. The algebra formed by
these irreducible algebras is called the super Poincare algebra.

The method of gauging a theory is called Noether method. One starts by
making the gauge parameter local, and will find as variation of the lagrangian a
term proportional to the derivative of the gauge parameter called Noether current
jµ,

δL = ∂µεj
µ. (27)

As first step one introduces a field with the same spin statistics as the derivative
of the gauge parameter,Aµ, requiring its variation to be the δAµ = ∂µε(x) and
adds a coupling of this new field to the lagrangian with coupling constant g and
the opposite sign to cancel the previously derived invariance,

L′ = −gAµjµ. (28)

One now checks the full Lagrangian whether new variations appear. If so, one
continues with this iterative process by adding new terms to the lagrangian and
changing the transformation properties until the the lagrangian is invariant.
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As an analogy of deriving a local theory, it is shortly reviewed how the Noether
method is applied on quantum electrodynamics following [AN]. In the next section,
it is applied to supersymmetry transformation.

Given a Lagrangian

L = iχ̄/∂χ, (29)

with χ spinor field and /A = γµAµ, which is invariant under a global gauge trans-
formation χ → χ′ = eiεχ with scalar gauge paramter ε. To switch to local gauge
transformations, we make the gauge parameter local, ε = ε(x). Then the la-
grangian is no longer invariant but changes by

δL = −χ̄γµχ∂µε and jµ = −χ̄γµχ. (30)

Invariance can be restored by introducing a gauge field term, a vector field, to the
Lagrangian,

L′ = −gχ̄γµAµχ (31)

with the transformation property of

Aµ → A′µ = Aµ −
1

g
∂µε (32)

to restore invariance. In addition, one has to add kinetic terms for the new field
Aµ,

L′′ = −1

4
F µνFµν , (33)

with the invariant field strength tensor defined by Fµν = ∂µAν − ∂νAµ. After
rewriting the partial derivative as covariant derivative, ∂µ → Dµ = ∂µ + igAµ, one
can compactly write the quantum electrodynamics lagrangian as

L = iχ̄ /Dχ− 1

4
F µνFµν . (34)

This coupling of the Dirac field χ with the photon field Aµ is also known as minimal
coupling.

Note that the scalar parameter ε of the gauge transformation enters as deriva-
tive ∂µε under the variation of δχ. Loosely speaking, it gets a Lorentz index
and transforms as vector. To have an invariant Lagrangian, one is thus forced to
introduce a vector field Aµ.

Applying the same logic to supersymmetry whose gauge parameter is a spinor,
we are naturally lead to introduce a vectorial spinor field (or vector-spinor-field)
ψµ called gravitino.

We will now make this intuition more precise by studying the Wess-Zumino
model.
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3.1.2 Local Supersymmetry Transformations: Example WZ-model

Let us for example study the Wess-Zumino model which we will use as guiding
example for more general theories.

The action of the rigid Wess-Zumino model of supersymmetry is given by the
sum of the Klein-Gordon action and the Dirac action,

L =
1

2
(∂µA)2 +

1

2
(∂µB)2 +

i

2
χ̄/∂χ, (35)

with scalar A, pseudoscalar B and Dirac field χ. This action is invariant (up to
total derivatives) under rigid supersymmetry transformation defined by

δA = ε̄χ, (36)

δB = +iε̄γ5χ, (37)

δχ = −i/∂(A+ iBγ5)ε (38)

where γ5 is given by γ5 = iγ1γ2γ3γ4. Proceeding with the Noether method, chang-
ing the constant spinorial Majorana parameter to a local one, ε→ ε(x), one finds
up to total derivative

δL = ∂µε̄(/∂(A− iγ5B))γµχ (39)

≡ ∂µε̄j
µ (40)

where we have introduced the Noether current jµ. Note that the spinorial paramter
ε appears under a derivative, ∂µε̄, indicating that we need to introduce a spin 3

2

particle. Thus, we quickly review properties of such spinorvectors described by
the Rarita-Schwinger field.

3.1.3 Spin 3
2

Rarita-Schwinger field

The massless Rarita-Schwinger field is described by a Majorana spinor with a
Lorentz index, a vector-spinor, ψµ. Each of the Majorana spinor components
satisfy the Dirac equations,

/∂ψλ = 0,

and is subject to the subsidiary condition,

γλψλ = 0.

By contracting the Dirac equations with γλ one finds

∂λψλ = 0.
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The Lagrangian for the massless Rarita-Schwinger field is given by

L3/2 = −1

2
εµνρσψ̄µγ5γν∂ρψσ.

Using the Euler-Lagrange equation one immediately finds the equation of motion
given by

−εµνρσγ5γν∂ρψσ = 0,

which is invariant under the transformation ψσ → ψ′σ = ψσ + 2
κ
∂ρε.

Counting the number of on-shell degrees of freedom for the massless gravitino
gives 2, because the four degrees of freedom, given by the degrees of freedom of a
massless vector field (2) times those of a Majorana spinor (2), are substracted by
2 by the contraints for the fermionic part due to the gauge condition γλψλ.

As the name ”vector-spinor” or ”bispinor-vector” suggests, it corresponds ini-
tially to the representation

[(
1

2
, 0)⊕ (0,

1

2
)]⊗ (

1

2
,
1

2
)] (41)

or

[4]⊗ {[2L]⊕ [2R]} ≡ ψ(16)
µ . (42)

The before mentioned contraction corresponds to

[2L]⊕ [2R] ≡ (γµψµ)(4). (43)

Decomposing we find

[4]⊗ {[2L]⊕ [2R]} = {[6R]⊕ [6L]} ⊕ {[2R]⊕ [2R]}, (44)

and after applying the constraints we are left with

[6L]⊕ [6R] ≡ ψ(12)
µ , (45)

which corresponds to the irreducible representation of

(
1

2
, 1)⊕ (1,

1

2
). (46)

For a more detailed discussion please see [WE, BT, MO, BI], or the original
paper [RS].
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3.1.4 Derivation of the kinetic Supergravity Lagrangian

Following the previously introduced procedure of gauging a theory (see also [VN]),
we continue with the Noether method by adding as first term to the lagrangian
(35) the coupling of the gauge field to the Noether current with opposite sign,

L1 = −κ
2
ψ̄µj

µ (47)

= −κ
2
ψ̄µ(/∂(A− iγ5B))γµχ (48)

and require that δψµ ∼ 2
κ
∂µε(x). Note that since fermions have mass dimension

3/2 and ε has −1/2, a dimensional coupling κ appears.
Proceeding with the Noether method up to first order in κ and AA and BB

terms, one finds

δ(L+ L1) = iκψ̄µγνε(∂µA∂νA+ ∂µB∂νB −
1

2
gµν((∂ρA)2 + (∂ρB)2)) (49)

= iκψ̄µγνεT
µν . (50)

This is nothing but the energy momentum tensor, strictly speaking, just of A and
B field. More generally we therefore may write with T µν the energy-momentum
tensor of the matter theory. This term can only be canceled by adding a second
Noether coupling to the Noether current of translations Tµν . We introduce a new
field gµν which we identify with the metric tensor. To find a non-zero transforma-
tion we require

δgµν = −iε̄(γµχν + γνχµ). (51)

Thus, focusing on the gravitational sector, the kinetic terms of the locally
supersymmetric lagrangian are then given by the kinetic terms for the fields ψµ
and gµν , or, using vierbeine, ψµ and emµ . From earlier sections we know that the
Rarita-Schwinger field and Riemann curvature tensor are to be used. We thus
arrive at the following invariant lagrangian for the pure gravitational part

L = L2 + L3/2 (52)

with

L2 = − 1

2κ2
eR(e, ω), (53)

L3/2 = −1

2
εµνρσψ̄µγ5γνDρψσ, (54)

Dρ = ∂ρ −
1

4
σmnω

mn
ρ , (55)
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where we have rewritten the curvature tensor by using R(e, ω) = emνenµRµνmn(ω).
L is invariant under

δemµ = −iκε̄γmψµ, (56)

δψµ =
2

κ
(Dµε). (57)

It now remains to further add the matter part in a consistent manner. However,
in order to make process on this front, we first have to sort out a conceptual issue.

3.2 Auxiliary Fields For The Gauge Algebra

As in the case of global superymmetry, we will need auxiliary fields to ensure
that the commutators of the transformations close. In supergravity we have three
types of local gauge transformations, two of which are bosonic and one fermionic,
general coordinate transformations G with parameter ξµ and local Lorentz rotation
L with parameter λmn and the fermionic local supersymmetry transformations Q
with parameter ε.

Counting the degrees of freedom yields a discrepency of six bosonic degrees
of freedom, because the tetrad has 6 degrees of freedom (16 a priori, reduced by
4 corresponding to general coordinate transformation and by 6 due to Lorentz
transformations). Discussing the gravitino yields 12 degrees of freedom (16 a
priori, reduced by 4 due to local supersymmetry transformations). Following the
presentation of [VN], the minimal set of auxiliary fields is given by an axial vector
Am, an scalar S and an pseudoscalar P .

Another reason for the need of auxiliary fields is that we require transformation
rules to be independent of matter fields. If the opposite were true, one could not
sum the matter action of two different systems. With auxiliary fields, however,
the sum is invariant as well and thus valid for any coupling system.

Here we merely state the results and the reader is referred to [VN] subsection
1.9 for more details.

When discussing the commutator of two supersymmetry transformations ap-
plied on the tetrad, one would find that it corresponds to the sum of a general
coordinate, of a local Lorentz and of a supersymmetry transformation,

[δQ(ε1), δQ(ε2)] = δG(ξµ) + δQ(−ξµψµ) + δL(ξµωmnµ ) (58)

with ξµ = 1
2
ε̄2γ

µε1.
When discussing the same commutator applied on the gravitino, one will find

that the algebra does not close exactly as in the Wess-Zumino model, see [VN]. 1

1already discussed in the corresponding proseminar talk
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Introducing auxiliary fields, using the same procedure as in the rigid Wess-
Zumino model, one arrives at a result valid for all fields,

[δQ(ε1), δQ(ε2)] =δG(ξµ) + δQ(−ξµψµ) (59)

+ δL[ξµ(ωµmn −
i

3
εµmnlA

l) +
1

3
ε̄2σ

mn(S − iγ5P )ε1], (60)

with ξµ = 1
2
ε̄2γ

µε1, where the transformation properties of the all fields, including
auxiliary fields, are given by

δemµ = −iκε̄γmψµ (61)

δψµ =
2

κ
(Dµ +

iκ

2
Aµγ5)ε−

1

2
γµηε (62)

δS =
1

4
ε̄γµRcov

µ (63)

δP = − i
4
ε̄γ5γ

µRcov
µ (64)

δAm =
3i

4
ε̄γ5(R

cov
m −

1

3
γmγ

µRcov
µ (65)

η = −1

3
(S − iγ5P − i /Aγ5) (66)

Rµ,cov = εµνρσγ5γν(Dρψσ −
i

2
Aσγ5ψρ +

1

2
γρηψσ) (67)

with the new Lagrangian given by

L = −1

2
eR(e, ω)− 1

2
εµνρσψ̄µγ5γνDρψσ −

e

3
(S2 + P 2 − A2

m). (68)

The corresponding field equations are

S = P = Am = 0 (69)

Rµ = εµνρσγ5γνDρψσ = 0 (70)

eGmν =
1

4
ψ̄µγ5γ

mελνρσ(Dρψσ −Dσψρ). (71)

3.3 Coupling to matter

After having discussed the action of pure supergravity, the next step is to finish
the discussion of the matter coupling.

We return to the WZ action with the appropriate auxiliary fields

L0 =
1

2
gµν(∂µA∂νA+ ∂µB∂νB) +

i

2
eχ̄γµDµχ+

1

2
e(F 2 +G2), (72)
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where F,G are auxiliary fields, with transformations

δA = ε̄χ, (73)

δB = iε̄γ5χ, (74)

δF = ε̄ /Dχ, (75)

δG = iε̄γ5 /Dχ, (76)

δχ =
1

2
/∂(A− iγ5B)ε+

1

2
(F + iγ5G)ε. (77)

Variation of the term L1 from (48) (now including AB-terms) yields

δL1 =− ∂µε̄jµ + iκψ̄µγνεTµν (78)

+
iκ

2
εµνρσψ̄µγν∂ρεA

←→
∂ρB (79)

+
iκ

2
εµνρσ∂ρψ̄µγνεA

←→
∂σB (80)

The first term is cancelled by the variation of the gravitino, δψµ, and the second
by the addition of the metric coupling to the energy-momentum tensor, as was
shown in the previous subsection.

The third term can by cancelled by adding to the lagrangian the following
term,

L3 = − i
2
κ2εµνρσψ̄µγνψρA

←→
∂ρB. (81)

The last term of δL1 can be cancelled by changing δψµ to

δψµ =
2

κ
∂µε+ iκγ5εA

←→
∂µB. (82)

However, this new variation changes δL1 to

δL1 =
iκ2

2
ε̄γ5/∂(A− iγ5B)γµχA

←→
∂µB + . . . , (83)

which forces us to add

L4 = −κ
2

4
χ̄γ5γ

τχA
←→
∂τ B (84)

to our lagrangian excluding 4-fermion terms. As can be checked this lagrangian
with the new definition of δψµ is now invariant up to all orders.

Thus, the fully coupled supergravity Lagrangian is given by

L = L2 + L3/2 + L0 + LN + LI (85)

15



with the L2,L3/2 the corresponding spin 2, 3/2 Lagrangian given in the previous
subsection, L0,LN the coupled Wess-Zumino model and Noether current discussed
in the previous paragraph, and the interaction Lagrangian LI = L3 + L4 + L4f

given by

LI =κ2εµνρσψ̄µγνψρ(
1

8
χ̄γ5γσχ−

i

2
A
←→
∂σB) (86)

+ eκ2χ̄γ5γ
τχ(−1

8
ψ̄πγ5γτψ

π − i

4
A
←→
∂τ B −

1

32
χ̄γ5γτχ), (87)

with transformation rules

δA = ε̄χ, (88)

δB = iε̄γ5χ, (89)

δemµ = −iκε̄γmψµ, (90)

δψµ =
2

κ
Dµε+

i

4
κγ5εA

←−→
Dcov
ν B +

κ

8
σµνγ5ε(χ̄γ5γ

νχ), (91)

δχ =
1

2
( /D

cov
(A− iγ5B))ε+

κ2

8
γ5λ(Aε̄γ5χ− iBε̄χ), (92)

Dcov
µ A = ∂µ −

κ

2
ψ̄µχ. (93)

Please note that at low energies, the gravitational couplings are suppressed
by inverse powers of Mp due to κ−1 = MP√

8π
= 2.4 × 1018GeV, which is derived

by requiring that the low-energy limit of supergravity coincides with Newtonian
gravity, where κ2 = 8πG/c4 and, in natural units, the before cited term, as is
shown in [BT].

Coupling to other matter fields can be formulated analogously by using Noether
method, or more sophisticated methods. This, however, will not be further dis-
cussed in this report and the reader is referred to [VN] or [BI].
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