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1 Introduction

A couple of points need to be mentioned before starting with the actual
topic:

• It seems that one of the main sources of confusion in books on super-
symmetry arises from the different labelling conventions used. In this
paper, there are two main sections, one for the concepts in the standard
model (SM) and one for the concepts in the minimal supersymmet-
ric standard model (MSSM). There is therefore a short overview on
conventions and labelling anteceding those sections.

• As additional help, the reader should know that these conventions are
mainly taken from ”A Supersymmetry Primer” by S. P. Martin [1]
and from the book ”Theory and Phenomenology of Sparticles” by M.
Drees, R. M. Godbole and P. Roy [2].

• It should be noted that due to the vast amount of subtopics included
in ”the Higgs mechanism”, it make sense to choose a phenomenological
approach. All material should be viewed in this context.

• Many mechanisms, methods and tools used in the MSSM are very
similar to the ones employed in the SM, where they are much easier to
understand. It thus makes sense to spend time with the SM. Further-
more, the sections on the SM and MSSM should be complementary to
each other.

2 The Higgs Mechanism in the Standard Model

2.1 Overview on Particles and Labelling

For this paper, the following conventions are used [2]:

• liL =
(
νi
ei

)
L

, with νi = {νe, νµ, ντ} and ei = {e−, µ−, τ−}. Y = −1.

• eiR = {e−R, µ−R, τ−R } with Y = −2.

• qiL =
(
ui
di

)
L

with ui = {u, c, t} and di = {d, s, b}. Y = 1
3 .

• uiR = {uR, cR, tR} with Y = 4
3 and diR = {dR, sR, tR} with Y =

−2
3 .

• In a context where it is clear, the index i might be dropped in order
to avoid messing up the space.
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• g-type couplings are gauge couplings, i.e.

1. gs for strong coupling with gluons Gaµ, a = 1 ... 8.

2. g for electroweak couplings with gauge bosons W a
µν with a =

1, 2, 3 for the W -triplet.

3. g′ for electroweak coupling with the gauge boson Bµ, which is a
singlet.

• λf are Yukawa couplings including fermions of type f .

• v = 246 GeV.

2.2 The Higgs Field Components in the Standard Model

1. The current or gauge eigenstate of the Higgs field in the standard
model is given by a Higgs doublet with complex entries 1. It can
be written in a convenient way, in which the charge operator Q is
diagonal:

Φ =
(
φ+

φ0

)
,

with 1 neutral and 1 charged complex component. In total 4 degrees
of freedom.

2. There is one mass eigenstate, given in the unitary gauge 2 by:

Φ (x) =
1√
2

(
0

v + η (x)

)
,

where v is real valued and given by the vacuum expectation value of
the Higgs boson: v/

√
2 = |〈Φ (x)〉|. η (x) is a real-valued field with

〈η (x)〉 = 0 and can be considered a fluctuation from the vacuum
expectation value. We see that there is only 1 degree of freedom left.
3 have been absorbed by the gauge bosons W± and Z and this way
give them masses.

The general Lagrangian of the Higgs field in |φ|4-theory is:

LSM, higgs = |Dµφi|2 + µ2φ∗iφi −
λ

4
(φ∗iφi)

2 , (1)

1Capital Φ are used for Higgs doublets, small φi are used to indicate the i-component
of a doublet.

2The unitary gauge minimizes the number of scalar degrees of freedom by gauging the
degrees of freedom of the Goldstone bosons into longitudinal degrees of freedom of the
gauge bosons W± and Z0. For more on the Goldstone bosons, see section 2.3.
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with iDµ = i∂µ− gW a
µ
σa

2 − g′Bµ Y2 , µ a mass parameter and λ a positive
3 perturbation parameter. There is an implicit summation over i.

2.3 The Higgs Mechanism in the SM

In the literature the Higgs mechanism generally refers to spontaneous sym-
metry breaking of the electroweak SU (2)L × U (1)Y symmetry.

We split the given standard model Lagrangian for the Higgs field from equa-
tion 1 into a kinetic and a potential term:

LSM, higgs = Lkin, higgs − Vhiggs (φi) = |Dµφi|2︸ ︷︷ ︸
Lkin, higgs

+µ2φ∗iφi −
λ

4
(φ∗iφi)

2︸ ︷︷ ︸
−Vhiggs(φi)

.

The Lagrangian is invariant under SU (2)L gauge transformations:

Φ→ exp
(
iθa

σa

2

)
Φ ,

where σa are the Pauli matrices and θa is a gauge parameter, i.e. a
rotation angle.

Let us look for extrema in the potential V (Φ) now:

0 !=
∂V

∂φi
= −µ2

(
φ∗i +

∂φ∗i
∂φi
· φi
)

+
λ

2
(φ∗iφi)

(
φ∗i +

φ∗i
∂φi
· φi
)

This yields two solutions:

1. |φ∗i | = |φi| = 0 .

2. |φi|2 = φ∗iφi = 2µ2

λ or |φi| =
√

2
λµ .

Looking at the second derivation from the potential V (Φ) with respect to
φi and bearing in mind that we are looking for a minimum, i.e. ∂2V (Φ)

∂φ2
i

> 0,
we find:

∂2V (Φ)
∂φ2

i

= −µ2 +
λ

2
(φ∗iφi) > 0

3λ needs to be positive so that the potential is closed, i.e. that it goes to infinity at
large values of |φi|, bearing in mind that −V (φi) = µ2φ∗i φi − λ

4
(φ∗i φ)2.
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Figure 1: The Higgs potential V (Φ) in dependence of the real and imaginary
part of Φ for a parameter µ2 > 0. Source: [3].

1. µ2 < 0: We see that this choice of µ2 is consistent with the first
solution |φi| = 0, the trivial solution. This means that for this µ2,
there is a minimum at the origin and thus no symmetry breaking.

2. µ2 > 0: With this choice of µ2, the inequality cannot be fulfilled by the

trivial solution. We resort to the second solution given by |φi| =
√

2
λµ,

which has degenerate minima.

Hence, for a positive µ2 we get a vacuum expectation value of v = 2√
λ
µ,

where v is a measure of the distance from the origin of the potential to the
degenerate ground states. The potential V (Φ) with µ2 > 0 is shown in
figure 1.

We consider an ansatz for the 4 degrees of freedom of the Higgs doublet
given by:

Φ =
(
r1e

iϕ1

r2e
iϕ2

)
,

where ri are normalization constants. The second solution connects r1

with r2 by r2
1 + r2

2 = 2µ2

λ and we thus obtain:
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Φ =

(
r1e

iϕ1√
2µ2

λ − r2
1e
iϕ2

)
.

The minima determine 1 degree of freedom, which is the distance. This
means that 3 degrees of freedom can be chosen freely, which we do by keeping
it simple: r1 = ϕ1 = ϕ2 = 0. This breaks the symmetry and we obtain a
vacuum expectation value given by:

〈Φ〉 =
1√
2

(
0
v

)
With this choice of r1, ϕ1 and ϕ2, a zero is obtained in the top entry

of the vacuum expectation value. As we will see, the unitary gauge is the
logical choice as gauge. Since the top entry is generally chosen to be the
charged one, the U (1) symmetry will be preserved.

Taking the obtained result for the vacuum expectation value as motiva-
tion, we now parametrize the Higgs components for small deviations from
the ground state as: φ1 = 1√

2
(α+ iβ) and φ2 = 1√

2
(v + η + iχ) with α (x),

β (x), η (x) and χ (x) real fields. We can then write the Lagrangian as fol-
lows:
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LSM, higgs = 1
2

(
Dµ

(
α+ iβ

v + η + iχ

))†(
Dµ

(
α+ iβ

v + η + iχ

))

+µ2

2

(
α2 + β2 + (v + η)2 + χ2

)
− λ

16

(
α2 + β2 + (v + η)2 + χ2

)2

= 1
2

(
Dµα+ iDµβ
Dµη + iDµχ

)†(
Dµα+ iDµβ
Dµη + iDµχ

)
+ 1

2 |Dµv|2

+µ2

2

(
α2 + β2 + (v + η)2 + χ2

)
− λ

16

(
α2 + β2 + (v + η)2 + χ2

)2

= 1
2 |Dµα|2 + 1

2 |Dµβ|2 + 1
2 |Dµη|2 + 1

2 |Dµχ|2 + 1
2 |Dµv|2

+1
2µ

2α2 − λ
8v

2α2 − λ
16α

4

+1
2µ

2β2 − λ
8v

2β2 − λ
16β

4

+µ2vη − λ
4v

3η + 1
2µ

2η2 − λ
4v

2η2 − λ
8v

2η2 − λ
4vη

3 − λ
16η

4

+1
2µ

2χ2 − λ
8v

2χ2 − λ
16χ

4

+mixed terms + const.

v= 2µ√
λ= 1

2 |Dµα|2 + 1
2 |Dµβ|2 + 1

2 |Dµη|2 + 1
2 |Dµχ|2 + 1

2 |Dµv|2

+0 · α2 + 0 · β2 + 0 · η − µ2 · η2 + 0 · χ2

+higher order terms + mixed terms + const.

We thus see kinetic and mass terms of four real fields:

1. α and β are two real scalar fields and since they are massless, they can
be identified with two Goldstone bosons: G±.

2. η is a real scalar field with mass mη =
√

2µ. η can be identified with
the standard modell Higgs boson. The linear term is gone due to fixing
the vacuum expectation value.

3. χ can be viewed as another massless Goldstone boson: G0.

The higher order terms of η, i.e. η3 and η4 terms, represent Higgs self
couplings. As the other fields are absorbed by the gauge bosons W± and
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Z0, their higher order terms contribute to WW and ZZ scattering.

The mixed terms can be gauged away by choosing an appropriate gauge,
the unitary gauge. We know that LSM, higgs is invariant under the transfor-
mation:

Φ→ eiθ
a σa

2 Φ

We can then parametrize the 4 degrees of freedom of Φ as:

Φ =
1√
2
ei
ζa

v
σa

2

(
0

v + η

)
.

Choosing the parameter θa = − ζa

v , we see that the Goldstone bosons
have been gauged away and we obtain the result for Φ suggested in the
previous section:

Φ =
1√
2

(
0

v + η

)
.

The 3 degrees of freedom of the Goldstone bosons have been gauged into
3 longitudinal degrees of freedom for the 3 gauge bosons W± and Z0. As
we will see in section 2.4, this implies that the gauge bosons get mass terms.

2.4 Introducing the Mass of Gauge Bosons

In the Weinberg-Salam model for standard model particles, the full La-
grangian L writes as [4]

LSM = −1
4W

a
µν ·W aµν − 1

4BµνB
µν

+f̄Lγµ
(
i∂µ − g σa2 ·W a

µ − g′ Y2 Bµ
)
fL + f̄Rγ

µ
(
i∂µ − g′ Y2 Bµ

)
fR

+
∣∣(i∂µ − g σa2 ·W a

µ − g′ Y2 Bµ
)

Φ (x)
∣∣2 − V (Φ)

− (λf f̄LΦ (x) fR + λf f̄LΦc (x) fR + h.c.
)
,

with the following quantities:

W a
µν: The gauge eigenstates of the SU (2) group, forming a triplet and thus

a = 1, 2, 3 is summed over.

Bµν: The gauge eigenstate of the U (1) group, forming a singlet.

fL,R: Left chiral and right chiral fermions. fL is a doublet under SU (2)L,
fR a singlet.
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σa: The Pauli matrices with a = 1, 2, 3. They are the generators of the
SU (2) group.

Y : The weak hypercharge defined through Q = T3 + Y
2 , where Q is the

electric charge, T3 the third component of the weak isospin and the
factor 1/2 conventional. The weak hypercharge is the generator of the
U (1) group.

Φ: The Higgs field in its mass eigenstate.

V (Φ): The Higgs potential.

λf : Yukawa couplings to the corresponding fermion f .

Furthermore, we can interprete the lines of LSM as:

1st line: kinetic terms and self-interaction for gauge bosons W±, Z, γ.

2nd line: kinetic terms for l and q and their interactions with W±, Z, γ.

3rd line: kinetic terms of the Higgs field: the v term yields Gauge boson
mass terms, the η term allows Higgs-gauge boson couplings. The Higgs
potential V (Φ) introduces Higgs self couplings.

4th line: Yukawa terms Φf̄f : the v term yields fermion masses, the η term
gives Higgs-anitfermion-fermion couplings.

The mass terms of the gauge bosons come from the kinetic terms of the
v component of the Higgs field in the 3rd line. Since we are interested in the
mass of gauge bosons, we only consider terms bilinear in the gauge fields.
Furthermore, we only consider the v component in the following:
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|Dµ〈Φ〉|2 =
∣∣(ig σa2 ·W a

µ + ig′ Y2 Bµ
) 〈Φ〉∣∣2

= 1
8

∣∣∣∣( gW 3
µ + g′Bµ g

(
W 1
µ − iW 2

µ

)
g
(
W 1
µ + iW 2

µ

) −gW 3
µ + g′Bµ

)(
0
v

)∣∣∣∣2
= v2

8

(
g2
∣∣W 1

µ − iW 2
µ

∣∣2 +
(−gW 3

µ + g′Bµ
)2)

= v2

8

g2
((
W 1
µ

)2 +
(
W 2
µ

)2)︸ ︷︷ ︸
(A)

+
(−gW 3

µ + g′
) (−gW 3

µ + g′Bµ
)︸ ︷︷ ︸

(B)



= v2

8

(
W 1∗
µ , W 2∗

µ , W 3∗
µ , B∗µ

)
g2 0 0 0
0 g2 0 0
0 0 g2 −gg′
0 0 −gg′ g′2


︸ ︷︷ ︸

(C)


W 1
µ

W 2
µ

W 3
µ

Bµ



The basic idea on the following is to have mass matrices, which we want
to modify by diagonalizing, without changing the value of the Lagrangian:

LSM,mass only =
1
2
G†M2G =

1
2
G†I4×4M

2I4×4G =
1
2
G†R†︸ ︷︷ ︸

(D)

RM2R†︸ ︷︷ ︸
(E)

RG︸︷︷︸
(D)

,

where G is any gauge field 4 and R a unitary matrix. The terms (D) are
the gauge eigenstates changed to mass eigenstates, while the term (E) is the
diagonalized mass matrix.

Bearing this in mind, we study the two parts (A) and (B), which are re-
sponsible for the masses of the charged gauge bosons W±, as well as for the
Z and γ respectively.

(A): The mass matrix is already diagonlized and we can write term (A) as

1
8

(vg)2 (W 1
µ − iW 2

µ

) (
W 1
µ + iW 2

µ

)
=
(

1
2
vg

)2

W+
µ W

−
µ ,

with W±µ ≡ 1√
2

(
W 1
µ ∓ iW 2

µ

)
.

We can identify the prefactor to W+
µ W

−
µ as the mass:

4Note: It works also for scalar frields φ or fermion fields f . For fermion fields there
will be left chiral and right chiral transformations that generally differ.
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mW± =
1
2
vg ≈ 80.4 GeV .

(B): We are looking for the physical masses of the gauge boson, which is
the masses of Z and γ, which is represented by the photon field Aµ.
In order to obtain those, we have to rotate W 3

µ and Bµ by an angle
that will be called the Weinberg angle θW later:(

Zµ
Aµ

)
=
(

cos θW − sin θW
sin θW cos θW

)(
W 3
µ

Bµ

)
. (2)

If we thus square the 2× 2 matrix in the lower part of (C) and call it
M2×2, we obtain:

M2
2×2 = v2

4

(
cos θW − sin θW
sin θW cos θW

)(
g2 −gg′
−gg′ g′2

)(
cos θW − sin θW
sin θW cos θW

)T

= v2

4

(
g2c2

W + 2gg′sW cW + g′2s2
W

(
g2 − g′2) sW cW + gg′

(
s2
W − c2

W

)(
g2 − g′2) sW cW + gg′

(
s2
W − c2

W

)
g2s2

W − 2gg′sW cW + g′2c2
W

)
.

where we have set cos θW = cW and sin θW = sW .

From diagonalization, we find that the off-diagonal elements disap-
pear for:

tan θW = g′/g .

We thus get

M2×2 =
v2

4

(
g2 + g′2 0

0 0

)
,

and hence,

mZ =
v

2

√
g2 + g′2 ≈ 91.2 GeV and mγ = 0 .

We see that the three gauge bosons W± and Z0 get a mass, while
γ stays massless. The latter leaves the symmetry U (1)em unbroken.
From plugin in the obtained value for tan θW into equation 2, we have
the mass eigenstates:

Zµ =
gW 3

3 − g′Bµ√
g2 + g′2

and Aµ =
gW 3

3 + g′Bµ√
g2 + g′2

12



νµ

µ− ν̄e

e−

∼ GF

(a)

νµ

µ−

ν̄e

e−

W−∼ g

∼ g

(b)

Figure 2: µ decay: figure 2(a) shows the decay in the Fermi limit of low
energies. Figure 2(b) shows the decay as an emission of a W− boson.

2.5 Summary of Higgs Mechanism in SM

In short, the Higgs mechanism can be summarized by four steps:

1. Symmetry Breaking: Choosing the parameter µ2 > 0 in the Higgs po-
tential V (Φ) and fixing the vacuum expectation value, spontaneously
breaks the SU (2)L × U (1)Y symmetry down to a U (1)em symmetry.

2. Goldstone Bosons: This yields 3 massless Goldstone bosons, 1 particle
remains with mass, the Higgs boson.

3. Gauge Transformation: By applying the unitary gauge, the degrees
of freedom of the massless Goldstone bosons can be transformed into
longitudinal degrees of freedom of the gauge bosons W± and Z0.

4. Mass of Gauge Bosons: Having a longitudinal degree of freedom im-
plies that they obtain a mass.

2.5.1 Experimental Verification of the Relation Between GF and
mW

The µ-decay can be used to verify the connection between GF , mW and
ultimately v2 experimentally. We study the decay µ− → e−ν̄eνµ, which is
shown in figure 2.

The propagator of the W− in figure 2(b) is proportional to ∼ 1
p2−m2

W
,

with p the momentum of the W−. For a limit, in which the transferred
momentum p2 is small compared to the W -mass mW , this proportionality
simplifies to ∼ 1

m2
W

. This limit can also be described by the Fermi approach
shown in figure 2(a). We thus find the theoretical prediction:
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8√
2
GF = g

1
m2
W

g .

We can measure GF experimentally. The Weinberg angle is obtained
from cos θW = mW

mZ
, which can be measured as well. This allows us to ex-

press g in terms of the Weinberg angle: g2 = e2

sin2 θW
. The measured data

confirms the theoretical prediction and justifies the usage of the W boson.

Noting the following relation, we obtain the vacuum expectation value:

g
1
m2
W

g =
4
v2

→ v2 =
1√

2GF
≈ (246 GeV)2 .

2.6 Introducing the Mass of Fermions

In the standard model, the Lagrangian density LSM is required to be in-
variant under electroweak symmetry transformations, i.e. invariant under
SU (2)L×U (1)Y transformations. If we introduce a mass term for a fermion
field directly into LSM , it must look as follows

LSM,mass only = −mψ̄ψ ,
since the action S =

∫
d4xL should be of massless and thus L of [m]4

dimensions. In other words, [m]x · [m]
3
2 · [m]

3
2

!= [m]4, where x is the dimen-
sion of the directly introduced mass parameter. With a few algebraic tricks,
we obtain

LSM,mass only = −mψ̄ψ = −m (ψ̄L + ψ̄R
)

(ψL + ψR)

= −m (ψ†PLγ0 + ψ†PRγ0
)

(PLψ + PRψ)

= −m (ψ†γ0PR + ψ†γ0PL
)

(PLψ + PRψ)

= −m (ψ̄PRPLψ + ψ̄PRPRψ + ψ̄PLPLψ + ψ̄PLPRψ
)

= −m (ψ̄LψR + ψ̄RψL
)
,

where we have used that PLγ0 = γ0PR (or vice versa) and that PLPR =
0.

Considering that the weak isospin component T3 of ψR (a SU (2) singlet) is
0, while the one of ψL (a SU (2) doublet) is ±1/2, we see that the obtained
quantity is not invariant under SU (2)L×U (1)Y transformations. As a con-
sequence, we cannot introduce masses directly into the Lagrangian.
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A possible solution provides again the Higgs boson. Gauge invariance and
renormalizability allows to introduce Yukawa terms of the form 5 [5]:

Ll = −λl l̄iLΦljR + h.c. ,

for the leptons (left chiral doublet lL and right chiral singlet lR, λl are
the corresponding Yukawa couplings) and for the quarks 6:

Lq = −λdq̄iLΦdjR − λuεabq̄LaΦ†buR + h.c. .

Plugging in Φ = 1√
2

(
0

v + η

)
into these two expressions, we obtain mass

terms from v and Yukawa interaction terms between the fermions and the
Higgs boson from η (x). We have a closer look at the mass terms:

Lli,mass = − 1√
2
λlv︸ ︷︷ ︸

≡mil

l̄iLl
i
R + h.c. ,

where we can identify 1√
2
λlv ≡ mli as a mass term defined by the vacuum

expectation value v, but rescaled with a dimensionless Yukawa coupling λli .

Lqi,mass = − 1√
2
λdiv︸ ︷︷ ︸
≡miq

d̄iLd
i
R −

1√
2
λuivū

i
Lu

i
R + h.c. ,

where again, we identify 1√
2
λqiv ≡ mqi with a mass term depending on

the vacuum expectation value v and a dimensionless coupling λqi .

In general, it can thus be written:

Lf,mass = −mf f̄f

(
1 +

h

v

)
with mf =

1√
2
λfv ,

for any fermion f 7.
5The hermitian conjugate terms (h.c.) introduce couplings with the same particles,

but with opposite chirality.
6Note: In order for the Lagrangian L to stay U (1) gauge invariant, we also add a

charge conjugated term ΦC . We then may write

ΦC = iσ2Φ† =

„
0 1
−1 0

«
= εabΦ† .

7In general, it would be good to have λ > O (1) for being able to apply perturbation
theory and thus one would naturally expect λ . O (1). Surprisingly, the different coupling
constants λ vary a lot. The standard model is not capable of solving this mystery.
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2.7 The WW -Scattering Amplitude

Just as a side note and for completeness, another vital function of the Higgs
boson in the standard model should be mentioned: The Higgs boson pre-
serves the unitarity of the WW -scattering amplitude. Fermi’s golden rule
gives the reaction rate per particle W [6]:

W =
2π
~
|Mfi|2 · ρ

(
E′
)
,

where

• Mfi is the matrix transition element (scattering amplitude) going from
initial state i to final state f . It is given byMfi = 〈ψf |Hint|ψi〉. Hint
is the Hamiltonian describing the interaction.

• ρ (E′) is the density of energy final states.

• W can be related to the cross section σ by W = σ·va
V , where va is the

volume density of the target particles a and V is the volume containing
the beam particles b.

This gives the relation between the scattering amplitude Mfi to the
cross section σ. For large energies, the Feynman diagrams in figure 3 go as:

|Mfi| ∼ s2 ,

where s is the center of mass energy. Hence, the cross section σ should
increase more and more, which is of course unphysical. In order to avoid
this problem, a scalar particle with a coupling proportional ∼ mW can be
introduced instead of the Z and γ bosons shown in figure 3. The Higgs boson
can take this role and hence preserves the unitarity of WW scattering. A
similar argument can be used for the unitarity of (f̄f → WW ) scattering
[7].

2.8 Summary

The Higgs boson in the standard model thus has three prominent functions:

1. introduces the gauge boson mass,

2. introduces the fermion mass,

3. and is needed for a perturbative unitary gauge theory to be valid up
to high energies. This includes the preservation of the unitarity of
WW -scattering.
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Z, γ

(c) u-channel.

Figure 3: The three channels for WW -scattering. All have a scattering
amplitude Mfi ∼ s2.
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3 The Higgs Mechanism in a SUSY Context

3.1 Overview on SParticles and Labelling

The following conventions are used [2]:

• All particles carrying a tilde are superpartners to the particles, i.e. f̃
to f for fermions, b̃ to b for bosons, etc..

• Li =
(
Lνei
Lei

)
, a superfield indexing the three generations with i and

containing the fields liL and l̃iL.

• Ēi, containing eCiR and ẽ∗iR.

• Qi =
(
Qui
Qdi

)
, a superfield containing all qiL and q̃iL.

• Ūi containing uCiR and ũ∗iR.

• D̄i containing dCiR and d̃∗iR.

3.2 Introducing the Higgs-Doublet

We have to distinguish between the Higgs current or gauge eigenstates and
the Higgs mass eigenstates:

1. The current or gauge eigenstates are represented conveniently by two
complex Higgs doublets:

Hu =
(
H+
u

H0
u

)
and Hd =

(
H0
d

H−d

)
,

where the upper indices label the electromagnetic charge of the Higgs
boson. In total, there are 4× 2 = 8 degrees of freedom.

2. The mass eigenstates consist of 5 Higgs bosons:

• 2 charged Higgs boson: H+ and H−

• 2 neutral CP even Higgs bosons: H and h. By convention h is
chosen to be the lighter one.

• 1 neutral CP odd Higgs boson: A.

In total, we count only 5 degrees of freedom. 3 have been absorbed by
the gauge bosons W± and Z and this way give them a mass, just as
in the standard model.

18



3.2.1 Why Two Higgs Doublets

On the contrary to the standard model, two Higgs doublets are needed in
the MSSM. This is for the following reasons:

• In the SM, quark masses can be generated by the Higgs doublet for u-
type quarks. To obtain d-type masses then simply requires HC , where
the charge conjugation is given by HC = iσ2H∗. For the MSSM,
this will yield a problem with the superpotential W as it should stay
analytic. In order to produce u-type as well as d-type quarks, we thus
need two doublets.

• Keeping the summed hypercharge equal to zero is needed for an anomaly
free theory. In the SM, the summed hypercharge is naturally zero,
i.e.

∑
f Yf = 0 for each generation of fermions. If we introduce new

fermions in the form of Higgsinos, they need to fulfill the same relation.
We thus need one Higgs doublet with Y = +1 and one with Y = −1.

• A similar problem as the one described in the first point also exists
for the masses of the charginos, which arise from mixtures between
gauginos and higgsinos.

The Higgsinos can be introduced as left chiral fields, where right chiral
ones are obtained by hermitian conjugation. From the used conven-
tions, there is H̃−dL and H̃+

uL, but no H̃+
dL or H̃−uL. This requires both

doublets in order to be able to construct all charginos with mass.

3.3 Higgs Potential

As a quick repetition, we introduce the complete MSSM Lagrangian [4]:

LMSSM = Lgauge + Lmatter + LD + LW + Lsoft , (3)

with the following components:
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Lgauge = −1
4G

aµνGaµν − 1
4W

aµνW a
µν − 1

4B
µνBµν

+Tr
(¯̃gi /Dg̃)+ Tr

(
¯̃Wi /DW̃

)
+ 1

2
¯̃Bi/∂B̃

Lmatter =
∑

ψ=f, H̃i
ψ̄i /Dψ +

∑
φ=f̃ , Hi

|Dµφ|2 + i
∑

ψ, φ, V
gV√

2

(
ψ̄LT

aṼ aφ− ¯̃V aT aψLφ
∗
)

LD = −1
2

∑
a, V

∣∣DV
a

∣∣2 with DV
a = −gaφ∗iT aijφj

LW = −∑i

∣∣∣∂W∂φi ∣∣∣2 − 1
2

∑
ij ψ̄

C
iL

∂2W
∂φi∂φj

ψjL + h.c.

Lsoft = −1
2

∑
iMiλ̄

a
i λ

a
i −m2

Hd
|Hd|2 −m2

Hu
|Hu|2

+Bµεij
(
H i
dH

j
u + h.c.

)
−m2

Q̃

(
ũ†LũL + d̃†Ld̃L

)
−M2

ũ ũ
†
RũR −M2

d̃
d̃†Rd̃R +

(
l̃ terms

)
+ g√

2mW
εij

(
md

cosβAdH
i
dQ̃

j d̃†R + (ũ terms) +
(
l̃ terms

))

W = WR +W/R

WR = −εijµH i
dH

j
u + εij

(
λLH

i
dL̃j ẽ

C + λdH
i
dQ̃j d̃

C + λuH
i
uQ̃j ũ

C
)

W/R = εij

(
λL̃iL̃j ẽ

C + λ′L̃iQ̃j d̃C
)

+ λ′′ũC d̃C d̃C ,

where

• W is the superpotential containing a R-parity conserving and an R-
parity breaking part, labelled with WR and W/R respectively 8.

• /D is the slashed notation for γµDµ.

• iDµ = i∂µ − gsGaµ λ
a

2 − gW a
µ
σa

2 − g′Bµ Y2 .

• The mass parameter µ in a supersymmetric context is identified with
the higgsino mass.

8R-parity in the MSSM takes the role of baryon and lepton number conservation:
∆B = 0 and ∆L = 0.
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We now focus on the scalar tree level potential including exclusively Higgs
terms. In its most general form, it is given by

Vhiggs = Vhiggs, SUSY + Vhiggs, soft

=
1
8
(
g′2 + g2

) (|Hd|2 − |Hu|2
)2

︸ ︷︷ ︸
(A)

+
g2

2

∣∣∣H†dHu

∣∣∣2︸ ︷︷ ︸
(B)

+ |µ|2
(
|Hd|2 + |Hu|2

)
︸ ︷︷ ︸

(C)

+Vhiggs, soft

(4)

with

Vhiggs, soft = m2
Hd
|Hd|2 +m2

Hu |Hu|2 +
(
m2

12Hd ·Hu + h.c.
)︸ ︷︷ ︸

(D)

and

m2
12 = Bµ ,

with B a scale factor.

(A): The terms proportional to
(
g′2 + g2

)
are D-term contributions from

LD. The D-terms namely are −1
2

∑
a, V

∣∣DV
a

∣∣2 with DV
a = −gaφ∗iT aijφj .

(B): This term has the same origin as the (A) terms, but mixes two different
field components of the Higgs doublets.

(C): The terms proportional to |µ|2 arise from F -terms. This is from
∣∣∣∂W∂φi ∣∣∣2

terms, which are contained in LW by differentiating the superpotential
W once and squaring the result.

(D): This term was introduced into the soft symmetry breaking term of the
Lagrangian in order to give masses to the two Higgs doublets.

Now, we introduce the vacuum expectation values of the two Higgs dou-
blets, which minimize the potential Vhiggs. To keep it simple, we make use
of the freedom to choose a SU (2)L gauge and set H+

u |min = 0 without loss
of generality. If ∂Vhiggs/∂H+

u = 0 should be valid at the minimum, it au-
tomatically follows that also H−d |min = 0. We thus can assign the following
vacuum expectation values:

〈H0
u〉 =

1√
2

(
0
vu

)
and 〈H0

d〉 =
1√
2

(
vd
0

)
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Near the minimum, this choice simplifies the potential Vhiggs to 9

V 0
higgs = 1

8

(
g′2 + g2

) (∣∣H0
d

∣∣2 − ∣∣H0
u

∣∣2)2

+
(
m2
Hd

+ |µ|2
) ∣∣H0

d

∣∣2 +
(
m2
Hu

+ |µ|2
) ∣∣H0

u

∣∣2 −m2
12

(
H0
dH

0
u + h.c.

)
3.4 Higgs Mechanism in the MSSM

As a general remark in advance: the spontaneous symmetry breaking in
the MSSM follows an analogous path to the one in the SM, just in a more
complex way: there are two Higgs doublets and the scalar Higgs potential
Vhiggs contains more terms. First, let us introduce the following quantities:

• A connection between the vacuum expectation values and the mass
of the Z gauge boson can be obtained by evaluating

∣∣Dµ〈H0
d〉
∣∣2 +∣∣Dµ〈H0

u〉
∣∣2 analogously to what we did in the SM to get the gauge

boson masses:

m2
Z =

g2 + g′2

4
(〈Hu〉2 + 〈Hd〉2

)
=
g2 + g′2

4
(
v2
u + v2

d

) ≡ g2 + g′2

4
v2 .

• The ratio between the two vacuum expectation values 10:

vu
vd
≡ tanβ .

• And combining the last two equations:

vu = v sinβ and vd = v cosβ .

As in the SM, we first try to find bounds on the parameter µ2 and the
mass terms. This will yield two boundary conditions.

In the potential V 0
higgs, there are quartic and quadratic parts. We notice

that for H0
u = ±H0

d the quartic part vanishes. This direction is called the
D-flat direction, since the terms in the potential coming from the D-terms
vanish. In order for the potential to be bounded from below, the quadratic

9The negative sign in front of the term including m2
12 arises from εdu = −1.

10The fact that we want vu and vd to be real valued limits β: 0 ≤ β ≤ π/2. Current
theoretical wisdom suggests that 1 ≤ tanβ ≤ 60.
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terms should be positive along the D-flat direction. This leads to the bound
11:

m2
Hu +m2

Hd
+ 2 |µ|2 !

> 2
∣∣m2

12

∣∣ (convexity) . (5)

The quadratic part of V 0
higgs can be written as 12:

V 0, quad.
higgs =

(
H0∗
d , H0

u

)(m2
Hd

+ |µ|2 −m2
12

−m2
12 m2

Hu
+ |µ|2

)(
H0
d

H0∗
u

)
.

Since the vacuum expectation values vu and vd should be non-zero, at
least one of the eigenvalues of the mass squared matrix should be negative.
From equation 5, we know that the trace of the mass matrix has to be posi-
tive. This implies that its determinant has to be negative for a spontaneous
symmetry breakdown 13:

m4
12 >

(
m2
Hd

+ |µ|2
)(

m2
Hu + |µ|2

)
(non-trivial minimum) . (6)

If this condition is not fulfilled, the minimum will be stable for Hu =
Hd = 0, i.e. we have a trivial minimum and there will be no symmetry
breaking.

It should be noted that for m2
Hu

= m2
Hd

not both conditions 5 and 6 can
be fulfilled, at least at tree level. This is the supersymmetry invariant limit,
which indicates that supersymmetry breaking and electroweak breaking are
closely related in the MSSM, i.e. first the supersymmetry has to be broken
so that the electroweak symmetry can be broken.

Again, as in the standard model, we try to find relations between the vac-
uum expectation value v and the parameters in the potential Vhiggs. We do
so by using the conditions for minima:

11Because of quantum corrections and renormalization group evolution m2
Hu

, m2
Hd

and
m2

12 become running quantities, but equation 5 has to hold at all scales.
12The mass matrix is defined as:

m2
lm =

fi
∂2Vhiggs
∂φl∂φm

fl
,

as described in section 3.5.
13Note: To find the eigenvalues λ of a 2× 2 matrix M we can use:

det (M− λI2×2) = λ2 − Tr (M) + det (M)

and thus:

λ1, 2 =
1

2

„
Tr (M)±

q
Tr (M)2 − 4det (M)

«
.
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∂Vhiggs
∂vd

=
∂Vhiggs
∂vu

= 0 ,

which yields:

m2
Hd

+ |µ|2 = m2
12

vu
vd
− 1

8
(
g′2 + g2

) (
v2
d − v2

u

)
,

m2
Hu + |µ|2 = m2

12

vd
vu

+
1
8
(
g′2 + g2

) (
v2
d − v2

u

)
.

These two equations can be transformed to the following two, eliminating
B and |µ| 14 in favour of tanβ:

−2Bµ = −2m2
12 =

(
m2
Hd
−m2

Hu

)
tan 2β +m2

Z sin 2β ,

|µ|2 = (cos 2β)−1 (m2
Hu sin2 β −m2

Hd
cos2 β

)− 1
2
m2
Z .

3.5 Introducing Higgs Masses at Tree Level

In order to find expressions for the different Higgs masses, we look for the
mass squared matrix of the Higgs scalars. It can be obtained from the
quadratic part of the original potential Vhiggs from equation 4 by differen-
tiating twice. This includes cumbersome calculations, which are not shown
here. At the end, the mass terms will enter as

Vhiggs =
1
2
m2
lmφlφm with m2

lm =
〈
∂2Vhiggs
∂φl∂φm

〉
, (7)

where m2
lm is the 8× 8 mass matrix and φl,m is the notation of any real

or imaginary part of a Higgs component field. Evaluating the mass matrix,
we see that it breaks up into four 2×2 matrices, which we will have a closer
look at.

3.5.1 Neutral Goldstone and CP Odd Higgs

If we consider only the neutral and imaginary parts of the Higgs field com-
ponents and use the vacuum expectation values, we have chosen earlier:

〈Hd〉 =
1√
2

(
vd
0

)
and 〈Hu〉 =

1√
2

(
0
vu

)
,

we obtain a mass matrix of the form:

mImH0
u,d

=
m2

12

vdvu

(
v2
u vdvu

vdvu v2
d

)
.

14Note: The sign of µ still remains a free parameter.
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By diagonalizing this matrix, we obtain the two mass terms in form of
the eigenvalues:

m2
G0 = 0 ,

m2
A =

m2
12

vdvu

(
v2
d + v2

u

)
=

2m2
12

sin 2β
,

where the first mass eigenvalue belongs to a neutral Goldstone boson and
the second one to a neutral CP odd scalar, which is labelled as the neutral
CP odd Higgs boson A. The corresponding mass eigenstates are:

G0

√
2

= −ImH0
d cosβ + ImH0

u sinβ ,

A√
2

= ImH0
d sinβ + ImH0

u cosβ ,

where β is the mixing angle 15. Analogous to the standard model, the
G0 degree of freedom can be gauged into a longitudinal degree of freedom
for the Z0 boson, which will give it a mass term.

3.5.2 Charged Goldstones and Higgs

We collect all charged Higgs components, which yields in a compact complex
2× 2 matrix representing a 4× 4 part of m2

lm:

m
H±

u,d
=

0@m2
Hd

+ |µ|2 + 1
8

“
g′

2
+ g2

” `
v2
d − v2

u

´
+ 1

4
g2v2

u m2
12 + 1

4
g2vdvu

m2
12 + 1

4
g2vdvu m2

Hu
+ |µ|2 − 1

8

“
g′

2
+ g2

” `
v2
d − v2

u

´
+ 1

4
g2v2

d

1A
=

“
m2

12
vdvu

+ 1
4
g2
”„ v2

u vdvu
vdvu v2

d

«
.

We see that this is the same matrix as for the CP odd Higgs apart from
the prefactor and thus obtain mass terms of the form:

m2
G± = 0 ,

m2
H± =

(
m2

12

vdvu
+

1
4
g2

)(
v2
d + v2

u

)
= m2

A +m2
Z .

The first term is identified with two charged Goldstone bosons G±, the
latter one with two charged Higgs bosons H±. From now, we can treat m2

A

15As in the standard model, we can find the rotation angle from gauge eigenstates to
mass eigenstates by making an ansatz and thus obtaining a value for tanβ0, with tanβ0

the rotation angle for the neutral imaginary Higgs components. It is not clear from the
beginning that tanβ0 = tanβ, but it turns out to be true and thus has been labelled
accordingly.
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as input parameter eliminating m2
12. By finding the eigenstates of the mass

matrix, we can obtain the mass diagonal fields:

G± = − cosβH±d + sinβH±u ,

H± = sinβH±d + cosβH±u ,

As discussed in the standard model, the two G± degrees of freedom can
be gauged into longitudinal degrees of freedom for the W± bosons.

3.5.3 Neutral CP Even Higgs

The last components to consider are the real parts of the neutral Higgs
fields. We find:

m2
ReH0 =

1

2

„
2m2

Hd
+ 2 |µ|2 + 1

4

`
g′2 + g2

´ `
3v2
d − v2

u

´
−2m2

12 − 1
2
vdvu

`
g′2 + g2

´
−2m2

12 − 1
2
vdvu

`
g′2 + g2

´
2m2

Hu
+ 2 |µ|2 + 1

4

`
g′2 + g2

´ `
3v2
u − v2

d

´«
This matrix is then expressed in terms of m2

A and m2
Z and we obtain the

masses:

m2
H,h =

1
2

(
m2
A +m2

Z ±
((
m2
A +m2

Z

)2 − 4m2
Zm

2
A cos2 2β

)1/2
)
,

and the corresponding eigenstates:

H√
2

=
(

ReH0
d −

vd√
2

)
cosα+

(
ReH0

u −
1√
2
vu

)
sinα ,

h√
2

= −
(

ReH0
d −

vd√
2

)
sinα+

(
ReH0

u −
1√
2
vu

)
cosα .

The state h is identified with the lighter of the two Higgs. Since they
both have the same charge and are both CP even, they can only be distin-
guished by their mass.

How the angles α and β are related, can be best seen in a graphical repre-
sentation shown in figure 4. Mathematically it is described by:

cos 2α = −m
2
A −m2

Z

m2
H −m2

h

cos 2β . (8)

From the bound that 0 ≤ β ≤ π/2, we obtain a bound for α: −π/2 ≤
α ≤ 0.

Furthermore, we can interprete the mass eigenstates h as a fluctuation along
the shallow direction in figure 5. H is then correspondingly a fluctuation
along the steep direction.
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Figure 4: The rotation angles β and α in a plot ReH0
u versus ReH0

d . A
value for tanβ > 1 is chosen, which is consistent with expected values.
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Figure 7.1: A contour map of the Higgs potential, for a typical case with tan β ≈ − cot α ≈ 10.
The minimum of the potential is marked by +, and the contours are equally spaced equipotentials.
Oscillations along the shallow direction, with H0

u/H0
d ≈ 10, correspond to the mass eigenstate h0, while

the orthogonal steeper direction corresponds to the mass eigenstate H0.

∆(m2
h0) = h0

t

+ h0

t̃

+ h0

t̃

Figure 7.2: Contributions to the MSSM lightest Higgs mass from top-quark and top-squark one-loop
diagrams. Incomplete cancellation, due to soft supersymmetry breaking, leads to a large positive
correction to m2

h0 in the limit of heavy top squarks.

and is traditionally chosen to be negative; it follows that −π/2 < α < 0 (provided mA0 > mZ). The
Feynman rules for couplings of the mass eigenstate Higgs scalars to the Standard Model quarks and
leptons and the electroweak vector bosons, as well as to the various sparticles, have been worked out
in detail in ref. [182, 183].

The masses of A0, H0 and H± can in principle be arbitrarily large since they all grow with b/ sin(2β).
In contrast, the mass of h0 is bounded above. From eq. (7.20), one finds at tree-level [184]:

mh0 < mZ | cos(2β)| (7.23)

This corresponds to a shallow direction in the scalar potential, along the direction (H0
u−vu,H0

d −vd) ∝
(cos α,− sin α). The existence of this shallow direction can be traced to the fact that the quartic Higgs
couplings are given by the square of the electroweak gauge couplings, via the D-term. A contour map
of the potential, for a typical case with tan β ≈ − cot α ≈ 10, is shown in figure 7.1. If the tree-level
inequality (7.23) were robust, the lightest Higgs boson of the MSSM would have been discovered at
LEP2. However, the tree-level formula for the squared mass of h0 is subject to quantum corrections
that are relatively drastic. The largest such contributions typically come from top and stop loops, as
shown‡ in fig. 7.2. In the simple limit of top squarks that have a small mixing in the gauge eigenstate
basis and with masses mt̃1

, mt̃2
much greater than the top quark mass mt, one finds a large positive

one-loop radiative correction to eq. (7.20):

∆(m2
h0) =

3
4π2

cos2α y2
t m

2
t ln

(
m

t̃1
m

t̃2
/m2

t

)
. (7.24)

This shows that mh0 can exceed the LEP bounds.
‡In general, one-loop 1-particle-reducible tadpole diagrams should also be included. However, they just cancel against

tree-level tadpoles, and so both can be omitted, if the VEVs vu and vd are taken at the minimum of the loop-corrected
effective potential (see previous footnote).

69

Figure 5: The same plot as shown in figure 4, displaying the potential
through equipotential lines. Typical values for tanβ have been chosen, i.e.
tanβ ≈ − cotα ≈ 10. The mass eigenstate of h is a fluctuation along the
shallow direction of the potential. The mass eigenstate for H is conversely
fluctuating along the steep direction. Source: [1].
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3.5.4 Relations and Constraints

The previous section indicates that the Higgs mass spectrum is completely
controlled by two parameters, which can be chosen to be mA and tanβ.
There can be found several constraints, from which only the most important
ones are listed here:

• mW ≤ mH± .

• mh ≤ mZ ≤ mH .

• mh ≤ mA ≤ mH .

• mh is bounded from above, mH , mH± and mA can be large.

3.5.5 The Decoupling Limit

In short, the decoupling limit is the limit where mA → ∞. This leads to
two major effects:

1. mh → mZ |cos 2β|. This gives a first upper bound for the mass mh:

mh < mZ |cos 2β| ≤ 91.2 GeV ,

which means that mh has to be smaller than the Z boson mass, since
cos 2β cannot be larger than 1. This boundary also leads to that
couplings between h and fermions or gauge boson pairs become identical
to the couplings described in the standard model 16. Analogously, hhh
or hhhh self-couplings become equal to SM couplings.

2. All other Higgs masses become uniformly heavy.

Numerically, this limit starts to become important for mA ≥ 250 GeV,
which is not at all unrealistic: First, A has not been found in collider ex-
periments so far and secondly, the larger mA is, the larger can mh be.

This is an important advantage of the MSSM compared with the SM. In
the standard model, mh is not bounded from above and there is no connec-
tion between mh and mZ . The MSSM provides more detailed information
on where to look for the neutral CP even Higgs h.

Figure 6 shows the masses for h, H and H± in dependence of the CP odd
Higgs’ mass mA for two different values of tanβ. For both values of tanβ
the decoupling limit can be seen. We also notice that for a large tanβ, the
bound for mh is reached very soon. For tanβ = 30, this is around mA = 130
GeV.

16This can be seen using equation 8 and adapting the values given in table 1 for the
decoupling limit.
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31

Finally, the mixing parameter α, which diagonalizes the CP-even mass matrix, is given by the radiatively
improved relation:

tg2α = tg2β
M2

A + M2
Z

M2
A −M2

Z + ε/ cos 2β
. (3.11)

For large A mass, the masses of the heavy Higgs particles coincide approximately, MA " MH "
MH± , while the light Higgs mass approaches a small asymptotic value. The spectrum for large values of
tgβ is quite regular: for small MA one finds {Mh " MA;MH " const} [72]; for large MA the opposite
relationship {Mh " const,MH " MH± " MA}, cf. Fig. 3.1 which includes the radiative corrections.

Figure 3.1: The CP-even and charged MSSM Higgs boson masses as a function of mA for tanβ = 3 and 30,
including radiative corrections. Ref. [73].
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Figure 3.2: Upper bounds on the light Higgs boson mass as a function of tgβ for varying top mass, and the region
excluded by the negative searches at the LEP experiments. Ref. [74].

Figure 6: The four Higgs masses mh, mH and m±H in dependence of the fifth
Higgs mass mA. Source: [9].

3.6 Summary of Higgs Mechanism in MSSM

We now have determined the conditions for symmetry breaking in the MSSM.
It is important to notice that most of the mechanisms follow an anologous
way to the one described in the standard model, i.e.

1. Symmetry Breaking: Choosing the parameters in the Higgs potential
Vhiggs according to equations 5 and 6 together with fixing the vacuum
expectation value spontaneously breaks the SU (2)L×U (1)Y symme-
try down to a U (1)em.

2. Goldstone Bosons: This yields 3 massless Goldstone bosons, 5 Higgs
bosons have mass. These are in particular H+, H−, H, h and A.

3. Gauge Transformation: By applying the unitary gauge, the degrees of
freedom of the massless Goldstone bosons can be made into longitu-
dinal degrees of freedom of the gauge bosons.

4. Mass of Gauge Bosons: Having a longitudinal degree of freedom im-
plies that they obtain a mass.

3.7 Higgs-Particle Vertices

This following particle couplings appear in the Lagrangian:
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1. Physical Higgs bosons coupling to standard model fermions:

• Higgs-fermion-antifermion couplings Hf̄f .

These couplings arise from the term −1
2

∑
ij ψ̄

C
iL

∂2W
∂φi∂φj

ψjL+h.c. in the
Lagrangian LW .

2. Physical Higgs bosons coupling to standard model gauge bosons:

• Higgs-gauge-gauge couplings HGG.

• Higgs-gauge-Higgs couplings HGH.

• Higgs-Higgs-gauge-gauge couplings HHGG.

They originate from the term +
∑

φ=f̃ , Hi
|Dµφ|2 in the Lagrangian

Lmatter and are the kinetic terms of the Higgs fields.

3. Higgs self couplings. The Higgs self couplings come from the trilinear
and quartic terms in the Higgs potential Vhiggs, which originate from
−1

2

∑
a, V

∣∣DV
a

∣∣2 in LD.

An overview on the different couplings with respect to the standard
model can be seen in table 1 [9]. The MSSM couplings are very similar
to the SM ones, but are slightly changed by a factor determined through
the angles α and β. They are determined completely by the electroweak
parameters of the standard model and the angles β and α.

The Higgs-fermion-antifermion Yukawa interaction part of the Lagrangian
can be written as [2]:

Lyuk,Hf̄f = g·md
2mW cosβ

∑
f f̄dfd (H cosα− h sinα) + ig·mdtanβ

2mW

∑
f f̄dγ5fdA

g·mu
2mW sinβ

∑
f f̄ufu (H sinα+ h cosα) + ig·mucotβ

2mW

∑
f f̄uγ5fuA

g√
2mW

∑
f

(
H+f̄u (mucotβPL +mdtanβPR) fd + h.c.

) ,

where f is summed over all leptons and quarks.

1st line: d-type fermion-antifermion-Higgs interactions with the neutral
Higgs H, h and A.

2nd line: u-type fermion-antifermion-Higgs interactions with the neutral
Higgs H, h and A.

3rd line: interaction between charged Higgs, u-type and d-type fermions.

The terms for HGG, HGH, HHGG and for the Higgs self-couplings
follow analogously.
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Φ λui λdi g − type
SM H 1 1 1

MSSM h cosα/ sinβ − sinα/ cosβ sin (β − α)
H sinα/ sinβ cosα/ cosβ cos (β − α)
A 1/ tanβ tanβ 0

Table 1: The standard model couplings have been normalized to 1, the
MSSM couplings are shown in relation to the ones in the standard model.
There is no coupling between A and gauge bosons, since A is CP odd [9].

3.8 Higgs-Sparticle Vertices

Higgs-sparticle vertices describe a multitude of couplings, which only an
overview is given of:

1. Higgs couplings to neutralinos χ̃0 and charginos χ̃±. Neutralinos and
charginos are mass eigenstates containing Higgsino as well as gaugino
current eigenstates. The couplings arise from the term
+i
∑

ψ, φ, V
ga√

2

(
ψ̄LT

aṼ aφ− Ṽ aT aψLφ
∗
)

in Lmatter.

2. Higgs couplings to sfermions f̃ . These couplings come from D and F -
terms in the scalar potential, i.e. from −1

2

∑
a, V

∣∣DV
a

∣∣2 in LD and from

−∑i

∣∣∣∂W∂φi ∣∣∣2 in LW , but also from trilinear soft supersymmetry break-

ing terms + g√
2mW

εij

(
md

cosβAdH
i
dQ̃

j d̃†R + (ũ terms) +
(
l̃ terms

))
. In

particular we have:

• Higgs-slepton-antislepton coupling Hl̃¯̃l.

• Higgs-squark-antisquark coupling Hq̃ ¯̃q.

• Higgs-Higgs-slepton-antislepton coupling HHl̃¯̃l.

• Higgs-Higgs-squark-antisquark coupling HHq̃ ¯̃q.

3.9 Radiative Effects

So far, we have only studied masses and couplings at tree level. Since h is
the lightest Higgs boson, which imposes that radiative effects can introduce
large scale changes, we will focus on this particle. Radiative effects also
provide an escape why the h bosons might not have been discovered yet.
Furthermore, we will constrain our thoughts to one-loop corrections for mh.
The dominating contributions come from t quarks, and its supersymmetric
partners, the stop quarks t̃L and t̃R, since they have large Yukawa couplings
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with h 17. As we will later see, the corrections are proportional to ∼ m4
t .

h h

t

(a)

h h

t̃L,R

(b)

h h

t̃L,R

(c)

h h

t

(d)

h h

t̃L,R

(e)

Figure 7: These loops contribute to a one-loop correction of the mass mh.
The loops 7(a) to 7(c) contribute due to the large top and stop masses. The
contributions from loops 7(d) and 7(e) are rendered zero in the effective
potential technique.

To get a better theoretical understanding, we consider a method called
effective potential technique 18:

V 1
higgs = V

(0)
higgs (Q) + ∆V (1)

higgs (Q) ,

with the tree level potential V (0)
higgs, the correction ∆V (1)

higgs and Q as the

scale at which the couplings are renormalized. ∆V (1)
higgs can be calculated

as shown in [5]. In the following, we will only outline the proceedings dis-
tinguishing two cases with the first one being a simplification of the second
one:

Corrections without t̃L-t̃R mixing: First, we assume mt̃L
= mt̃R

and
secondly, we neglect any mixing among the two stop quarks. Further:

1. We find m2
t (h) in terms of the neutral u-type higgs current state∣∣H0

u

∣∣. Anologously mt̃L
and mt̃R

in terms of
∣∣H0

u

∣∣.
17Since t̃ are the supersymmetric partners of the t quark, the Yukawa coupling of t can

also be used for t̃, and vertices including t as well as t̃ are proportional to ∼ λt.
18Three main methods for calculating radiative effects can be used: a) direct diagram

calculation, b) renormalization group methods and c) effective potential techniques. a)
and b) will not be further discussed here.
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2. Plugging the obtained mass terms into ∆V (1)

H, t−t̃ (Q), the correc-

tion to the original potential is now only dependent on t− t̃-terms.
3. Since only the doublet Hu gets a change, we do not have to con-

sider terms containing the Hd doublet.
4. To obtain the mass matrix, we need to derivate the new potential

twice again with respect to the real and imaginary parts of the
Higgs component fields.

5. The change in the mass matrix of the CP even Higgs h can then
be displayed in a form m0 + δm (εh), with δm the mass change
depending on εh, a parameter describing the magnitude of the
corrections. δm has the form

δm2
ReH0 =

(
0 0
0 εh

sin2 β

)
with εh =

3GFm4
t√

2π2
ln
m2
t̃

m2
t

.

While tanβ stays as it is, tanα needs to be changed as a conse-
quence of the changed mass matrix.

This yields a new upper boundary for mh:

mh <
√
m2
Z cos2 2β + εh ≈ 110 GeV ,

where the value has been obtained assuming a modest mA, i.e. mA >
300 GeV. This value has already excluded experimentally. Further, we
should note that this correction has a dependence on m4

t , but also a
logarithtmic dependence on m2

t̃
.

Corrections with t̃L-t̃R mixing: For this case, we allow t̃L-t̃R mixing,
which is described by the off-diagonal elements of the mass matrix
of t̃L,R. Additionally, mt̃L

and mt̃R
do not necessarily have to be the

same.

1. Again, we find m2
t (h) in terms of the neutral u-type higgs current

state
∣∣H0

u

∣∣. But now, mt̃L
and mt̃R

depend on
∣∣H0

u

∣∣ and
∣∣H0

d

∣∣.
2. Both doublets Hu,d get changed and we need to consider both

minimization conditions ∂V 1
higgs/∂H

0
d = 0 and ∂V 1

higgs/∂H
0
u = 0.

3. To obtain the mass matrix, we need to derivate the new potential
twice again with respect to the real and imaginary parts of the
Higgs component fields.

4. The change in the mass matrix of the CP even Higgs can then be
displayed in a form m0+δm (εh). The mass matrix δm containing
the corrections, has now the form:

δm2
ReH0 =

(
∆11 ∆12

∆21 ∆22

)
.
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All entries have obtained a correction represented by ∆ij
19. This

allows to obtain an even weaker boundary for the Higgs mass mh:

m2
h ≤ m2

Z cos2 2β + ∆11 cos2 β + ∆12 sin 2β + ∆22 sin2 β ≈ 132 GeV ,

having chosen values in order to maximize the possible values for mh.

There can be found less stringent bounds for mh resorting to next-to-
minimal supersymmetric models. The bound can hence be forced up to
[1]:

mh ≤ 150 GeV .

3.10 Higgs Particles at Collider Experiments

In the previous section, there were several methods explained that allow to
weaken the bound on the Higgs mass mh in order to explain why h has not
been found as of now. This section summarizes the experimental techniques
and limits.

Decay: Since Higgs particles cannot be measured directly, it has to be stud-
ied into what particles the h, H, H± and A decay. In general, it is very
difficult to measure corresponding processes. The dominant process is
that Higgs decay into bb̄ pairs, which are impossible to distinguish
from the background. One possibility thus is to resort to the cleanest,
though very rare process of Higgs decaying into γγ pairs.

Production: In a collider, the production processes of supersymmetric
Higgs particles are very similar to the ones in the standard model.
The differences arise from the changed coupling constants. The most
dominant process is the gluon fusion, which is important for all tanβ.
It is also the dominant process in the standard model. For large tanβ
however, bremsstrahlung becomes more important. This is through
quark pairs annihilating to a gluon, which produces a tt̄ or bb̄ pair,
one of which then radiates a Higgs. Both mentioned processes are
shown in figure 8.

Figure 9 shows the mass mh in dependence of different values for tanβ.
Many values have already been excluded by the LEP and LEP2 experiments.
The last resort seems to lie in the hope that there are large contributions
from radiative corrections as well as that mA is large enough to allow for
high mh values.

So, the Higgs particle is still not found and if we are a bit unlucky,
everything written so far is useless. In other words, this might be a good
point to stop.

19The expressions for ∆ij are quite lengthy and can be found in [2].
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t, b, t̃, b̃

g

g

Φ0

(a) gluon fusion.

q

q̄

g

t/b

t̄/b̄

Φ0

g

g

Φ0

t/b

t̄/b̄

(b) bremsstrahlung.

Figure 8: The two most important production processes in the MSSM.
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Finally, the mixing parameter α, which diagonalizes the CP-even mass matrix, is given by the radiatively
improved relation:

tg2α = tg2β
M2

A + M2
Z

M2
A −M2

Z + ε/ cos 2β
. (3.11)

For large A mass, the masses of the heavy Higgs particles coincide approximately, MA " MH "
MH± , while the light Higgs mass approaches a small asymptotic value. The spectrum for large values of
tgβ is quite regular: for small MA one finds {Mh " MA;MH " const} [72]; for large MA the opposite
relationship {Mh " const,MH " MH± " MA}, cf. Fig. 3.1 which includes the radiative corrections.

Figure 3.1: The CP-even and charged MSSM Higgs boson masses as a function of mA for tanβ = 3 and 30,
including radiative corrections. Ref. [73].
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Figure 3.2: Upper bounds on the light Higgs boson mass as a function of tgβ for varying top mass, and the region
excluded by the negative searches at the LEP experiments. Ref. [74].Figure 9: Limits to mh combining theoretical considerations with exper-

imental data. Green is the part excluded by LEP and LEP2, yellow the
theoretically prohibited region. Source: [9].
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