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7.1 Introduction

7.1 Introduction

The main goal of this report is to give a short phenomenological introduction to

the minimal Supersymmetric Standard Model, which is generally abbreviated as

“MSSM”. Minimal is meant in the sense that the particle contents and inter-

actions in the known Standard Model is minimally enlarged by supersymmetry.

Furthermore I need to stress, that I only treat the case of N = 1 supersymmetric

transformations, to keep it somewhat more basic and to prevent from introducing

more than the known 4 spacetime dimensions.

7.2 The Standard Model

The Standard Model of particle physics provides a very successful description of

the presently known phenomena. Collider experiments, which range nowadays

into the teraelectron volt (TeV) regime, confirm this highly esteemed theory with-

out any additional structure. Still, physicists agree that the Standard Model is

a work in progress, and has to be extended to successfully describe the physics

beyond those energies. Not only does it not contain quantum gravitational ef-

fects, which come into play at the Planck scale MP = (8πG)−1/2 ∼ 2.4 · 1018

GeV, but also further issues, that emerge at energies between the TeV and the

Planck scale, among them the notorious “hierarchy problem”, indicate that the

Standard Model is not a complete theory.

Even though the Standard Model is of upmost importance in discovering a com-

plete theory of everything, which is the reason I want to give the reader a short

overview over it:

7.2.1 Structure of elementary particles

The elementary fermions in the Standard Model can be divided into quarks and

leptons. In each group are six particles, which can be further divided into 3 fami-

lies, with similar interaction properties. In addition there exists for each particle

a so called anti-particle, with the same properties as the original one, except for

the electrical charge, which has opposite sign. All Fermions, minus anti-particles,

with approximate mass and charge are summarized in Table 7.1.

Neutrinos only interact very lightly with matter, in contrast to the other leptons,

which can be detected very easily as free particles in collider experiments. Quarks
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7.2 The Standard Model

Fermions Mass [GeV
c2

]
Electric Weak Weak SU(3)C -

charge [e] isospin hypercharge repr.

Leptons

Electron e 511 · 10−3 −1 −1
2

−1 1

e-Neutrino νe 0 0 1
2

−1 1

Muon µ 105.7 −1 −1
2

−1 1

µ-Neutrino νµ 0 0 1
2

−1 1

Tauon τ 1776.8 −1 −1
2

−1 1

τ -Neutrino ντ 0 0 1
2

−1 1

Quarks

Up u 2.55 +2
3

1
2

1
3

3

Down d 5.04 −1
3

−1
2

1
3

3

Charm c 1270 +2
3

1
2

1
3

3

Strange s 105 −1
3

−1
2

1
3

3

Top t 171.3 · 103 +2
3

1
2

1
3

3

Bottom b 4.2 · 103 −1
3

−1
2

1
3

3

Table 7.1: Properties of elementary fermions with spin 1
2
~ in two times three

generations without anti-particles.

can in nature only be found in bound states of multiple quarks, because they have

so called color charges in addition to electrical charge. The color charge can take

one of these three values: red (r), green (g) and blue (b) or their anti-color, anti-

red (r), anti-green (g) and anti-blue (b). Free particles composed of quarks, so

called hadrons always have color charge zero. The simplest possibility to compose

a hadron is to put two quarks together with color and anti-color. This leads to

the mesons. Another possibility is the composition of three quarks with each a

different color or anti-color. This gives us the baryons.

7.2.2 Structure of elementary interactions

The Standard Model is the particle theory of three1 out of four known funda-

mental interactions and of the elementary particle that take part in these inter-

actions. Mathematically it is a gauge theory of the strong interaction, repre-

sented by the Lie group SU(3)C and the electroweak interaction, represented by

SU(2)L × U(1)Y . These gauge groups lead in the unifying Standard Model to

1of the strong, electromagnetic and weak interactions
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7.2 The Standard Model

the following gauge group: SU(3)C × SU(2)L × U(1)Y , which describes all three

fundamental forces together as one gauge theory. The particles in the Standard

model are given as fields, that fall into different representations of the various

symmetry groups of the Standard Model.

Interactions are given by exchange particles, so called gauge bosons. Each of the

interactions in the Standard Model can be described as an exchange of a gauge

boson. Table 7.2 lists all the existing and experimentally confirmed gauge bosons

together with their masses and charges.

Interaction
Bosons Mass [GeV

c2
]

Charge (relative) Coupling

(coupling to) (EM or Color) Constant (1 GeV )

electromagnetic
Photon γ 0 0 αEM ∼ 1

137(EM charge)

W-Boson
W− 80.398 −e

αW ∼ 1
31.7

weak W+ 80.398 +e

(weak charge)
Z-Boson Z0 91.1876 0

Gluon g 0

| rg〉, | rb〉, | gr〉

αS = 1
strong | gb〉, | br〉, | bg〉
(color) 1

2
(| rr〉− | gg〉)

1√
6
(| rr〉+ | gg〉 − 2 | bb〉)

Table 7.2: Properties of the elementary gauge bosons with spin 1~

Strong interaction

The strong interaction describes the interaction between particles carrying color

charge. Thus the only candidates are the quarks and the gluons. This kind of

force is the strongest one of the three in the Standard Model, but it only reaches

up to a distance of ∼ 10−15 m. The strong interaction is in fact responsible for

holding together the quarks in particles like the neutron or the proton, and also

assures that the nucleus of an atom is stable.

Mathematically poses the strong force a problem, because of the fact that the

coupling constant is quite big, one cannot properly treat it in a perturbative

approach. Thus we cannot calculate loop feynman diagrams for the strong inter-

action, because the series expansion in the order of the coupling constant will not
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7.2 The Standard Model

converge. Luckily, the coupling constant decreases with increasing energy, and

thus, in collider experiments a perturbative approach still provides very good

results.

Weak interaction

The weak interaction is much inferior to the strong interaction. It describes in-

teractions between particles with weak charge, which is mostly the weak isospin2.

The weakness of this force comes from the heaviness of the exchange particles.

In every weak reaction, energy is needed to produce that heavy particle, which

reduces the reaction probability drastically. This force is responsible for the flavor

change of quarks, which makes the well-known beta-decay possible.

Electromagnetic interaction

The electromagnetic interaction describes the interaction between electrically

charged particles. It is expressed in the famous 1
r
-law. The exchange particle

is the photon.

Like afore mentioned, does the strong interaction coupling constant decrease with

increasing energy. Because the weak and the electromagnetic interactions increase

with increasing energy, it would be nice, that at some point all the forces would

be similarly strong. If this is the case, as in grand unified theories or in the

MSSM, it is called gauge coupling unification.

7.2.3 The Higgs boson

The Higgs boson is a massive scalar elementary particle that is predicted to exist

by the Standard Model. The existance of the Higgs boson is postulated as a

means of resolving inconsistencies in the Standard Model of particle physics. It

is predicted to be the only elementary bosonic particle in the Standard Model,

but it has not been experimentally found the way the theory suggests it to be.

The Higgs boson field, which comes about as a consequence of the famous Higgs

mechanism, has a non-zero vacuum expectation value (VEV). The VEV is sup-

posed to be responsible for the masses of particles in the Standard Model. This is

because the acquisition of a non-zero VEV spontaneously breaks the electroweak

gauge symmetry. The fermion masses are then obtained out of the Yukawa term

in the Lagrangian density, which is induced by the Higgs boson field. The masses

2The isospin is not actually measurable, being only a mathematical construction
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7.3 Theoretical Motivation

for the gauge bosons on the other hand are obtained from the kinetic term of the

Higgs field. This is in fact the simplest method that is capable of giving masses

to the gauge bosons, while remaining compatible with gauge theories.

7.3 Theoretical Motivation

7.3.1 Hierarchy problem

First and foremost there is the infamous “Hierarchy problem”, also known as the

“weak scale instability problem”. This is mainly a motivation for supersymmetry

itself, and not especially for the MSSM. One can derive the whole supersymmetric

theory by posing a solution to the hierarchy problem. I am going to paraphrase

the problem, and drop any calculations and deeper considerations. For the inter-

ested reader I can recomend [2].

In general a hierarchy problem occurs, when fundamental parameters, such as

coupling constants and masses of some Lagrangian are vastly different from the

parameters measured. In this particular case, the underlying question is, why the

weak force is so incredibly stronger than gravity. More technically, it dedicates

itself to the question why the electroweak scale is so much smaller than the Planck

scale. The hierarchy problem is not really a difficulty with the Standard Model

itself, but rather a strange sensitivity of the Higgs potential to new physics in

almost any imaginable extension of the Standard Model. Considering the Higgs

boson as proposed in the Standard Model, the problem then is that the squared

Higgs boson-mass, m2
H receives enormous quntum corrections from the virtual

effects of every particle that couples directly or indirectly to the Higgs field.

Figure 7.1: One-loop quantum corrections to the Higgs squared mass parameter

m2
H due to a Dirac fermion

For example if one considers a Dirac fermion f with mass mf coupling to the

Higgs field with a term in the Lagrangian of the form −λfHff , then the Feynman

diagram in Figure 7.1 yields a correction of the form:
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7.3 Theoretical Motivation

∆m2
H = −|λf |

2

8π2
Λ2
UV + . . . , (7.1)

where ΛUV is an ultraviolet momentum cutoff. It can be interpreted as the least

energy scale at which new physics enters to alter the high-energy behavior of the

theory. The problem arises, if ΛUV is of the order of MP ; then this quantum

correction to m2
H is some 30 orders of magnitude larger than the required value

for m2
H . Massive particles in the Standard Model, obtaining its masses from the

VEV of the Higgs boson, are thus directly or indirectly sensitive to the UV cutoff.

So the entire mass spectrum of the Standard Model is crucially sensitive to ΛUV .

However, picking ΛUV not too large, one still has to introduce some new physics

at that scale, that not only alters the propagators in the loop, but actually cuts

off the loop integral.

The same problem arises if one considers scalar particles, even if there is no

direct coupling between the Standard Model Higgs boson and the particle. So if

there is actually a Higgs boson3 in the form the Standard Model predicts it, one

comes automatically about the hierarchy problem in one or the other form, when

considering an extension of the SM. One solution to this problem is that some

strange effect or symmetry leads to a striking cancellation between the various

contributions to the squared Higgs mass correction, ∆m2
H . Such an effect would

bring about a somewhat intriguing symmetry between fermionic and bosonic

particles, which is exactly what supersymmetry is all about.

7.3.2 Gauge coupling unification

Even though there are many that label it as coincidence, in my eyes gauge cou-

pling unification is one of the strongest motivation for the MSSM. As mentioned

in section 7.2, gauge coupling unification is nothing else, but the idea, that at

some high energy, most likely shortly after the big bang, all four fundamental

forces were of the same strength4 and thus indistinguishable. However, as in

the ordinary Standard Model and the MSSM one neglects gravity, we constrain

ourselves to only three of the forces, dropping gravity. Still, unification should

be acheived even for the three forces considered in the Standard model. Shock-

ingly though, if we naturally extend the gauge coupling constant in the Standard

Model to higher energies, theoretical calculations lead to only approximate uni-

fication of the coupling constants. However in the case of the MSSM, one finds

3there are models in which one assumes that there exists no fundamental Higgs boson, and

thereby avoids this problem
4i.e. their coupling constants were of the same order of magnitude
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that indeed unification should theoretically occur.

Assume now, that we have already found the Lagrangian of the MSSM with its

soft symmetry breaking part5. We consider this Lagrangian at some very large

energy scale, Q0. If we used the Lagrangian to compute masses and cross-sections

for experiments at ordinary energies near the electroweak scale, the results would

involve large logarithms of order log(Q0/mZ) coming from loop diagrams. But

these large logarithms can be resummed using renormalization group (RG) equa-

tions, by treating the couplings and masses appearing in the Lagrangian as run-

ning parameters. Then the 1-loop RG equations for the Standard Model gauge

couplings gi, i = 1, 2, 3 are:

βga :=
d

dt
ga =

bag
3
a

16π2
,

 b1

b2

b3

 =

{
(41

10
,−19

6
,−7)T SM

(33
5
, 1,−3)T MSSM

(7.2)

where t = log(Q/Q0), Q being the RG scale. The normalization for g1 is cho-

sen to agree with the canonical covariant derivative for grand unification of the

gauge group SU(3)C × SU(2)L × U(1)Y into SU(5). Hence in terms of the elec-

troweak gauge couplings g and g′ with e = g sin θW = g′ cos θW one has g2 = g

and g1 =
√

5/3g′, where θW is the Weinberg angle, that measures the relationship

between the couplings of the electroweak gauge group SU(2)L×U(1)Y . Defining

the quantities αa = g2
a/4π gives us parameters whom’s reciprocals run linearly

with RG scale at one-loop order. It is important to note, that the MSSM coeffi-

cients in (7.2) are larger because of the extra MSSM particles in loops.

Figure 7.2 compares the RG evolution of α−1
a for the Standard Model and the

MSSM, including 2-loops effects. The theoretical error for the MSSM comes about

because of the ignorance on the masses of the supersymmetry particles in the

MSSM. Furthermore one can make out a kink in the solid lines, which indicates

that supersymmetry particles enter the scenery and change the parameters in the

RG equations. So it seems indeed, that the MSSM includes just the right particle

content to ensure that the gauge couplings can unify at a scale MU ∼ 2 · 1016

GeV. Figure 7.2 shows us indeed the pursued unification of the gauge couplings.

However in numbers, the result is even more astounding. If we calculate the

Weinberg angle, which has been measured extremely accurately, we get:

5c.f. (7.26)

8



7.3 Theoretical Motivation

Figure 7.2: Illustration of the gauge coupling unification in the MSSM (solid

lines). For comparison there is the inverse gauge couplings for the Standard

Model (dashed lines)

sin2 θW ≈


0.2100± 0.0026 SM

0.2335± 0.0017 MSSM

0.2316± 0.0002 experimentally

(7.3)

So we see that the measured Weinberg angle is in fact within the margin of error

of the one calculated via the MSSM.

While the apparent unification of gauge couplings might be just an accident, it

may also be taken as a strong hint in favor of a grand unified theory or superstring

models, both of which can naturally accomodate gauge coupling unification below

the Planck scale.

7.3.3 Dark matter

Lastly, the MSSM (with R-parity) gives a very good candidate for a dark matter

particle. This strange particle must have some crucial properties, to be fancied a

candidate for dark matter. Astrophysical discoveries suggest that dark matter is

undetectable by emitted or scattered electromagnetic radiation and it cannot be

decomposed any further. Its existence throughout the universe is assumed due
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7.4 Particle content of the MSSM

to strong gravitational effects on stars, galaxies and the structure formation.

In the MSSM, on which we impose R-parity6, we have a good candidate that

satisfies theoretically most of the properties mentioned above: the lightest su-

persymmetric particle (LSP). It is assumed that the LSP interacts only weakly

with ordinary matter and, being the lightest supersymmetric particle, it does not

decay any further due to R-parity. Hence it should be stable, and if electrically

neutral, would barely interact with matter. Even though being a very interesting

approach, there are also many other models, that claim to have found the “dark

matter particle”. So, the dark matter argument is more of a nice additional

property the MSSM has, than a prove of its validity.

7.4 Particle content of the MSSM

7.4.1 Supersymmetry Algebra and supermultiplets from

a phenomenological viewpoint

Now let us consider a supersymmetric transformation. That means we have an

operator, let us call it Q, that transforms a bosonic state into a fermionic state

and vice versa:

Q | BOSON〉 ∝| FERMION〉 and Q | FERMION〉 ∝| BOSON〉. (7.4)

Q and Q† are then called fermionic operators. We note that the forms of Q and

Q† are highly restricted by mathematical considerations and one can derive the

so called supersymmetry Algebra for Q and Q†:

{Qα, Q
†
α̇} = −2σµαα̇Pµ (7.5)

{Qα, Qβ} = {Q†α̇, Q
†
β̇
} = 0 (7.6)

[P µ, Qα] = [P µ, Q†α̇] = 0. (7.7)

Single-particle states of the supersymmetric theory, being physical states, fall

into irreducible representations of the supersymmetry algebra, which are called

supermultiplets. Any such object contains fermionic and bosonic states, known

as superpartners. These superpartners are quite similar and differ in an unbroken

supersymmetry only in their spin quantum number by ±1
2
.

6c.f. section 7.8
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7.4 Particle content of the MSSM

From (7.7) we get that −P 2 = −P µPµ commutes with Q and Q†, which implies

that the superpartners inhabiting the same supermultiplet must have the same

eigenvalues of −P 2 and thus should have the same masses. Experimentally this

has not been observed and therefore we conclude that the symmetry has to be

broken. A close analysis shows furthermore that Q and Q† also commute with the

generators of gauge transformations. This implies that the particles in the same

supermultiplet must be in the same representation of the gauge group and thus

must have the same charge, weak isospin and color degree of freedom. Similarly

one can prove that each supermultiplet contains equal fermionic and bosonic de-

grees of freedom, nF = nB.

These considerations can be used to show that there are only two kind of su-

permultiplets in a realistic extension for the Standard Model. Any other renor-

malizable possibility for a supermultiplet to satisfy nF = nB is reducible to a

combination of the following two:

First off we treat the so-called chiral supermultiplet, being the simplest possibil-

ity for a supermultiplet fulfilling nF = nB in 4 dimensions. We take a single

right- or left-handed Weyl fermion (⇒ nF = 2, for two helicity states) and

two real scalars, which we can pack into one complex scalar, as superpartners

(⇒ (nB)TOTAL = 1 + 1 = 2). This combination provides for convenient formula-

tions of the supersymmetry algebra.

For the next simplest possibility of a supermultiplet, we consider a spin-1 vec-

tor boson, which has to be a massless7 gauge boson in a renormalizable theory

(⇒ nB = 2). As its superpartner we are obliged to take a massless spin-1
2

Weyl

fermion, so that the theory stays again renormalizable. This supermultiplet is

called a gauge supermultiplet, because gauge bosons and thus their fermionic

partner, so called gauginos, transform in the adjoint representation of the gauge

group. The adjoint representation being invariant under conjugation implies that

the right- and left-handed components of the gaugino must have the same gauge

transformation.

These remarks lead us to the conclusion that in a supersymmetric extension of the

Standard Model each known fundamental particle8 is either in a chiral or a gauge

supermultiplet and has a supersymmetric partner with a spin differing by ±1
2
.

We further find that only chiral supermultiplets can contain the Standard Model

7at least as long as the gauge symmetry is not broken
8being a realistic theory, these particles are in an irreducible representation
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7.4 Particle content of the MSSM

fermions, because otherwise their right- and left-handed parts would transform

equally under Lorentz transformations, which is obviously not true.

7.4.2 Chiral Supermultiplets

First off let us consider a Standard Model fermion. As afore mentioned, its su-

perpartner will then be a spin-0 particle. The nomenclature is such that one

prepends a “-s”to the Standard Model fermion name. This gives us for example

the squark or the slepton as the superpartners of the quark, lepton respectively.

But as the left- and right-handed pieces of the quarks and leptons are two seper-

ate Weyl fermions9, each, the left- as well as the right-handed pieces do have its

own complex scalar partner. One denotes this complex spin-0 partner by “x̃”,

where x refers to the Standard Model particle. For example if we consider the

left- and right-handed electron eL and eR, their superpartner would be denoted

as ẽL, ẽR respectively. It is important though to remember that the “-L”and the

“-R”do not refer to some sort of helicity of the selectron, which has none at all,

but only to the one of their superpartner.

There is the exception of the neutrino: In the Standard Model, the neutrinos

are always left-handed, if one neglects their very small masses. Therefore, in the

MSSM there is only one complex supersymmetric particle corresponding to the

different neutrinos: These are the ν̃e, ν̃τ and ν̃µ.

The Standard Model Higgs particle requires a special treatment as well. Having

spin 0, it is obvious that the Higgs boson must be in a chiral supermultiplet. It

turns out that one chiral supermultiplet is not enough, but one needs two seperate

Higgs supermultiplets to embed the Standard Model satisfactory into supersym-

metry. This grounds on several facts. One reason is that if there were only one

Higgs chiral supermultiplet, careful calculations would result in a gauge anomaly

for the electroweak gauge symmetry. Furthermore do we need both Higgs su-

permultiplets to give the appropriate masses to the Standard Model quarks and

leptons in a supersymmetric theory. We denote the two Higgs particles as Hu

and Hd, to point out that the Higgs vacuum expectation value gives masses to

the up-, down-quark respectively. The nomenclature is chosen such that for the

spin-1
2

superpartner, one appends a “-ino”to the name of the Standard Model

particle. Thus we get the Higgsinos as the fermionic superpartners of the Higgs

scalars. Below we argue why the Higgsinos cannot be a Standard Model particle.

9which transform differently under SU(2)L-gauge transformation
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7.4 Particle content of the MSSM

Now we have found all of the chiral supermultiplets of a minimal supersymmetric

viable extension of the Standard Model. They are summarized in Table 7.3, clas-

sified according to their representation under the Standard Model gauge group,

SU(3)C × SU(2)L × U(1)Y :

Names spin 0 spin 1
2

SU(3)C × SU(2)L × U(1)Y

squarks, quarks Q (ũL, d̃L) (uL, dL) (3,2, 1
6
)

(×3 families) u ũ∗R u†R (3,1,−2
3
)

d d̃∗R d†R (3,1, 1
3
)

sleptons, leptons L (ν̃, ẽL) (ν, eL) (1,2,−1
2
)

(×3 families) e ẽ∗R e†R (1,1, 1)

Higgs, Higgsinos Hu (H+
u , H

0
u) (H̃+

u , H̃
0
u) (1,2, 1

2
)

Hd (H0
d , H

−
d ) (H̃0

d , H̃
−
d ) (1,2,−1

2
)

Table 7.3: Chiral supermultiplets in the MSSM. The spin-0 fields are complex

scalars, and the spin-1
2

fields are left-handed two-component Weyl fermions.

In Table 7.3, only the first family representative for the quarks and leptons is

shown. Therefore, to obtain all particles, a family index has to be added to the

chiral supermultiplet names, and we get: Qi, ui, di, . . . (for i = 1, 2, 3). The sec-

ond column in Table 7.3 denotes the symbol for the whole chiral supermultiplets,

for example does Q stand for the SU(2)L supermultiplet containing ũL and uL, as

well as d̃L and dL. Furthermore we used the standard convention that all chiral

supermultiplets are defined in terms of left-handed Weyl spinors.

From Table 7.3 we see that the supermultiplet Hd has the same Standard Model

gauge quantum numbers as the left-handed sleptons and leptons Li. However it

is not possible to take a neutrino and a Higgs scalar to be superpartners, which

would imply that the sneutrino and the Higgs boson were the same particle.

This is because careful analysis shows that many problems would result, such

as lepton-number non-conservation and a mass for at least one of the neutrinos.

Thus, all of the superpartners of the Standard Model particles are indeed new

particles and cannot be identified with some other Standard Model state.
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7.5 General supersymmetric Lagrangian

7.4.3 Gauge Supermultiplets

The vector bosons of the Standard Model, together with their superpartners, the

gauginos, obviously reside in gauge supermultiplets. The nomenclature is still

the same as above. So we have as spin-1
2

supersymmetry color octet partner

of the gluon, the gluino. The electroweak gauge symmetry SU(2)L × U(1)Y is

associated with the spin-1 gauge bosons W±, W 0 and B0. Their superpartners

are then the winos and the bino, denoted by W̃±, W̃ 0 and B̃0 respectively. After

electroweak symmetry breaking, the W 0 and the B0 gauge eigenstates mix to

give the mass eigenstates Z0 and γ. The corresponding W̃ 0, B̃0 mixtures are

called zino, photino, and they are denoted by Z̃0, γ̃ respectively. All the gauge

supermultiplets of a minimal supersymmetric extension of the Standard Model

are summarized in Table 7.4:

Names spin 1
2

spin 1 SU(3)C × SU(2)L × U(1)Y

gluino, gluon g̃ g (8,1, 0)

winos, W bosons W̃± W̃ 0 W± W 0 (1,3, 0)

bino, B boson B̃0 B0 (1,1, 0)

Table 7.4: Gauge supermultiplets in the MSSM.

Surprisingly, none of the superpartners of the Standard Model particle have been

discovered as of now. This leads to the conclusion that the supersymmetry must

be broken, because, for example ẽL and ẽR would have masses equal to the elec-

tron mass10. But such particles would have been easy to detect. So, clearly

supersymmetry is a broken symmetry.

7.5 General supersymmetric Lagrangian

Now we turn our attention to more theoretical considerations. In this section it

is our goal to find a Lagrangian for supersymmetry which is as general as possi-

ble and which contains the known Standard Model interactions. For the sake of

brevity, I mostly neglect derivations. For the interested reader I can recommend

[5] or . . ..

The Lagrangian of a realistic minimal supersymmetric N = 1 extension of the

Standard Model is constrained by many factors, such as renormalizibiliy and the

10me ∼ 0.511MeV
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7.5 General supersymmetric Lagrangian

condition that the particle content must be minimally increased from that of

the Standard Model, and many more. Furthermore we set upon the Lagrangian

the condition that the action must be invariant under supersymmetry transfor-

mations. This leads us to the supersymmetry algebra11 for the supersymmetry

transformations.

7.5.1 The Wess-Zumino model

First off consider the simplest supersymmetric Lagrangian for a free chiral su-

permultiplet, which consists only of the kinetic terms of the scalar and fermionic

fields without interactions. This is called the Wess-Zumino model. For this La-

grangian to bring upon an action invariant under supersymmetry on- as well as

off-shell12, we need to introduce an auxiliary field, a complex scalar field F , such

that Lauxiliary = F ∗F . The physical reason to introduce such an auxiliary field,

which is only a “book-keeping device”to make supersymmetry close off-shell, is

to make sure that the number of bosonic degrees of freedom match the number

of fermionic degrees of freedom on- and off-shell.

DOF for ϕ DOF for ψ DOF for F Total

ON-SHELL 2 2 (Spin) 0 nB = nF = 2

OFF-SHELL 2 4 (C 2-component object) 2 nB = nF = 4

Table 7.5: Real degrees of freedom for the bosonic field, ϕ, and the fermionic one,

ψ.

In this simple supersymmetric model, we can split up the Lagrangian the following

way:

Lfree = Lfermionic + Lscalar + Lauxiliary, (7.8)

where:

Lfermionic = −∂µϕ∗∂µϕ (7.9)

Lscalar = ıψ†σµ∂µψ. (7.10)

This Lagrangian produces indeed an invariant action as explicit calculations, done

in detail in [5], show.

11c.f. equation (7.5) - (7.7)
12i.e. such that it does not satisfy classical equations of motions necessarily
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7.5.2 Interactions of chiral supermultiplets

Since we want to consider a realistic theory, we obviously need to include in-

teractions between the particles. In this second step we want to construct a

comprehensive theory of masses and non-gauge interactions for particles in a

chiral supermultiplet. Still maintaining the supersymmetry-invariance of the La-

grangian on- and off-shell, we get high restrictions on the form of non-gauge

couplings. We introduce an index i to indicate that we sum over different parti-

cles. Thus we get the following free-part of the Lagrangian:

Lfree = −∂µϕ∗i∂µϕi + ıψ†iσµ∂µψi + F ∗iFi, (7.11)

where ϕi is the complex scalar field and ψi is the left-handed Weyl fermion in the

supermultiplet indexed by i. By power-counting, we can only have field content

with total mass dimension less than or equal to four. The invariance under

supersymmetry transformation poses further constraint, leading to a non-gauge

interaction Lagrangian part of the form:

Linteraction =

(
−1

2
W ijψiψj +W iFi

)
+ c.c., (7.12)

where W ij and W i are polynomials in the scalar fields ϕi and ϕ∗i of degrees

1, 2 respectively. Imposing supersymmetry-invariance on Linteraction
∣∣
ψ-spinor

, the

above Lagrangian constrained to terms containing the ψ-spinor, one finds that

W ij = W ji and that W ij must be an analytic function in ϕ. This leads to the

most general form for W ij:

W ij =
δ2W

δϕiδϕj
, (7.13)

where W is called the superpotential and can be written as:

W =
1

2
M ijϕiϕj +

1

6
yijkϕiϕjϕk. (7.14)

Here M ij is the symmetric mass-matrix for the fermionic field and yijk is the

totally symmetric Yukava coupling of the scalar field ϕk and two fermions. The

superpotential is not a potential in the ordinary physical sense, but just an ana-

lytic function of ϕi of that unfortunate name.

Similarly, we get forW i, this time the Lagrangian of equation (7.12) is constrained

to terms containing spacetime derivatives, Linteraction
∣∣
∂
, the following identity,

which supports our choice of name for W i and W ij:
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W i =
δW

δϕi
. (7.15)

We conclude that the most general non-gauge interaction for chiral supermulti-

plets is determined by a single function, which is analytic in the complex scalar

fields. The auxiliary fields Fi and F ∗i can be eliminated using the classical equa-

tions of motion, Fi = −W ∗
i and F ∗i = −W i. This is a consequence of the

Euler-Lagrange equation applied to (Linteraction + Lfree)
∣∣
Fi

, which, having no ki-

netic terms, turns out to be satisfied trivially.

These considerations lead to the general supersymmetric non-broken Lagrangian

for a chiral supermultiplet with non-gauge interaction:

Lchiral =− ∂µϕ∗i∂µϕi − V (ϕ, ϕ∗) + ıψ†iσµ∂µψi −
1

2
M ijψiψj −

1

2
M∗

ijψ
†iψ†j

− 1

2
yijkϕiψjψk −

1

2
y∗ijkϕ

∗iψ†jψ†k, (7.16)

where V (ϕ, ϕ∗) = W kW ∗
k ≥ 0 is the scalar potential for the theory. Evaluating the

equations of motions from (7.16), we find that the fermions and bosons satisfy the

same wave equation, with exactly the same squared mass matrix. This leads to

a collection of chiral supermultiplets, which contain a mass-degenerate complex

scalar and Weyl fermion, confirming our assumption in the phenomenological

overview over the particle content in chapter 7.4.

7.5.3 Lagrangian for gauge supermultiplets

Consider now gauge supermultiplets, consisting of a massless gauge boson field,

Aaµ and a two-component Weyl fermion gaugino, λa, where the index a runs over

the adjoint representation of the gauge group13.

Similarly to the case of the chiral supermultiplet we do not have the same de-

grees of freedom on- and off-shell14, and thus have to introduce one real bosonic

auxiliary field, called Da, in order for supersymmetry to be consistent off-shell.

This field can again be removed on-shell using its equation of motion.

This leads to a Lagrangian density for a gauge supermultiplet of the form:

Lgauge = −1

4
F a
µνF

µνa + ıλ†aσµDµλ
a +

1

2
DaDa, (7.17)

13i.e. a = 1, . . . , 8 for SU(3)C , a = 1, 2, 3 for SU(2)L and a = 1 for U(1)Y
14c.f. Table 7.6
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DOF for Aµ DOF for λ DOF for D Total

ON-SHELL 2 (2× fermionic) 2 (2× bosonic) 0 nB = nF = 2

OFF-SHELL 3 (−1 due to gauge) 4 (2× C fermionic) 1 nB = nF = 4

Table 7.6: Real degrees of freedom for gauge supermultiplets.

where F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν is the usual Yang-Mills field strength, g

the gauge coupling constant for the considered gauge theory, fabc the structure

constants and Dµλ
a = ∂µλ

a + gfabcAbµλ
c the covariant derivative of the gaugino

field.

7.5.4 Supersymmetric gauge interaction

Now we are prepared to consider a general Lagrangian density for a supersym-

metric theory with chiral as well as gauge supermultiplets and their interactions.

We assume now that the chiral supermultiplets transform under the gauge group

in a representation with hermitian matrices (T a)ji such that: [F a, T b] = ıfabcT c.

As afore mentioned, supersymmetry and gauge transformations commute, which

implies that the scalar, fermion, and auxiliary fields must be in the same repre-

sentation of the gauge group. This together with the condition of renormaliziblity

lead to the full Lagrangian density for a renomalizable supersymmetric theory,

with only one gauge group, of the form:

L =Lchiral(∂µ −→ Dµ) + Lgauge
−
√

2g(ϕ∗T aψ)λa −
√

2gλ†a(ψ†T aϕ) + g(ϕ∗T aϕ)Da. (7.18)

In (7.18), Lchiral(∂µ −→ Dµ) denotes the chiral supermultiplet Lagrangian of

equation (7.16), where the ordinary derivatives are replaced everywhere by the

gauge-covariant derivatives:

∂µϕi −→ Dµϕi = ∂µϕi − ıgAaµ(T aϕ)i
∂µϕ

∗i −→ Dµϕ
∗i = ∂µϕ

∗i + ıgAaµ(ϕ∗T a)i

∂µψi −→ Dµψi = ∂µψi − ıgAaµ(T aψ)i.

Furthermore Lgauge is the Lagrangian density for gauge supermultiplets as given

in equation (7.17). The first two terms in the second line in (7.18) constitute

a direct coupling of gauginos to matter fields. One can interpret this as the

“supersymmetrization”of the usual gauge boson couplings to matter fields. The
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(a) (b)

Figure 7.3: (a) depicts the coupling of a gaugino to a chiral fermion and a complex

scalar, (b) is “supersymmetrized”version of (a). Both vertices have the same

coupling constant g.

two vertices are depicted in figure 7.3. The last term in (7.18) combined with the

DaDa/2-term in Lgauge gives the equation of motion: Da = −g(ϕ∗T aϕ). Plugging

this into equation (7.18), one finds that the complete scalar potential is:

V (ϕ, ϕ∗) = F ∗iFi︸ ︷︷ ︸
F-term

+
1

2

∑
a

DaDa

︸ ︷︷ ︸
D-term

= W ∗
i W

i +
1

2

∑
a

g2
a(ϕ

∗T aϕ)2. (7.19)

Here we have written the sum
∑

a to cover the case that the gauge group has

several different factors with gauge couplings ga. In the MSSM we have the three

couplings g3, g and g′ corresponding to the SU(3)C , SU(2) and the U(1) gauge

groups respectively. We note that the F-terms are fixed by Yukawa couplings and

fermion mass terms and the D-terms are fixed by the gauge interactions.

Summarizing, we have found that in a renormalizable supersymmetric field the-

ory, the interactions and masses of all particles are determined just by their

gauge transformation properties and by the holomorphic superpotential W . Of-

ten when treating supersymmetry, one comes across so called superfields, which

are objects that contain as components all of the bosonic, fermionic and auxil-

iary fields within the corresponding supermultiplet15. Therefore W is often sait

to be a function of chiral superfields instead of the bosonic fields. In terms of

superfields, one can rewrite equation (7.14) in the following way:

W =
1

2
M ijΦiΦj +

1

6
yijkΦiΦjΦk, (7.20)

which leads in fact to the same physics. It is notable that in any given theory,

only a few of the parameters M ij and yijk are non-zero. This is because the

entries of the mass matrix can only be non-zero for i and j such that Φi and Φj

15i.e. Φi ⊃ (ϕi, ψi, Fi)
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transform under the gauge group in representations that are conjugates of each

other. Similarly for yijk, the entries can only be non-zero if Φi, Φj and Φk trans-

form in representations that can combine to form a singlet. This completes the

discussion of an unbroken, realistic supersymmetric theory, and hands us nearly

all the parts to the puzzle of the MSSM.

Now we turn our attention to the interactions that are implied by the superpo-

tential. Restricting the general Lagrangian to terms in which the superpotential

turns up, and expanding it via equation (7.14), we get:

L
∣∣
W

=− 1

2
M ijψiψj −

1

2
M∗

ijψ
†iψ†j − 1

2
yijkϕiψjψk −

1

2
y∗ijkϕ

∗iψ†jψ†k

−M∗
ikM

kjϕ∗iϕj −
1

2
M iny∗jknϕiϕ

∗jϕ∗k − 1

2
M∗

iny
jknϕ∗iϕjϕk

− 1

4
yijny∗klnϕiϕjϕ

∗kϕ∗l. (7.21)

The interactions implied by the superpotential (7.21) are shown in figures 7.4

and 7.5. Those in figure 7.4 are all determined by the dimensionless parameters

yijk. It is important, that for each Yukawa coupling of ϕiψjψk with strength yijk,

there must be equal couplings of ϕjψiψk and ϕkψiψj, because yijk is completely

symmetric under interchange of any two of its indices. Hereby it is noteworthy

that the relationship between the Yukawa interactions in figures 7.4 (a), (b) and

the scalar interaction of figure 7.5 (c) is exactly of the special type needed to

cancel the quadratic divergences in quantum corrections to scalar masses.

Figure 7.4: Dimensionless non-gauge interaction vertices, determined by cou-

plings yijk, yijk, and yijny∗kln for (a), (b), (c) respectively.

For completion, I show figure 7.6, that depicts all the gauge interactions in a

supersymmetric theory. Thereby it is important to notice, that figure (i) goes

with the gauge coupling, g, even though there are no gauge particles present.
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Figure 7.5: Dimensionful couplings determined by the (scalar)3 interaction vertex

M∗
iny

jkn, the conjugate interaction M iny∗jkn, the fermion mass term M ij, the

conjugate fermion mass term M∗
ij and the scalar squared-mass term M∗

ijM
kj for

(a), (b), (c), (d), and (e) respectively.

Figure 7.6: Supersymmetric gauge interaction vertices.

7.5.5 Soft supersymmetry breaking interactions

As of now, general supersymmetry is a theory that was mostly constructed

to solve the problem of quadratic divergences, which it does successfully. As

afore mentioned a realistic phenomenological model must contain supersymme-

try breaking. To still pose a valid solution to the hierarchy problem, we can only

consider soft symmetry breaking16, because otherwise the relations between the

dimensionless couplings that hold in an unbroken supersymmetric theory are not

valid anymore. But exactly those relations are essential to cancel the higher order

correction terms to the squared Higgs scalar mass. Furthermore, it is expected

by theoretical considerations, that supersymmetry should be an exact symmetry,

that is broken spontaneously17. This leads to the desired property that super-

16i.e. of positive mass dimension of the coupling constant
17i.e. the underlying model has a Lagrangian that is invariant under supersymmetry, but has

a vacuum state that is not.
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7.6 The superpotential and supersymmetric interactions in the MSSM

symmetry is hidden at low energies.

For lack of other constraints, except the gauge invariance, the renormalizabil-

ity and the fact, that we require soft supersymmetry breaking, for the explicit

symmetry breaking part of the Lagrangian, we “parametrize our ignorance”by

plainly adding all possible terms that satisfy the three above restrictions:

Lsoft = −
(

1

2
Maλ

aλa +
1

6
aijkϕiϕjϕk +

1

2
bijϕiϕj

)
+ c.c.− (m2)ijϕ

j∗ϕi, (7.22)

where Ma is the gaugino mass for each gauge group, (m2)ij and bij are the scalar

squared-mass terms, and aijk are the (scalar)3 couplings. All other possible terms

can be absorbed into the other parts of the Lagrangian by redefining their cou-

pling constant. The terms in Lsoft can give masses to all of the scalars and

gauginos in a theory, even if the gauge bosons and fermions in chiral supermul-

tiplets are massless.

Now we have all the knowledge to consider the MSSM as a realistic, phenomeno-

logical softly broken supersymmetric extension of the Standard Model.

7.6 The superpotential and supersymmetric

interactions in the MSSM

7.6.1 The superpotential

The superpotential for the MSSM is:

WMSSM = uyuQHu − dydQHd − eyeLHd + µHuHd. (7.23)

Here Hu, Hd, Q, L, u, d and e are the chiral superfields corresponding to the

chiral supermultiplets in Table 7.3. Alternatively they can be thought of as

the corresponding scalar fields, but then one would have to add tildes, which

would lead to confusing notation. Secondly it is notable that yu, yd and ye, the

Yukawa coupling parameters are 3 × 3 matrices. Furthermore all of the gauge

and family indices are suppressed in equation (7.23). The last term in the equa-

tion is traditionally called the µ-term. It can be written out as µ(Hu)α(Hd)βε
αβ,

where εαβ is used to tie together the SU(2)L weak isospin indices α, β = 1, 2

in a gauge-invariant way. Similarly, the term uyuQHu can be written out as

uia(yu)jiQjαa(Hu)βε
αβ, where i = 1, 2, 3 is a family index, and a = 1, 2, 3 is a
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7.6 The superpotential and supersymmetric interactions in the MSSM

color index which is lowered in the 3 and raised in the 3 representation of the

gauge group SU(3)C .

Terms of the form H∗αHα, α = u, d, are forbidden, because the superpotential is

analytic in the chiral superfields. Therefore, one can interpret the µ-term as a

supersymmetric version of the Higgs boson mass in the Standard Model. Further-

more it is clear now, why there must be two Higgs bosons in a supersymmetric

theory. For terms of the form αQH∗α, α = u, d, e, are not allowed, again because

the superpotential has to be holomorphic in the superfields. Hence we need both,

Hu as well as Hd to give Yukawa couplings, and thus masses, to all of the quarks

and leptons.

However it is noteworthy, that generally the superpotential could include also

other terms than the ones in (7.23), and it would still be analytic and gauge

invariant in the chiral superfields. They were not included, because they would

violate either baryon or lepton number conservation, which must be highly sup-

pressed from an experimental point of view18.

7.6.2 Supersymmetric interactions

Now that we know the form of the superpotential, we can start discussing the

allowed interactions between the particles in the MSSM. First off it is useful

to consider a simple approximation, that helps us finding the most important

interactions. Since the top quark, bottom quark and tau lepton are the heavi-

est fermions in the Standard Model, we can approximate the Yukawa coupling

parameters, by only considering the (3, 3)-family components to be important:

yu ≈

 0 0 0

0 0 0

0 0 yt

 yd ≈

 0 0 0

0 0 0

0 0 yb

 ye ≈

 0 0 0

0 0 0

0 0 yτ

 . (7.24)

In a next step we write out the superpotential of equation (7.23) in terms of this

approximation and with seperate SU(2)L weak isospin components:

WMSSM ≈ yt(ttH
0
u − ttH0

u − tbH+
u )− yb(btH−d − bbH

0
d)

− yτ (τντH−d − ττH
0
d) + µ(H+

u H
−
d −H

0
uH

0
d), (7.25)

18c.f. section 7.8
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where: Q3 = (t, b), L3 = (ντ , τ), Hu = (H+
u , H

0
u), Hd = (H0

d , H
−
d ), u3 = t, d3 = b,

e3 = τ .

The Yukawa interactions yijk are completely symmetric in a general supersym-

metric theory. Therefore we know that yu, yd and ye imply not only Higgs-

quark-quark and Higgs-lepton-lepton couplings as in the Standard Model, but

also squark-Higgsino-quark and slepton-Higgsino-lepton interactions. Figure 7.7

shows some of the interactions involving the top-quark Yukawa coupling yt. Note

that tL and t†R have been used in place of their synonyms t and t. For each of the

three interactions, there is another with H0
u → H+

u and tL → −bL corresponding

to the second part of the first term in equation (7.25).

Figure 7.7: The top-quark Yukawa coupling (a) and its “supersymmetriza-

tions”(b) and (c), which are all of strength yt.

The above approximation of the superpotential, (7.25), shows the most important

interactions in the MSSM, determined by W . It is an illustrative example on how

remarkably economic supersymmetry is; there are many interactions determined

by only a few parameters.

However, the dimensionless interactions determined by the superpotential are

usually not the most important ones of direct interest for phenomenology. This

is because the Yukawa couplings are known to be very small except the yt, yb and

yτ . Instead, processes for the superpartners in the MSSM are dominated by the

supersymmetric interactions of gauge coupling strength.

7.7 Soft supersymmetry breaking in the MSSM

7.7.1 Soft supersymmetry breaking Lagrangian

To complete the description of the MSSM, we need to specify the soft supersym-

metry breaking terms. For this purpose, we use the recipe found in chapter 7.5,

about the general soft symmetry breaking lagrangian, to find:
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LMSSM
soft =− 1

2

(
M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + c.c

)
−
(
ũauQ̃Hu − d̃adQ̃Hd − ẽaeQ̃Hd + c.c.

)
− Q̃†m2

Q̃
Q̃− L̃†m2

L̃
L̃− ũm2

uũ
† − d̃m2

d
d̃
†
− ẽm2

e ẽ
†

−m2
Hu
H∗uHu −m2

Hd
H∗dHd − (bHuHd + c.c.). (7.26)

Here, Mi, i = 1, 2, 3, are the gluino, wino and bino mass terms, the adjoint rep-

resentation gauge indices are suppressed on the wino and gluino fields, and the

gauge indices on all of the chiral supermultiplet fields are dropped. The second

line in (7.26) contains the (scalar)3 couplings. Each of au, ad, ae, m
2
Q̃

, . . ., m2
e

is a complex 3× 3 matrix in family space. The third line consists of squark and

slepton mass terms of the (m2)ji type in equation (7.22). The matrices in the

third line, m2
Q̃

, . . ., m2
e must be hermitian so that the Lagrangian is real. In

the last line there are the supersymmetry-breaking contributions to the Higgs

potential.

Looking at the soft symmetry-breaking part of the MSSM-Lagrangian it is ob-

vious that there is a vast amount of new parameters that were not present in

the ordinary Standard Model. In fact, if one counts them, there are 105 new

parameters for masses, phases and mixing angles in the MSSM-Lagrangian that

cannot be rotated away by redefining the phases and flavor basis for the quark

and lepton supermultiplets. Hence supersymmetry-breaking seems to introduce

an enormous amount of arbitrariness in the Lagrangian.

However not all hope is lost. In fact experimental evidence indicates that some

powerful organizing principle must constrain the amount of new parameters intro-

duced by the LMSSM
soft -part of the theory. This is because most of the new param-

eters in (7.26) imply flavor mixing or CP violating processes of the types that are

experimentally prohibited. Other experimental discoveries indicate that there are

further, even stronger constraints on the form of the soft supersymmetry-breaking

part of the Lagrangian. As a consequence there are several models on how to

implement these discoveries and how to minimize the amount of unknown param-

eters. Even though there is a considerable disagreement among theorists, as to

what the specific model should actually be, most of these models are indicative

of an assumed underlying simplicity or symmetry of the Lagrangian at some very

high energy scale. I want to introduce shortly two of the most successful mod-

els, the minimal supergravity, mSUGRA and the gauge mediated supersymmetry
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breaking, GMSB :

7.7.2 Minimal supergravity

Mainly there are two assumption that motivate the minimal supergravity medi-

ated supersymmetry breaking model. First off, we take experimental constraints

into account, which lead to soft supersymmetry breaking universality, the hypoth-

esis, that all mass matrices in (7.26) are approximately proportional to the unit

matrix, that triple scalar couplings are proportional to the Yukawa matrices and

that the breaking parameters introduce no complex phases. This universality

hypothesis is summarized in the following equations:

mQ̃2 = m2
Q1, m2

u = m2
u1, m2

d
= m2

d
1, m2

e = m2
e1, mL̃2 = m2

L1, (7.27)

au = Au0yu, ad = Ad0yd, ae = Ae0yu, (7.28)

and:

arg(M1) = arg(M2) = arg(M3) = arg(Au0) = arg(Ad0) = arg(Ae0) = 0. (7.29)

These assumptions lie on the basis of minimal supergravity. MSUGRA assumes

that breaking occurs through a coupling to gravity in its simplest form. Because

gravity is colour-blind it is justified, that the breaking mass matrices are propor-

tional to the unit matrix. Furthermore it assumes unification at a high energy

scale. Therefore, with the RG equations, one can calculate back from the point

of unification to get the masses at the electroweak scale. This leaves just four

parameters and a sign: m0, m1/2, A0, tan β and the sign of µ, where:

m1/2 = M1 = M2 = M3 (7.30)

m2
0 = m2

Q = m2
u = m2

d
= m2

e = m2
L = m2

H1
= m2

H2
(7.31)

A0 = Au0 = Ad0 = Ae0 (7.32)

tan β =
〈H0

u〉
〈H0

d〉
(7.33)

and µ is the parameter in (7.23).

However, mSUGRA involves also weakly motivated assumptions. We know even

in the Standard Model of non-zero parameters, such as the off-diagonal com-

ponents and the CP-violating phase in the quark mixing matrix. Even though

those parameters are small, they are still there and non-zero. So the case for
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strict soft supersymmetry breaking universality is not very strong. However, it

is still approximately well satisfied and should be valid up to a certain point of

accuracy. Furthermore is the assumption of gauge unification, without the con-

text of a grand unified theory, mainly aesthetical.

Figure 7.8: RG evolution of scalar and gaugino mass parameters in the MSSM

together with the mSUGRA assumptions imposed at Q0 = 2.5× 1016 GeV.

Figure 7.8 shows the RG evolution of scalar and gaugino masses in a typical model

based on minimal supergravity. The parameters were chosen to be: m0 = 80 GeV,

m1/2 = 250 GeV, A0 = −500 GeV, tan β = 10 and µ > 0. It is notable, that

µ2 + m2
Hu

runs negative, providing for electroweak symmetry breaking. At the

electroweak scale, the values of the Lagrangian soft parameters can be used to

extract the physical masses and cross-sections of the particles, and other observ-

ables such as dark matter abundances.

Figure 7.9 shows a qualitative mass spectrum of the MSSM obtained from the

mSUGRA assumption. The values of the four and a half unknown parameters is

chosen exactly as in figure 7.8. It is notable, that the LSP is indeed the bino-like

neutralino19, Ñ1. We have additionally wino-like Ñ2 and C̃±1 and higgsino-like

Ñ3, Ñ4 and C̃±2 . However, it is important, that the mass spectrum is very sensible

19c.f. section ??
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Figure 7.9: Sample of a schematic mass spectra for the undiscovered particle in

the MSSM for mSUGRA.

to the input parameters, and thus one has to treat the example featured in figure

7.9 as nothing more than an example that is very unlikely to be true.

To summarize, one should be aware that the most important property of the

mSUGRA model is its predictive power. A theory with too many parameters is

simply impractical, and cannot make any predictions.

7.7.3 Gauge mediated supersymmetry breaking

In gauge-mediated supersymmetry breaking (GMSB), the ordinary gauge inter-

actions are responsible for the appearance of soft supersymmetry breaking in the

MSSM. The basic idea is to introduce some new chiral supermultiplets, called

messengers, that couple to the ultimate source of supersymmetry breaking, the

so-called hidden sector, and also couple indirectly to the MSSM through the

ordinary gauge bosons and gaugino interactions. Here, the gravitational com-

munication between the MSSM and the source of supersymmetry breaking are

treated as relatively unimportant, and are thus negligible. The basic idea of

GMSB is sketched in figure 7.10.

Phenomenologically it is important to notice that via the GMSB, the amount of

unknown parameters in Lsoft can be reduced to 6 parameters, which makes it a

very powerful tool. In the GMSB, not the neutralino becomes the LSP, but the

gravitino.
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Figure 7.10: Presumed schematic structure for supersymmetry breaking.

To conclude, it is important to note that it is easy to imagine that the essential

physics of supersymmetry breaking is not captured by either of the above sce-

narios. However for the sparticle search, they are extremely important, because

they predict somewhat measurable quantities, and one gets phenomenological

consequences, that could be found in collider experiments in the near future.

7.8 Matter- and R-Parity

As mentioned before could the superpotential of (7.23) include also other terms,

such that it would still be renormalizable, analytic and gauge invariant in the

chiral superfields. But they all would violate either the baryon number (B) or

the total lepton number (L). The most general gauge-invariant and renormalizable

superpotential would also include terms of the form:

W∆L=1 =
1

2
λijkLiLjek + λ′ijkLiQjdk + µ′iLiHu (7.34)

W∆B=1 =
1

2
λ′′ijkuidjdk, (7.35)

where family indices i = 1, 2, 3 have been restored. Table 7.7 lists the assignments

of baryon and lepton number for each particle in the MSSM. It follows therefore,

that the terms given in (7.34) violate lepton number by 1 unit and the ones in

(7.35) violate baryon number by 1 unit.

Qi ui di Li ei remaining particles

baryon number, B = 1
3

−1
3
−1

3
0 0 0

lepton number, L = 0 0 0 1 −1 0

Table 7.7: Baryon and lepton number assignments to each particle.

Experimental evidence strongly suggests, that B- and L-violating processes are

highly suppressed in nature, therefore it seems kind of obvious to neglect such
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terms in the superpotential. The strongest experimental indication comes from

the non-observation of proton decay, which would violate both B and L-number

by 1 unit. If both, λ′ and λ′′ couplings were non-zero and unsuppressed, then

the lifetime of the proton would be extremely short. In contrast, the decay time

of the proton into lepton and meson final states is experimentally known to be

higher than 1032 years. This indicates, that some of the components of λ′ and

λ′′ are extremely small. Many other processes also give strong restrictions on the

violation of lepton and baryon numbers.

To justify the superpotential as given in (7.23), one introduces a new symmetry,

which has the effect of eliminating the possibility of B- and L-violating terms in

the renormalizable superpotential. This symmetry is called R-parity or equiva-

lently matter-parity.

Matter parity is a multiplicatively conserved quantum number defined as:

PM = (−1)3(B−L), (7.36)

for each particle in the MSSM. The symmetry principle is that a candidate term

in the Lagrangian is allowed only if the product of PM for all of the fields in it

is equal to +1. If matter-parity is being enforced upon the MSSM-Lagrangian,

it is obvious that the terms in (7.34) and (7.35) are not allowed, and the super-

potential is indeed of the form given in (7.23). L and B number are violated

by non-perturbative electroweak effects. However, matter parity can be imple-

mented as an exact symmetry, because one expects that baryon number and total

lepton number violation can occur in tiny amounts, due to non-renormalizable

terms in the Lagrangian.

It is useful to state matter parity in terms of R-parity, which is defined as:

PR = (−1)3(B−L)+2s, (7.37)

where s is the spin of the particle. Matter- and R-parity are equivalent because

the product of (−1)2s for the particles involved in any interaction vertex in a

theory that conserves angular momentum is always equal to +1. Notably, as

opposed to matter-parity, R-parity does not commute with supersymmetry, be-

cause particles in a supermultiplet do not have the same R-parity. However, the

R-parity assignment is a very useful tool for phenomenological considerations,

because all the Standard Model particle and the Higgs bosons do have R-parity

+1, whereas the particles added through the imposition of supersymmetry have
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R-parity −1. These particles with uneven R-parity are then called sparticles. So,

if R-parity is exactly conserved, then every interaction vertex has to contain an

even number of PR = −1 particles. So, in collider experiments sparticles can only

be produced in even numbers.

The implementation of R-parity strongly suggests the existence of dark matter

as the lightest supersymmetric particle20, or LSP. This is because if the LSP is

electrically neutral, it interacts only weakly with ordinary matter and thus makes

a great candidate for non-baryonic dark matter as required by cosmological dis-

coveries. Furthermore does the MSSM equipped with R-parity suggest that each

sparticle other than the LSP must eventually decay into a state that contains an

odd number of LSP′s, which would explain the huge amount of dark matter in

the universe.

Even though the postulation of parity is phenomenologically well-motivated by

proton decay and the hope that the LSP will turn out to be a “dark matter parti-

cle”, it is noteworthy that the MSSM would not suffer any internal inconsistencies

without R-parity. Furthermore one can doubt that parity is exactly conserved,

because in the Standard Model every discrete symmetry is inexact21. Fortunately

one can show that it is sensible to formulate matter parity as a discrete symmetry

that is exactly conserved.

7.9 SUSY particles in the MSSM

?? In this section, we shall give a brief introduction to the physics of the various

supersymmetry particle states in the MSSM. The discussion is complicated by

mixing phenomena. In particluar, after SU(2)L×U(1)Y breaking, mixing will in

general occur between any two, or more fields which have the same colour, charge

and spin. I will treat especially the so-called neutralinos and the charginos.

7.9.1 Neutralinos

Consider the sector consisting of the neutral higgsinos H̃0
u and H̃0

d , and the neutral

gauginos B̃ and W̃ 0. In absence of electroweak symmetry breaking, the bino and

wino fields would have masses given by the soft supersymmetry-breaking mass

20the lightest particle with R-parity PR = −1
21c.f. C-, P- and T-Symmetry
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terms in (7.26). However, bilinear combinations of one of (B̃, W̃ 0) with one of

(H̃0
u, H̃

0
d) are generated, when the neutral scalar Higgs fields acquire a VEV. Such

terms will appear as non-zero off-diagonal entries in the 4 × 4 mass matrix for

the four fields, and therefore they will cause mixing. After the mass matrix is

diagonalized, the resulting four neutral mass eigenstates are called neutralinos,

and denoted by Ñi, i = 1, 2, 3, 4. By convention, these are labeled in ascending

order, such that:

mÑ1
< mÑ2

< mÑ3
< mÑ4

.

The lightest neutralino, Ñ1 is usually assumed to be the LSP, unless there is a

lighter gravitino or R-parity is not conserved, because it is the only MSSM par-

ticle that can make a good dark matter candidate.

In the gauge-eigenstate basis, ψ0 = (B̃, W̃ 0, H̃0
u, H̃

0
d), the neutralino mass part is

given by:

Lneutralino mass = −1

2
(ψ0)TMÑψ

0 + c.c., (7.38)

where we have the following mass matrix:

MÑ =


M1 0 −g′vd/

√
2 g′vu/

√
2

0 M2 gvd/
√

2 −gvu/
√

2

−g′vd/
√

2 gvd/
√

2 0 −µ
g′vu/

√
2 −gvu/

√
2 −µ 0

 . (7.39)

M1 and M2 come directly from (7.26), the soft supersymmetry breaking part of

the Lagrangian, the −µ-entries are the supersymmetric higgsino mass terms as

given in (7.25), and the other terms emerge from (7.18), with the Higgs scalars

replaced by their VEVs:

vu = 〈H0
u〉, vd = 〈H0

d .〉

The mass matrix can be diagonalized by a unitary matrix N to obtain the mass

eigenstates:

Ñi = Nijψ
0
j (7.40)

such that:

32



7.9 SUSY particles in the MSSM

N∗MÑN
−1 =


mÑ1

0 0 0

0 mÑ2
0 0

0 0 mÑ3
0

0 0 0 mÑ4

 (7.41)

has positive eigenvalues mÑj
, j = 1, 2, 3, 4. In general are the terms for the

masses quite complicated. However, there is the simple case in which we have

the following limit:

µ� mZ , M1 � mZ , and M2 � mZ (7.42)

This means that the electroweak symmetry breaking effects can be viewed as a

small perturbation on the neutralino mass matrix. This leads to a decoupling

between the gauginos and the Higgsinos and the neutralino mass eigenstates are

a “bino-like”Ñ1 ≈ B̃, a “wino-like”Ñ2 ≈ W̃ 0, and “Higgsino-like”Ñ3
4
≈ H̃0

u±H̃0
d√

2
.

The above limit, leading to a bino-like neutralino LSP, often emerges from mSUGRA

boundary conditions on the soft parameters, which tend to require it in order to

get correct electroweak symmetry breaking.

7.9.2 Charginos

The charged analogues of neutralinos are called charginos. There are two posi-

tively charged ones associated with (W̃+, H̃+
u ) and two negatively charged ones

associated with (W̃−, H̃−d ). The mixing between the Higgsinos occurs via the

µ term in (7.25), and similarly to the neutralinos, does the mixing between the

charged gauginos and higgsinos occur via the last terms in (7.18), after elec-

troweak symmetry breaking. Let us denote the eigenstates corresponding to the

charginos by C̃1 and C̃2, such that we have again:

mC̃1
< mC̃2

In the gauge-eigenstate basis ψ± = (W̃+, H̃+
u , W̃

−, H̃−d ), the chargino mass terms

in the Lagrangian are:

Lchargino mass = −1

2
(ψ±)TMC̃ψ

± + c.c., (7.43)

where:

MC̃ =

(
0 XT

X 0

)
, and X =

(
M2 gvu
gvd µ

)
. (7.44)
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Diagonalizing, we get that the mass eigenstates are related to the gauge eigen-

states by two unitary 2× 2 matrices U and V according to:(
C̃+

1

C̃+
2

)
= V

(
W̃+

H̃+
u

)
,

(
C̃−1
C̃−2

)
= U

(
W̃−

H̃−d

)
, (7.45)

such that:

U∗XV−1 =

(
mC̃1

0

0 mC̃2

)
, (7.46)

has positive real entries mC̃i
, i = 1, 2. Diagonalizing these matrices, we get the

doubly degenerate eigenvalues of the matrix M†
C̃
MC̃, m2

C̃1
and m2

C̃2
.

Again treating the limit of (7.42), we get that the chargino mass eigenstates con-

sist of a wino-like C̃±1 , and a higgsino-like C̃±2 .

7.9.3 Gluinos

The gluino being a color octet fermion, cannot mix with any other MSSM particle,

even if R-parity is violated. Therefore one gets a break from mixing phenomena

in the MSSM. From model such as mSUGRA and GMSB follows, that the gluino

mass is considerably larger than the ones of the neutralinos and charginos22.

7.9.4 Squarks and Sleptons

The scalar partners of the SM fermions form the largest collection of new parti-

cles in the MSSM. There are altogether 21 new fields23: Four squark flavours and

chiralities, ũL, ũR, d̃L, d̃R, and three slepton flavours and chiralities, ν̃eL, ẽL, ẽR
in the first family, all repeated for the other two families. These are all complex

scalar fields.

In principle any scalars with the same electric charge, R-parity and colour quan-

tum numbers can mix with each other. This would lead to 6×6 mixing problems,

which are quite hard to solve analytically. However, there are again phenomeno-

logical constraints, that imply that interfamily mixing among the supersymmetry

states must be very suppressed only.

22c.f. figure 7.9
23the neutrinos are treated as massless here
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7.10 Experimental signals for supersymmetry

7.10.1 Hadron colliders

The Tevatron as well as the LHC have active experiments, searching for super-

symmetric particles. Being hadron colliders, they best search for strongly inter-

acting particles. Therefore most experiments focus on the production of squarks

and gluinos. Assuming that R-parity is exactly satisfied, the LSP will be sta-

ble, and thus, after the squarks and gluinos decay, each chain will contain one

LSP, that, if electrically neutral, should leave the detector unseen. This leads

to the prediction that the MSSM will produce a so-called missing energy signal,

because of the LSP leaving the detector. Within the next few years, the search

for supersymmetry will be taken up at the LHC. This should almost certainly

result in finding supersymmetry, if the theoretical assumption of supersymmetry

are correct.

As an illustration of possible signatures for neutralino and chargino production,

we mention the trilepton signal arising from the production:

pp (or pp) −→ C̃±1 Ñ2 +X (7.47)

followed by the decays:

C̃±1 −→ l′±νÑ1 (7.48)

Ñ2 −→ llÑ1 (7.49)

Here the two LSPs in the final state carry away 2mÑ1
of missing energy, which

should be observed as missing transverse energy. In addition there should be three

energetic isolated leptons, and little jet activity. The expected Standard Model

background should be small as well. Figure 7.11 shows the complete diagram for

a clean trilepton event at a hadron collider. However up to now, no events have

been registered at the Tevatron. Maybe this will change if we proceed to higher

energies at the LHC.

7.10.2 e+e− colliders

At e+e− colliders, all sparticles (except the gluino) can be produced in tree-level

reactions:

e+e− −→ C̃+
i C̃

−
j , ÑiÑj, l̃

+l̃−, ν̃ν̃∗, q̃q̃∗ (7.50)
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Figure 7.11: Complete Feynman diagram for a clean trilepton event at a hadron

collider.

The important interactions for sparticle production are the gaugino-fermion-

scalar couplings and the ordinary vector boson interactions. The cross-sections

are thus determined just by the electroweak gauge couplings and the sparticle

mixings.

7.11 Conclusion

We have seen how to implement supersymmetry into the well-known Standard

Model, and how to extend it with the constraints that there should be mini-

mal additional structure and particle content. This gave us the MSSM, a phe-

nomenological viable theory that combines the confirmed Standard Model with

the remarkable supersymmetry-theory. We did furthermore discuss some of the

consequences of such a model, such as the particle content and their interactions,

up to a point, at which a lot of arbitrariness seems to take over. Additionally

have we found, that there are some strong indications that the MSSM could be

a valid solution to some of the current problems of the Standard Model, such as

the hierarchy problem. Further, we have seen that the MSSM leads to a remark-

able result in the form of the gauge coupling unification, which makes it, one of

the top-candidates for a next step into the direction of a theory of everything.

However, by experiments currently held, the parameterspace for the MSSM gets

more and more restricted, and it could very well be, that the LHC excludes the

MSSM.
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