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Abstract

In this report we want to consider the super�eld formalism. We start by reviewing space-
time translations and then switch to supersymmetric transformations. We obtain the change
in the super�eld by inducing shifts in the spinorial coordinates. This will lead to a di�erential
operator representation on the SuSy algebra. We then make the transition to chiral super�elds
and explore the terms that will appear in the expansion of the chiral super�eld. We will take a
look at other (more physical) representations of super�elds, which unfortunately correspond to
reducible representations. We will see how to �x this problem and �nally obtain a real valued
chiral super�eld which has an irreducible representation.
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1 Introduction

In this report we are going to review the super�eld formalism. It was �rst introduced by Salam and
Strathdee [6] for the N=1 case. There exist other approaches for N> 1 which include more coordinates
than in the N=1 case, but we are not going to review these here because this would be beyond our
scope. Salam and Strathdee introduced new fermionic coordinates. We will pay special attention on
how to parametrize this manifold1. The super�eld formalism allowes one to us to gather supermultiplets
into super�elds. In previous lectures we have seen the direct construction of �eld supermultiplets by
applying the Jacobi identity over and over again on �elds until we found an irreducible multiplet.
This tedious work will be avoided by introducing a super�eld and its expansion in the fermionic
coordinates. We will see that an expansion will lead to irreducible multiplets only in the special case
of chiral super�elds which do not depend on one of its fermionic coordinates. The second part of this
report will therefore concentrate on �nding constraints which will yield irreducible multiplets even for
expansions of general super�elds to obtain, again, chiral multiplets. The case of vector, gravitino or
graviton multiplets will not be discussed, but will be postponed to lectures about gauge transformations
of supersymmetric lagrangians.

2 Transformations on �elds

2.1 Review on space-time transformations

When we perform a translation in space-time [2], we change the coordinate by a constant, in�nitesimal
4-vector εµ :

x′µ = xµ + εµ (1)

Now we consider a scalar �eld φ(x) which we want to evaluate at a space-time coordinate x′ and
act upon the states |α〉 which transform as |α〉′ = U |α〉, with the in�nitesimal translation

U = 1 + iεµP
µ (2)

where the Pµ are the generators of this transformation. As the matrix elements must remain invariant
we get:

〈β|U−1φ(x´)U |α〉 = 〈β|φ(x)|α〉 (3)

This should be true for all states, such that we infer

U−1φ(x´)U = φ(x) (4)

or
Uφ(x)U−1 = φ(x´) = φ(x+ ε) (5)

We insert the explicit form of U , expand in ε and get

(1 + iεµP
µ)φ(x)(1− iεµPµ) = φ(x) + εµ

∂φ

∂xµ
(6)

1Group theory for this procedure and the inclusion of the Lorentz subgroup can be found in [7]. For the super�eld
formalism it is su�cient to work on the coset space super-Poincaré/Lorentz which contains the generators of space-time
translations and the group elements of the supersymmetry algebra.
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and deduce
δφ(x) = iεµ[Pµ, φ(x)] = εµ∂

µφ(x) (7)

where we can identify the di�erential operator P̂µ:

δφ(x) = εµ∂
µφ(x) = −iεµP̂µφ(x) (8)

This is the known result from our �simple� translation. We are now going to use this derivation
as an analogy to our derivation for the generators in superspace. But what do we actually mean by
superspace? We are going to enlarge the space of coordinates, which used to be only xµ up to now,
by fermionic degrees of freedom, the spinorial coordinates θ and θ∗. We call the �elds, which act upon
this newly introduced superspace, super�elds. We have just seen that the operator P̂µ generates a
shift in the space-time components of φ, so we might want to �nd operators Q and Q† that induce a
shift in the spinorial coordinates. But these operators should also obey the supersymmetry algebra,
de�ned in (19), which we have seen in previous lectures (and indeed they will, as we are going to see).

To perform a �nite transformation, we do now exponentiate linear combinations of the generators
and obtain for a simple space-time translation from 0→ x :

U = eix·P ⇒ eix·Pφ(0)e−ix·P = φ(x) (9)

2.2 Supersymmetry transformations

We now want to introduce the super�eld formalism. The N=1 case the superspace consists of 4
(bosonic) space-time coordinates and 4 fermionic coordinates. These fermionic coordinates will be
represented by set of anticommuting Grassman variables. Their properties can be found in the ap-
pendix.

To obtain a kind of transformation like (9) in superspace we de�ne

U(x, θ, θ∗) = eix·P eiθ·Qeiθ̄·Q̄ (10)

which is, indeed, a bit arbitrary, since we could have also taken the exponential of θ̄ · Q̄ before the
exponential of θ ·Q which will gives us a di�erent result, as they do not commute. We will cover this
problem in the later sections. To remind us of the notation, we write the dot product as

θ ·Q = θT (−iσ2)Q (11)

θ̄ · Q̄ = θ†(iσ2)Q†T (12)

Just as with the evolution from 0→ x in standard space-time, we are going to do this transformation
in superspace:

U(x, θ, θ∗)Φ(0)U−1(x, θ, θ∗) = Φ(x, θ, θ∗) (13)

where Φ(x, θ, θ∗) denotes our super�eld. To calculate a more complex translation than that from
0 → x, we have to calculate the product U(a, ξ, ξ∗)U(x, θ, θ∗) and see what happens2. What can we
expect? Will it just be a normal translation from x → a, θ → ξ, θ∗ → ξ∗ ? In hindsight to the
supersymmetry algebra, we might expect this not to happen since we need a nontrivial connection

2Following the procedure proposed in [1]
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between the di�erential operators of the spinorial coordinates Q, Q† and the generator of space-time
translations Pµ. So let us try to �nd an answer. Explicitly, the product

U(a, ξ, ξ∗)U(x, θ, θ∗) = eia·P eiξ·Qeiξ̄·Q̄eix·P eiθ·Qeiθ̄·Q̄ (14)

is not as easy to obtain as before, sinceQ and Q̄ obey the supersymmetry algebra (19). Therefore we
cannot just use a simple algebraic approach, but use the Baker-Campbell-Hausdor� (B-C-H) identity:

eAeB = eA+B+ 1
2 [A,B]+... (15)

On the other hand, we know that Pµ and Q (respectively Q̄) commute, so we can write the
nontrivial part:

eiξ·Qeiξ̄·Q̄eiθ·Qeiθ̄·Q̄ (16)

The �rst part is
eiξ·Qeiξ̄·Q̄ = eiξ·Q+iξ̄·Q̄− 1

2 [ξ·Q,ξ̄·Q̄]+... (17)

with

[ξ ·Q, ξ̄ · Q̄] = [ξaQa,−ξb∗Q†b]
= −ξaQaξb∗Q†b + ξb∗Q†bξ

aQa

= ξaξb∗(QaQ
†
b +Q†bQa)

= ξaξb∗(σµ)abPµ (18)

In the last line we have used the anticommutator

{Qa, Q†b} = (σµ)abPµ (19)

which was derived in the previous section about supersymmetry algebra.
What happened: We induced a shift in the spinorial coordinates and obtained not only a change

in the spinorial coordinates, but also in the space-time coordinates!

eiξ·Qeiξ̄·Q̄ = eiA·P ei(ξ·Q+ξ̄·Q̄) (20)

with

Aµ =
1

2
iξa(σµ)abξ

b∗ (21)

The next factor will be:

ei(ξ·Q+ξ̄·Q̄)eiθ·Q = ei(ξ·Q+ξ̄·Q̄+θ·Q)− 1
2 [ξ·Q+ξ̄·Q̄,θ·Q]+...

= ei(ξ·Q+ξ̄·Q̄+θ·Q)+ 1
2 iθ

a(σµ)abξ
b∗Pµ+... (22)

To exclude the Q̄ term from the exponential we use B-C-H again, but this time in the opposite
direction:

ei(ξ·Q+ξ̄·Q̄+θ·Q) = ei(ξ+θ)·Qeiξ̄·Q̄e
1
2 [(ξ+θ)·Q,ξ̄·Q̄] (23)

Putting all the prefactors together leads to our �nal result:

eiξ·Qeiξ̄·Q̄eiθ·Qeiθ̄·Q̄ = ei[−iθ
a(σµ)abξ

b∗Pµ]ei(ξ+θ)·Qei(ξ̄+θ̄)·Q̄ (24)
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where all spinorial and space-time shifts are included. We read the transformations

0→ θ → θ + ξ

0→ θ∗ → θ∗ + ξ∗ (25)

0→ xµ → xµ + aµ − iθa(σµ)abξ
b∗ (26)

As expected, we can see that a change in the spinorial coordinates was induced, as well as a change
in space-time through aµ but also through θa (Why was no change induced by θ∗? The reason for this
was the choice of U(x, θ, θ∗) = eix·P eiθ·Qeiθ̄·Q̄. As mentioned we will discuss this issue later. For now
it is ok to work with this result.)

3 Di�erential operator representation

If we were to perform a shift purely by spinorial arguments ξa, we would see that the change in the
�eld is given by3

δΦ = −iθa(σµ)abξ
b∗∂µΦ + ξa

∂Φ

∂θa
+ ξ∗a

∂Φ

∂θ∗a
(27)

or, in terms of di�erential operators Q̂a,Q̂
†
a ,in analogy to (8)

δΦ = (−iξ · Q̂− iξ̄ · ¯̂
Q)Φ

= (−iξaQ̂a − iξ∗aQ̂†a)Φ (28)

Therefore we can identify the operators as

Q̂a = i
∂

∂θa
(29)

Q̂†a = −i ∂

∂θa∗
+ θb(σµ)ba∂µ (30)

using ξ∗aQ̂
†a = −ξa∗Q̂†a and anticommutation of Grassman variables. And, just as expected, they

ful�ll the supersymmetry algebra.
As we can see, we have derived a representation of the generators purely out of the superspace

formalism. In the next chapters we will recognize that this will be very useful, i.e. in obtaining the
corresponding multiplets.

4 Chiral super�elds

In this chapter we will expand super�elds in the spinorial coordinates. A major advantage in doing
so is that this expansion will always be exaxt because of the fermionic nature of the variables. Any
quadratic term in θ1or θ2 will vanish, thus giving a compact expansion of the super�eld. To simplify

3The properties of the spinorial derivatives can be found in chapter 9.5 of [5].
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this, we require our �elds not to depend on the second spinorial coordinate θ∗. As it contains only the
L-type spinor χa we are going to call it a left-chiral super�eld. We write

Φ(x, θ) = φ(x) + θ · χ(x) +
1

2
θ · θF (x) (31)

As one can see there are only three terms in this expansion:

� φ(x) , a scalar �eld which is the part of Φ independent of θ

� χa(x), a spinor �eld, representing the coe�cient of the part linear in θ

� F (x) , which will act as our auxilliary �eld.

Together they act as our chiral supermultiplet. We now want to compute the change in each �eld
seperately. We proceed in calculating the space-time and spinorial derivatives and then compare each
of the changes by sorting them in terms of θ:

δΦ = [−iθa(σµ)abξ
b∗∂µ + ξa

∂

∂θa
][φ(x) + θ · χ(x) +

1

2
θ · θF (x)]

= δξφ+ θaδξχa +
1

2
θ · θδξF (x) (32)

The space-time derivative can only act on φ(x) and χa(x) because any term cubic in θ will cancel
out anyway. We obtain

−iθb(σµ)baξ
a∗∂µφ+ iξa∗θb(σµ)baθ

c∂µχc (33)

The spinorial derivative gives

∂

∂θa
[θcχc +

1

2
θ · θF (x)] = χa + θaF (x) (34)

Finally we read the changes induced by ξ (independent, linear or bilinear in θ):

δξφ = ξaχa (35)

δξχa = ξaF − i(σµ)abξ
b∗∂µφ (36)

δξF (x) = −iξa∗(σµT )abε
bc∂µχc (37)

Observing these changes, we notice one of the most important results of this lecture: The change
in the F-�eld is only induced by a total derivative ∂µχc because all the other terms do not depend
on xµ ! Doing the same analysis for a right-chiral super�eld we see that the F-component of a chiral
super�eld will always change by a total derivative. We will use this result again in the coming sections
to analyze SuSy invariant actions.
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5 Other forms of chiral super�elds

5.1 The 'real-type' super�eld

As mentioned twice above, we encountered an ambiguity regarding the de�nition of U(x, θ, θ∗). From
now on we will refer to it as a 'type I' super�eld. We postulated it to be

U(x, θ, θ∗) = UI(x, θ, θ
∗) = eix·P eiθ·Qeiθ̄·Q̄ (38)

And indeed, we could have also written one of the following terms:

UII(x, θ, θ
∗) = eix·P eiθ̄·Q̄eiθ·Q (39)

Ureal(x, θ, θ
∗) = eix·P ei[θ·Q+θ̄·Q̄] (40)

The transformation Ureal(x, θ, θ
∗) will have a special physical meaning. Consider a super�eld

Φreal(x, θ, θ
∗) which is generated with this speci�c transformation:

Φreal(x, θ, θ
∗) = ei[θ·Q+θ̄·Q̄]Φ(x, 0, 0)e−i[θ·Q+θ̄·Q̄] (41)

If we require Φ(x, 0, 0) to be real: Φ†(x, 0, 0) = Φ(x, 0, 0) then we will infer that also Φ†real(x, θ, θ
∗) =

Φreal(x, θ, θ
∗) will be real. A quick check tells us that this is not true for 'type I' or 'type II' super�elds.

If we were to calculate the change in the 'real type' super�eld, we would obtain:

0→ θ → θ + ξ

0→ θ∗ → θ∗ + ξ∗ (42)

0→ xµ → xµ + aµ − 1

2
iθa(σµ)abξ

b∗ +
1

2
iξa(σµ)abθ

b∗

so to say a symmetric version of (26).
This time we would of course �nd a di�erent representation of the di�erential operatiors. But,

most importantly, they will also satisfy the same supersymmetry algebra. What can we do with these
di�erent representations? To begin, we want to know how they transform into each other. To do so,
we write the 'real type' super�eld (using B-C-H) as

Φreal(x, θ, θ
∗) = ei[θ·Q+θ̄·Q̄]Φ(x, 0, 0)e−i[θ·Q+θ̄·Q̄]

= e−iB·P eiθ·Qeiθ̄·Q̄Φ(x, 0, 0)e−iθ̄·Q̄e−iθ·QeiB·P

= e−iB·PΦI(x, θ, θ
∗)eiB·P (43)

with

Bµ =
1

2
iθa(σ)abθ

b∗ (44)

which yields a di�erence in the space-time coordinate:

Φreal(x, θ, θ
∗) = ΦI(x

µ − 1

2
iθa(σµ)abθ

b∗, θ, θ∗) (45)
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5.2 General super�elds

We recall the expansion of the super�eld depending only on xµ and θ, as given in (31). Of course,
this will not be true for any super�eld, we still have to deal with θ̄ in general. So we do now want
to perform an expansion in both fermionic coordinates. Following standard conventions for general
super�elds we write4

Φ(x, θ, θ∗) = φ(x) + θχ(x) + θ̄γ̄(x) + θθm(x) + θ̄θ̄n(x)

+θσµθ̄vµ(x) + θθθ̄λ̄(x) + θ̄θ̄θρ(x) + θθθ̄θ̄d(x) (46)

Where we have

� 4 complex scalar �elds φ(x), m(x), n(x) and d(x)

� 1 complex vector �eld vµ

� 2 L-type spinors χ and ρ

� 2 R-type spinors γ̄ and λ̄

(As a sidenote: if Φ carries extra vector indices, then so do the other component �elds.)
Thus we have 16 bosonic and 16 fermionic �eld components. If we now consider a 'real type'

super�eld, we stress the fact that [Φreal(x, θ, θ̄)]
† = Φreal(x, θ, θ̄). This constraint halves the number

of �eld components. We have now found the general multiplet which is formed by the �eld components
of our general super�eld. As we know, this multiplet is not an irreducible representation. We will now
think about how to �x this problem.

5.3 Covariant spinor derivatives

If we want to reduce the number of �eld components, we have to impose so called supersymmetric
conditions. Therefore we need to introduce covariant spinor derivatives5. We have previously calculated
the transformation of the super�eld by applying the change from the LHS:

U(a, ξ, ξ∗)U(x, θ, θ∗) = (1− iaµP̂µ − iξ · Q̂− iξ̄ · ˆ̄Q)U(x, θ, θ∗)

This is called realization of the group. But group theory also states the associativity of group multi-
plication, implying anti-realization (inverted order):

U(x, θ, θ∗)U(a, ξ, ξ∗) = (1 + iaµD̂
µ + iξ · D̂ + iξ̄ · ˆ̄D)U(x, θ, θ∗)

Instead of the di�erential operators Q̂ and
¯̂
Q we will now get covariant spinor derivatives Da and D̄a.

We can use these to impose covariant conditions on the super�eld. That is:

D̄aΦ(x, θ, θ∗) = 0 (47)

4Notation in analogy to [4]
5This part was inspired by [7] where additional information regarding the group- theoretical background can be found

as well
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and
DaΦ̄(x, θ, θ∗) = 0 (48)

In the case of 'type I' and 'type II' super�elds this will be especially useful. For 'type I' we have
already obtained

Q̂a = i
∂

∂θa
(49)

Q̂†a = −i ∂

∂θa∗
+ θb(σµ)ba∂µ (50)

another quick calculation gives us the covariant derivatives

Da =
∂

∂θa
− īθb(σµ)ba∂µ (51)

D†a = − ∂

∂θa∗
(52)

5.4 Chirality

Lets recall our left-chiral super�eld ΦLI (x, θ, θ∗) = ΦI(x, θ). In the �rst place we called it left-chiral
because the only �elds that were involved were L-type. That this led to the omission of θ∗ was just a
nice bonus. We will now see that the technical way to construct a left-chiral super�eld actually takes
the opposite way. We apply the constraint

D†aΦI(x, θ, θ
∗) = − ∂

∂θa∗
ΦI(x, θ, θ

∗) = 0

Informally speaking, we could have also argued (in this special case) that ∂
∂θa∗ (δΦ) = δ( ∂

∂θa∗ Φ). To
obtain a left chiral 'real type' super�eld we perform the shift determined in (45) :

ΦLreal(x, θ, θ
∗) = ΦI(x

µ − 1

2
iθa(σµ)abθ

b∗, θ) (53)

again, we can use the expansion from (31) to obtain

ΦLreal(x, θ, θ
∗) = φ(xµ − 1

2
iθa(σµ)abθ

b∗) + θ · χ(xµ − 1

2
iθa(σµ)abθ

b∗)

+
1

2
θ · θF (xµ − 1

2
iθa(σµ)abθ

b∗) (54)

Taylor expansion in terms of x yields:

ΦLreal(x, θ, θ
∗) = φ(x) + θ · χ(x) +

1

2
θ · θF (x)

−1

2
iθa(σµ)abθ

b∗∂µφ−
1

2
iθ · ∂µχθa(σµ)abθ

b∗

−1

8
θa(σµ)abθ

b∗θc(σµ)cdθ
d∗∂µ∂νφ (55)
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further simpli�cation gives us

ΦLreal(x, θ, θ
∗) = φ(x) + θ · χ(x) +

1

2
θ · θF (x)− 1

2
iθa(σµ)abθ

b∗∂µφ

+
1

4
iθ · θ∂µχa(σµ)abθ

b∗ − 1

16
θ · θθ̄ · θ̄∂2φ (56)

We have seen how to calculate irreducible multiplets using the super�eld formalism. We can now
go on to use these super�elds to construct various Lagrangians. For example in the free Lagrangian
the term (ΦLreal(x, θ, θ

∗))†ΦLreal(x, θ, θ
∗) appears. Basic properties of products of super�elds are given

in the Appendix.
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A Products of chiral super�elds

In hindsight to the Wess-Zumino model, or in fact even more complex models like the MSSM we
are now going to lay a basis for the non-gauge interactions of the �elds. Because we haven't dis-
cussed the possible Lagrangians for supersymmetric theories yet, we are just going to postulate simple
'superpotentials'.

Consider a product of two chiral super�elds:

ΦiΦj = (φi(x) + θ · χi(x) +
1

2
θ · θFi(x))(φj(x) + θ · χj(x) +

1

2
θ · θFj(x)) (57)

We identify the components of the product �eld:

� independent of θ: φiφj

� linear in θ: θ · (χiφj + χjφi)

� bilinear in θ: 1
2θ · θ(φiFj + φjFi) + θ · χiθ · χj

A similar calculation can be done for a product of three super�elds. We denote the F-component:

ΦiΦjΦk|F = φiφjFk + φjφkFi + φkφiFj − χi · χjφk − χj · χkφi − χk · χiφj (58)

We are now going to de�ne the superpotentials. These will be just the F-component of the product
of said super�elds, because we always want to refer to a SuSy invariant action as they will only
transform by a total derivative. Mij , yijk are going to be taken symmetric in i, j ; respectively i, j, k.

Wquad =
1

2
MijΦiΦj |F

= MijφiFj −
1

2
Mijχi · χj (59)

Wcubic =
1

6
yijkΦiΦjΦk|F

=
1

2
yijkφiφjFk −

1

2
yijkχi · χjφk (60)

Another reason for the importance of the F-component of the products is following: when we
integrate over the fermionic coordinates θ1 , θ2 we get rid of all but the terms proportional to θ · θ
because of the de�nition of the integration over anticommutating variables.

B Properties of the Grassmann numbers

Grassmann numbers obey the anticommutation relation [3]

{θi, θj} = θiθj + θjθi = 0

This means any quadratic term will vanish,

θ2
i = 0
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We do now build a set of two Grassmann numbers: θa = (θ1, θ2)
Using θa = εabθb, ε

12 = 1, ε21 = −1, ε11 = ε22 = 0, a quadratic term θ · θ gives

θ · θ = θaθa

= θ1θ1 + θ2θ2

= −2θ1θ2

The derivative ∂
∂θa (θbθb)can be obatined by using

∂

∂θ1
(θbθb) = −2θ2 = 2θ1

∂

∂θ1
(θbθb) = 2θ2

and therefore
∂

∂θa
(θ · θ) = 2θa

C Integration on superspace

We de�ne the Berezin integrals

ˆ
dθ1 1 = 0 (61)

ˆ
dθ1 θ1 = 1 (62)

ˆ
dθ1

ˆ
dθ2

1

2
θ · θ =

ˆ
dθ1

ˆ
dθ2 θ2θ1 = 1 (63)

Keeping this in mind we can see that all terms linear or independent of θ vanish when integrating
over

´
dθ1dθ2 . Formally, integration and di�erentiation are the same.

As said, integrating the variation of a super�eld over the whole superspace will be invariant:

δ

ˆ
d4xd2θd2θ̄ Φ(x, θ, θ̄) = 0
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