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Abstract

In this paper we will consider how to construct supersymmetric models
in dimension higher than four. For this it is necessary to construct spinors
in higher dimensions, since supersymmetry is by definition a symmetry
which relates tensorial and spinorial representations. Then we are going
to construct a massless multiplet state in a similar way as for 4 dimensions
but for other number of dimensions and at the end we will show how 4
dimensional lagrangian can be obtained by dimensional reduction of a
higher dimensional one.
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1 Spinor in higher dimension

The finite dimensional representation of the Lorentz algebra fall into two classes:
some representations are contained in multiple direct product of the fundamen-
tal vector representation of the group and the other are not. The former are
the tensor representations, the latter are the spinor representations. The spinor
representations of the Lorentz algebra are characterized by the fact that gener-
ators have half-integer eigenvalues, while tensorial representations have integer
eigenvalues. An easy handle on the spinor representation is provided by the
Dirac matrices and their properties. We will use the notation Γa for the Dirac
matrices for dimensions different from four and γµ for four dimensions, except
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in chapter 2. These are irreducible representations of the Clifford algebra. The
Clifford algebra in d dimensions is given by:

{Γa,Γb} = ηab with ηab = diag(1,−1, ...,−1) a, b = 0, 1, ..., d− 1. (1)

We find that
Σab ≡

i

4
[Γa,Γb] (2)

form a representation of the Lorentz algebra in d dimensions because

[Σab,Σcd] = i(ηbcΣad − ηbdΣac − ηacΣbd + ηadΣbc). (3)

It will comes out that this representation is not necessarily irreducible. To find
out if the representation is irreducible, we have to consider separately the case
where d is an odd or even dimension. For even dimension we make use of a
theorem from representation theory.

Theorem 1.1. For even dimension d and a given metric ηab; a, b = 0, 1, ..., d−1,
all irreducible representations of the Clifford algebra are equivalent and are n×n
matrices (C-matrices) with

n = 2d/2

.

This means that given any set of matrices {Γa} and {Γ′

a} both satisfying
the Clifford algebra, then it exists a non-singular matrix S such that

Γa = SΓaS−1 ∀ a = 0, 1, ..., d− 1.

For odd dimension we again make use of a theorem.

Theorem 1.2. For a given odd dimension d and a given metric ηab; a, b =
0, 1, ..., d− 1, there are two equivalence classes of irreducible representations in
terms of n× n matrices with

n = 2(d−1)/2.

Example: If Γa is in an equivalence class, then −Γa is in the other.

We now return to the even dimension. Knowing that for d even all irreducible
representation are equivalent, take Γa to be such an irreducible representation
of the Clifford algebra. Then

Γa,−Γa,Γ†a,−Γ†a,Γ
T
a ,−ΓTa ,Γ

∗
a,−Γ∗a (4)

also satisfy the Clifford algebra.

Now we can introduce interwiners A,C,D such that:

AΓaA−1 = Γ†a (5)

C−1ΓaC = −ΓTa (6)
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(CAT )−1Γa(CAT︸ ︷︷ ︸
≡D

) = −Γ∗a (7)

together with Γd+1, which satisfies:

Γd+1ΓaΓ−1
d+1 = −Γa (8)

where

Γd+1 ≡ Γ0 . . .Γd−1. (9)

From those equations we find that the interwiners satisfy

A = αA†; C = ηCT ; D = δ(D−1)∗; Γd+1 = βΓ−1
d+1 (10)

by taking then hermitian adjoint of (5), the negative of (8), the transposed of
(6) and the complex conjugate of (7) with the additional condition

αα∗ = η2 = 1 and δ = δ∗.

We have here the freedom to scale α and δ and choose α = |δ| = 1. The
remaining quantities β, η and δ are defined by the metric. For the matrix

D̃ ≡ Γ−1
d+1D (11)

we have
D̃−1ΓaD̃ = Γ∗a (12)

and
D̃ = δ̃D̃−1∗ with δ̃ = βδ. (13)

For the odd dimensions we have to find out which of the

− Γa,Γ†a,−Γ†a,Γ
T
a ,−ΓTa ,Γ

∗
a,−Γ∗a (14)

fall into the same equivalence class as Γa. This is determined by the behavior
of Γd+1 under the transformations

AΓaA−1 = ±Γ†a; C−1ΓaC = ±ΓTa (15)

which always satisfy

AΓd+1A
−1 = C−1Γd+1C = Γd+1 ∝ 1. (16)

The signs of β, η, δ and δ̃ are listed in table 1,2 and 3:

Table 1: The value of β = Γ2
d+1

d=0,1 mod 4 d=2,3 mod 4
d− even +1 -1
d− odd -1 +1

The equivalence classes are given in table 4.
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Table 2: The sign of η
d= 1 2 3 4 5 6 7 8 9 10 11 12

+ - - - - + + + + - - -

Table 3: The signs of δ and δ̃

d= 1 2 3 4 5 6 7 8 9 10 11 12
+ ++ + +- - – - -+ + ++ + +-

Going back to the Theorems, we first see that the number of complex spinor
components n increase exponentially with d. Moreover in many dimension the
spinor representation are not irreducible representation of the Lorentz group.
We can impose chirality (Weyl) condition, reality (Majorana) condition or even
both simultaneously.
The Chirality condition comes from the fact that we can generalize the γ5 of
the four dimensions as

Γd+1. (17)

Note that for odd dimensions Γd+1 ∝ 1, so that chirality condition is not pos-
sible. But in even dimensions we find that

{Γd+1,Γa} = 0 (18)

and from this we can evaluate that

[Γd+1,Σab] = 0. (19)

So that the generators Σab cannot provide an irreducible representation of the
Lorentz algebra. We may define a pair of Weyl irreducible representations Σ±ab
by projecting out the subspaces with Γd+1 = ±

√
β:

Σ±ab =
1
2

(1±
√
βΓd+1)Σab. (20)

In this way, we have defined a irreducible representation of the Lorentz algebra
whose dimension is a half of the initial one.
The reality (Majorana) condition for a spinor have the general form

ψ = Xψ∗ (21)

with X some non-singular n × n matrix. Since an infinitesimal Lorentz trans-
formation acts on a spinor as

δψ =
i

2
λabΣabψ = −1

2
λab

1
4

[Γa,Γb]ψ (22)

and on the complex conjugate as

δψ∗ = −1
2
λab

1
4

([Γa,Γb])∗ψ∗. (23)

λab is a infinitesinal parameter of the transformation. The matrix X must have
the property

([Γa,Γb])∗ = X−1[Γa,Γb]X (24)
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Table 4: The equivalence classes which contain Γa for arbitrary odd dimensions
d≡1 mod 4 d≡3 mod 4

d− even Γa,Γ†a,Γ
T
a ,Γ

∗
a Γa,Γ†a,−ΓTa ,−Γ∗a

d− odd Γa,−Γ†a,Γ
T
a ,−Γ∗a Γa,−Γ†a,−ΓTa ,Γ

∗
a

such that the Majorana condition satisfy δψ = Xδψ∗. We see that X = D or
X = Γ−1

d+1D ≡ D̃ as defined earlier satisfy this condition.
Not in all cases, will this be consistent. Only if at least one of the conditions

DD∗ = δ = 1 or D̃D̃∗ = δ̃ = 1 (25)

is satisfied, we can have a Majorana condition. The reason is

(ψ)∗ = (Dψ∗)∗ ⇔ ψ∗ = D∗ψ
Majorana

= D−1ψ (26)
⇒ DD∗ψ = ψ (27)

and the same for D̃. A standard way of writing Majorana condition is

ψ = ψc ≡ CψT (28)

with
ψ ≡ ψ†A (29)

and C defined earlier is the charge conjugation operator. Finally, we would like
to impose both condition simultaneously. For this we must have

(1±
√
βΓd+1)ψ = D(1±

√
β
∗
Γ∗d+1)ψ∗ (30)

or the corresponding equation with D̃. Evaluating this gives

= Dψ∗ ±
√
β
∗
DΓ∗d+1D

−1Dψ∗ = (1±
√
β
∗
Γd+1)Dψ∗ (31)

Therefore we must have
√
β real, i.e. β = +1 and δ = 1. This implies that

δ = δ̃ = 1. Starting with D̃ would have led to the same results. To summarize
our results see table 5.

Table 5: Chirality and reality of spinors in Minkowski space-time with d ≤ 12
d 1 2 3 4 5 6 7 8 9 10 11 12

number of spinor dimension 1 2 2 4 4 8 8 16 16 32 32 64
Weyl spinors - x - x - x - x - x - x

Majorana spinors x x x x - - - x x x x x
Majorana Weyl spinors - x - - - - - - - x - -

Minimal spinor dimension 1 1 2 4 8 8 16 16 16 16 32 64

2 Construction of gamma matrices

We saw how to handle with the gamma matrices and what we can construct
with it. We are now interested in how construct the matrices themselves. Here
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a possible recursive construction for even dimension. In d=2 we take

Γ0 =
(

0 i
−i 0

)
, Γ1 =

(
0 i
i 0

)
. (32)

Then in d=2k+2, k=1,2,.. we define

Γµ = γµ ⊗
(

1 0
0 −1

)
, µ = 0, ..., d− 3 (33)

Γd−2 = 12k×2k ⊗
(

0 i
i 0

)
, (34)

Γd−1 = 12k×2k ⊗
(

0 1
−1 0

)
. (35)

Here γµ denote the 2k × 2k gamma matrices in d− 2 dimensions.
For odd d = 2k + 3 we can take the gamma matrices of the even dimensions
below d = 2k+ 2 and add the generalization of γ5 times a i-factor to get the set

Γ0, ...,Γd−1, id/2Γd+1 (36)

of gamma matrices, where Γd is the γ5 in the even d dimensions.

3 General supersymmetry algebras

The Coleman-Mandula theorem implies that also for dimensions different than
four the bosonic symmetries extending the Poincare’ group mecessarily commute
with the Poincare’ group itself and therefore the correspondingg generators are
scalars. So in S-matrix theory of particles, there are only the momentum d-
vector Pµ, a Lorentz generator Jµν (µ, ν = 0, 1, ..., d − 1), and various Lorentz
scalar charges. In this chapter I make the choice for simplicity to set the Lorentz
scalar charges equal 0. The anticommutators of the fermionic symmetry gener-
ators with each other are bosonic symmetry generators, and therefore must be a
linear combination of Pµ and Jµν . This puts severe limits on the Lorentz trans-
formation properties of the fermionic generators. I will now explain why the
fermionic generator must transform according to the fundamental spinor repre-
sentation of the Lorentz group. Assuming that there are at most a finite number
of fermionic symmetry generators, they must transform according to a finite-
dimensional representation of the homogeneous Lorentz group O(1,d-1). For d
even or odd, we can find d/2 or (d − 1)/2 Lorentz generators J01, J23, J45, ...
which commute which each other. It can be show (see Weinberg III chap. 32 for
the explicit argumentation) that we can find a basis of Q’s that are simultaneous
eingenvector of these Lorentz generators.

[J01, Q] = −iωQ (37)

and
[J23, Q] = −σ23Q, [J45, Q] = −σ45, ...Q (38)

where ω, σ23, σ45, ... are real numbers. We call the eigenvalue ω the weight of
the fermionic symmetry operator. Since J01 must be represented on Hilbert
space by a Hermitian operator, we find that Q† has the same weight as Q.
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Now consider {Q,Q†} which must be a linear combination of Pµ and Jµν . To
calculate the weights of the components Pµ we recall the commutation relation

[Pµ, Jρσ] = i(ηµρPσ − ηµσP ρ) (39)

which shows that P 0 ± P 1 has weight ω = ±1, while the other components
P 2, P 3, ..., P d−1 has weight zero. In the same way, we find that J0i ± J1i with
i = 2, 3, ..., d − 1 have weight ω = ±1, the J ij with both i and j between 2
and d − 1 have weight 0 and J01 have weight 0. We conclude that all bosonic
symmetry generators have weight ±1 or 0. Remember here that {Q,Q†} must
be a linear combination of operators with such a weight. Since Q and Q† have
the same weight, given that Q has weight ω we find that {Q,Q†} has weight
2ω. We find that ω must be equal to ± 1

2 , since weight 0 is excluded for non-
zero fermionic Q. By an argumentation (see Weinberg III chap. 32) that the
01-plane has nothing more special then the other, it can be show that all the
σ’s have values ± 1

2 . This is characteristic for the spinor representations and
so Q must belong to some direct sum of these representations. With a similar
approach it can be show that

[Q,Pµ] = 0. (40)

Equation (40) implies that Jab cannot appear on the right hand side of the
anticommutator {Q,Q†}. The general anticommutation relation (in the case
where the central charges are 0) is then of the form

{Qn, Qm} ∝ ΓµnmP
µ (41)

where n,m runs over the number of fermionic degrees of freedom given by the
dimension d.
To find the anticommutator for a specific dimension d, we must take the Weyl-
and Majorana condition into account. For example in the sixth dimension we
can impose the Weyl condition. The fermionic generators can be arranged in a
single complex Weyl spinor

Qa, a = 1, ...8 (42)

{Qa, Q
b} =

1
2

(1+ Γ7)ca(Γa)bcPa. (43)

and this is true only for minimal supersymmetry in six dimensions.

4 Massless Multiplets

We now want to construct supermultiplets of massless particle states in dimen-
sions bigger or equal than 4 ( d ≥ 4 ). We found that Σµν ,defined earlier, are
symmetry generators of the Lorentz group.
Consider now

[Jµν , Qi] = −1
2

(Σµν)ijQj (44)

where i runs over the number of spinor degrees of freedom. We saw this structure
in four dimensions and it is the same in all other dimensions.
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Since Σ01 is anti-Hermitian it has only imaginary eigenvalues. This is true for
any bosonic and fermionic operator. We can now use the weight (w) of any
fermionic operator (Q)

[J01, O] = −iwO. (45)

For the other generators J23, J45, ... we found out that

[J ij , O] = −σijO with σij ∈ R (46)

We now return to the construction of the multiplets. A massless particle state
can be rotated into a standard frame where its momentum is given by:

pµ = (p0, p1, 0, ..., 0) with p0 = p1. (47)

In 4 dimension, the state was characterized by the helicity. In higher dimensions
we can define a spin as: the maximum absolute value of the eigenvalue of any
Lorentz generator J ij in the representation. Since the fermionic supersymmetry
generators have ω = ± 1

2 , we find that the anticommutator of any these generator
with its hermitian adjoint have weight ω = ±1. If we compare this to the
commutator of the momentum and Lorentz generator which is given by

[Pµ, Jρσ] = i(ηµρPσ − ηµσP ρ) (48)

which in our special case give

[J01, P 0 + P 1] = −i(P 0 + P 1) (49)

[J01, P 0 − P 1] = i(P 0 − P 1). (50)

This means that P 0 +P 1 has weight 1 and P 0−P 1 has weight −1 and therefore
that {Qi, Q†i} is proportional to P 0 ± P 1. But we are working in a frame were
P 0 − P 1 vanishes, so all the fermionic supersymmetric generator with ω = − 1

2
are zero, because of the positive definite metric on the space of physical states.
In this way we already halved the number of fermionic generators.
At the beginning we had 2(d/2) or 2(d−1)/2 (even or odd number of dimensions
d and without imposing Weyl or Majorana condition) fermionic generators. We
now still have 2d/2−1 or 2(d−1)/2−1 fermionic generators.
We can further divide the remaining supersymmetry generators into two classes,
those who have σ23 = + 1

2 and those who have σ23 = − 1
2 , where the sigma is

given by:
[J23, Q] = −σ23Q. (51)

We denote the two classes by Q±.
Since the operator P 0+P 1 has σ23 = 0, the fermionic supersymmetric generators
of each class anticommute with each other (so {Q±i, Q±j} = 0).
Now consider a representation with spin j, and consider any state |λ〉 that is an
eigenstate of J23 with eigenvalue λ > 0 (so J23|λ〉 = λ|λ〉) and is annihilated
by all supersymmetry generators with σ23 = − 1

2 (so Q−|λ〉 = 0). We can
now create state with J23 = λ − k

2 by acting on |λ〉 with k different fermionic
generators with σ23 = + 1

2 . For example:

J23Q+|λ〉 = (Q+J
23 + [J23, Q+])|λ〉 = (λ− 1

2
)Q+|λ〉 (52)
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and with a similar calculation we find

J23Q†+Q+|λ〉 = λQ†+Q+|λ〉 (53)

7−→ Q†+Q+|λ〉 = |λ〉. (54)

To count the number of state we see that if there are a total of N (N is the num-
ber of fermionic degrees of freedom after have used the Weyl or/and condition)
fermionic supersymmetry generators , then there are N/4 of them with ω = + 1

2
and σ23 = + 1

2 , and since these operators all anticommute the number of states
form in this way with J23 = λ− k

2 will be given by the binomial coefficient(
N/4
k

)
(55)

and the total number of state by

N/4∑
k=0

(
N/4
k

)
= 2N/4. (56)

The minimum eigenvalue obtained in this way is λ − N/8 We can now ask,
what is the maximal dimension such that the absolute value of the spin does
not exceed two. By setting λ = j, we find that 11 dimension and not extended
supersymmetry (N=1) is the maximal dimensionality.

5 Supersymmetric Yang-Mills theory in d=6

The goal of this chapter is to compare a six dimensional Lagrangian to a
four dimensional one. Consider the following Lagrangian in a six dimensional
Minkowski space for a gauge field Aa (a=0,1,...,3,5,6) and his superpartner a
chiral spinor λ in the adjoint representation of the gauge group:

L = tr(−1
4
FabF

ab + iλΓa∇aλ) (57)

λ =
1
2

(1− Γ7)λ (58)

∇aλ = ∂aλ+ i[Aa, λ]. (59)

This Lagrangian is a density under the supersymmetric transformations

δAa =iζΓaλ− iλΓAζ (60)

δλ =− 1
2
iΣabζFab (61)
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To work out this Lagrangian in detail we need a particular representation of the
Dirac matrices in six dimensions:

Γµ =
(

0 γµ
γµ 0

)
for µ = 0, .., 3 (62)

Γ5 =
(

0 γ5

γ5 0

)
(63)

Γ6 =
(

0 −1
1 0

)
(64)

Γ7 = Γ0...Γ6 =
(
−1 0
0 1

)
(65)

A = Γ0. (66)

Since λ is a chiral spinor, it can be written as

λ =
(
χ
0

)
(67)

with χ an unconstrained, complex 4-spinor. Now rewrite

iλΓa∇aλ = i
(
0 χ

)( 0 γµ

γµ 0

)
∇µ
(
χ
0

)
(68)

+ i
(
0 χ

)( 0 γ5

γ5 0

)
∇5

(
χ
0

)
(69)

+ i
(
0 χ

)( 0 1
−1 0

)
∇6

(
χ
0

)
(70)

= iχγµ∇µχ− iχγ5∇5χ− iχ∇6χ. (71)

5.1 trivial dimensional reduction

A possible way of obtaining the 4 dimensional model from the 6 dimensional
one is by taking account of only 4 of the 6 dimensions. This is called the trivial
dimensional reduction. First we assume that nothing depends on x5 x6. So we
can set ∂5 = ∂6 = 0. We can rewrite the covariant derivative ∇aλ for a = 5, 6
and it leaves us with:

∇5,6χ = i[A5,6, χ]. (72)

For the field strength tensor Fab = ∂aAb − ∂bAa + i[Aa, Ab] we get:

Fµ5 = ∇µA5, Fµ6 = ∇µA6 (73)
F56 = i[A5, A6]. (74)
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We now have a lagrangian that depends only on four coordinates xµ and reads

L = tr(−1
4
FµνF

µν − 1
2
F56F

56 − 1
2
Fµ5F

µ5 − 1
2
Fµ6F

µ6 (75)

+ iχγµ∇µχ− iχγ5∇5χ− iχ∇6χ) (76)

= tr(−1
4
FµνF

µν − 1
2
∇µA5∇µA5 − 1

2
∇µA6∇µA6 +

1
2

[A5, A6]2 (77)

+ iχγµ∇µχ+ χγ5[A5, χ] + χ[A6, χ]) (78)

= tr(−1
4
FµνF

µν +
1
2
∇µA5∇µA5 +

1
2
∇µA6∇µA6 (79)

+ iχγµ∇µχ− χ[χ,A6]− χγ5[χ,A5] +
1
2

[A5, A6]2). (80)

If we now use the identifications

χ =
1√
2

(λ1 − iλ2) (81)

A5 = N, A6 = M (82)

we get

L = tr(−1
4
FµνF

µν +
i

2
λiγ

µ∇µλi +
1
2
∇µM∇µM +

1
2
∇µN∇µN (83)

−iλ2[λ1,M ]− iλ2γ5[λ1, N ] +
1
2

[M,N ]2). (84)

In the calculation, a number of terms vanish due to the symmetry properties of
bi-spinors. Here an example (set λ1 ≡ λ)

tr(λ[λ,M ]) = λ
a
λbM c tr(T a[T b, T c])︸ ︷︷ ︸

∝fabc

∝ fabcλaλbM c (85)

=
1
2
fabcλ

a
λbM c +

1
2
fabcλ

a
λbM c (86)

=
1
2
fabcλ

a
λbM c +

1
2
fabcλ

b
λaM c (87)

=
1
2
fabcλ

a
λbM c +

1
2
f bacλ

a
λbM c (88)

=
1
2
fabcλ

a
λbM c − 1

2
fabcλ

a
λbM c = 0. (89)

In the third line we use that λaλb = λbλa for two real spinors whose components
anticommute. For the term

tr(λγ5[λ,N ]) = ... = 0 (90)

we use that λaγ5λ
b = λbγ5λ

a. The Lagrangian (76) is exactly the N=2 (4 di-
mensional) Lagrangian for a gauge multiplet and a chiral multiplet (here we use
N=1 definition of multiplets). This Lagrangian is a density under the super-
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symmetric transformation

δAµ = iζiγµλi (91)

δM = εijζiλj (92)

δN = εijζiγ5λj (93)

δλi = − i
2
σµνζiFµν + iεijγ

µ∇µ(M + γ5N)ζj − iγ5ζi[M,N ]. (94)

We can now recast the 4 dimensional transformation in the six dimensional one.
For this we need to define a spinor ζ from the two Majorana spinor parameters
ζi of the four-dimensional transformations as

ζ =
1√
2

(
ζ1 − iζ2

0

)
(95)

and evaluate

iζΓµλ =
i

2
ζiγµλi +

1
2
εijζiγµλj (96)

iζΓ5λ =
i

2
ζiγ5λi +

1
2
εijζiγ5λj (97)

iζΓ6λ =
i

2
ζiλi +

1
2
εijζiλj (98)

to find that

δAa|a=µ = (iζΓaλ− iλΓaζ)|a=µ = iζiγµλi (99)

δA5 = εijζiγ5λj = δN (100)

δA6 = εijζiλj = δM. (101)

The transformation law for λ can be calculated from δλi and is

δλ = −1
2
iΣµνζFµν − iΣµ5ζ∇µA5 − iΣµ6ζ∇µA6 + Σ56ζ[A5, A6]. (102)

We get the same result if we apply dimensional reduction to

δλ = −1
2
iΣabζFab. (103)

All this is consistent with the fact that the N=2 supersymmetry algebra with
two central charges in four dimensions,

{Qi, Qj} = 2δijγµPµ + 2iεijZ + 2iεijγ5Z
′ (104)

[Qi, Pµ] = [Qi, Z] = [Qi, Z ′] = 0 (105)
[Pµ, Pν ] = [Pµ, Z] = [Pµ, Z ′] = [Z,Z ′] = 0, (106)

can be recast into a six-dimensional form

{Q,Q} = (1+ Γ7)ΓaPa, {Q,Q} = 0 (107)
[Q,Pa] = 0, [Pa, Pb] = 0 (108)
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with

Q =
1√
2

(
0

Q1 − iQ2

)
, P5 = −Z ′, P6 = −Z. (109)

In this section we saw the close relationship between the N=2 super-Yang-Mills
theory in d=4 and the N=1 super-Yang-Mills theory in d=6. This has been done
by assuming that ∂5 = ∂6 = 0. To recast the superalgebra we than only consid-
ered four-dimensional Lorentz transformation in a six dimensional Minkowski
space which led to the fact P5, P6 are and represent central charges. Then this
condition breaks six-dimensional Lorentz invariance to four-dimensional Lorentz
invariance.

6 The hypermultiplet in 6 dimension

There is another method of dimensional reduction. In the trivial reduction we
always start in high dimension with a Lagrangian describing massless particles
and end in 4 dimension with a Lagrangian still describing massless particles
but with central charges. With this method we obtaine a four-dimensional La-
grangian with massive fields starting from a six-dimensional Lagrangian. Take
the following Lagrangian for two complex scalars A and B and an anti-chiral
spinor ψ = 1

2 (1+ Γ7)ψ in 6 dimension

L = ∂aA
†∂aA+ ∂aB

†∂aB +
i

4
ψΓa
←→
∂aψ. (110)

We assume that all the fields are periodic in x5 and x6 with periods 2π/m′ and
2π/m, respectively. So we can writte

A(xµ, x5 + 2πn′/m′, x6 + 2πn/m) = A(xµ, x5, x6), for n, n′ ∈ Z (111)

and the same for B and ψ. At each point in four- dimensional space-time, the
remaining two dimensions then have the shape of a donut, and we can Fourier
decompose the fields, for example

A(xµ, x5, x6) =
∑
nn′∈Z

exp(−in′m′x5 − inmx6)Ann′(xµ). (112)
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Inserting the Fourier decomposed fields in the lagrangian we get a sum over
Lnn′ , where

Lnn′ =∂µA
†
nn′∂

µAnn′ + ∂µB
†
nn′∂

µBnn′ +
i

4
ψnn′
←→
6∂ ψnn′ (113)

− (n
′2m

′2 + n2m2)(A†nn′Ann′ +B†nn′Bnn′) (114)

− n′m′

2
ψnn′γ5ψnn′ +

nm

2
ψnn′ψnn′ (115)

=∂µA
†
nn′∂

µAnn′ + ∂µB
†
nn′∂

µBnn′ +
i

4
ψnn′
←→
6∂ ψnn′ (116)

− (n
′2m

′2 + n2m2)(A†nn′Ann′ +B†nn′Bnn′) (117)

+
1
2
ψnn′

(
nm+ in′m′ 0

0 nm− in′m′
)
ψnn′ (118)

=∂µA
†
nn′∂

µAnn′ + ∂µB
†
nn′∂

µBnn′ +
i

4
ψnn′
←→
6∂ ψnn′ (119)

− (n
′2m

′2 + n2m2)(A†nn′Ann′ +B†nn′Bnn′) (120)

+
1
2

√
n2m2 + n′2m′2ψnn′

(
eiϕ 0
0 e−iϕ

)
ψnn′ . (121)

(Notice that the last two matrices are 4 × 4-matrices and ϕ is the phase of
the complex number nm + in′m′.) The fields ψnn′ are the Dirac spinors in
four dimensions which form the bottom halves of the anti-chiral spinors in six
dimension. Now we perform a γ5-transformation on ψnn′ defined as

ψnn′ 7→ eγ5ϕ/2ψnn′ (122)

which gives us the lagrangian

Lnn′ =∂µA
†
nn′∂

µAnn′ + ∂µB
†
nn′∂

µBnn′ +
i

4
ψnn′
←→
6∂ ψnn′ (123)

− (n
′2m

′2 + n2m2)(A†nn′Ann′ +B†nn′Bnn′) (124)

+
1
2

√
n2m2 + n′2m′2ψnn′ψnn′ . (125)

We see that the assumption of a torus in the fifth and sixth dimensions led to
a spectrum with an infinite tower of massive multiplet with masses:

Mnn′ =
√
n2m2 + n′2m′2 with n, n′integers. (126)

If we assume that m′ ≤ m, then the lowest mass becomes M01 = m′. If we
choice M01 = m′ to be the massterm, we get the N=2 (d=4) Lagrangian for the
hypermultiplet.

7 Supersymmetric Yang-Mills theory in d=10

In 10 dimensions we find that a spinor have 32 complex components, but that we
can impose chirality and Majorana condition simultaneously. So we can work
with a 16-component (real) spinor in ten dimension which must be chiral

λ =
1
2

(1− Γ11)λ (127)
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and Majorana
λ = Cλ

T ≡ λc. (128)

It can be found that

L = tr(−1
4
FabF

ab +
i

2
λΓa∇aλ) (129)

is a density under the supersymmetric transformations

δAa = iζΓaλ, δλ = − i
2

ΣabζFab. (130)

We can now perform a trivial dimensional reduction:

∂4+m = 0 for m = 1, ..., 6 . (131)

Comparing to the 6 dimensional example we did before we here expect the six
components A5, ..., A10 to become scalars and the 16 real spinor components of
λ to break down into four chiral spinors λαi.
First we must give a particular representation of the 10 dimensional Dirac ma-
trices.

Γµ = γµ ⊗ 18×8 for µ = 0, ..., 3 (132)

Γ4+m = γ5 ⊗ Γ̃m for m = 1, 2, ..., 6 (133)

with the γµ, γ5 the standard 4×4 Dirac matrices in four dimensional Minkowski
space and Γ̃m 8× 8 matrices given by

Γ̃m =
(

0 σ̃m
σ̃−1
m 0

)
(134)

with

σ̃1 = iγ1γ5C(4); σ̃2 = iγ2γ5C(4); σ̃3 = iγ3γ5C(4) (135)
σ̃4 = iγ0γ5C(4); σ̃5 = −iC(4); σ̃6 = −iγ5C(4). (136)

Where C(4) is the four-dimensional charge conjugation operator given by(
−εαβ 0

0 −εα̇β̇

)
(137)

with εαβ as the totally antisymmetric tensor normalize in the following way:

ε12 = ε12 = −ε1̇2̇ = −− ε1̇2̇ = +1. (138)

Explicit calculations show that all the six σ̃m are antisymmetric and that

(σ̃∗m)ij = −(σ̃−1
m )ij =

1
2
εijkl(σ̃m)kl. (139)

We also have the matrices A,C(10) and Γ11:

A = Γ0 (140)

C(10) = C(4) ⊗ C̃(6) (141)

Γ11 = γ0 . . . γ3(γ5)6 ⊗ Γ̃1 . . . Γ̃6 = −γ5 ⊗ Γ̃7. (142)
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The explicit form of C(6) and Γ̃7 are

C̃(6) =
(

0 18×8

18×8 0

)
Γ̃7 = i

(
18×8 0

0 −18×8

)
. (143)

A general 32-component complex spinor take the form

λ =


λαi
χiα
ωα̇i
ψ
α̇i

with α, α̇ = 1, 2 and i = 1, ..., 4 (144)

which implies

λ =
(
ωαi, ψαi , λ

i

α̇, χα̇i

)
and λc =


ψαi
ωiα
χα̇i
λ
α̇i

 . (145)

The chirality condition λ = 1
2 (1− Γ11)λ becomes

χiα = ωα̇i = 0 (146)

and the Majorana condition λ = λc becomes

ψ
α̇i

= λ
α̇i ≡ (λβi)†εβ̇α̇; ωα̇i = χα̇i ≡ (χiβ)†εβ̇α̇. (147)

We see that 8 complex or 16 real component are left, those are the four chiral
two-spinors λαi. We proceed to decompose the terms in the 10 dimensional
Lagrangian under the assumption of trivial dimensional reduction and the iden-
tification

Mm ≡ A4+m for m = 1, ..., 6 (148)

and get

−1
4
FabF

ab = −1
4
FµνF

µν +
1
2
∇µMm∇µMm +

1
4

[Mm,Mn]2 (149)

i

2
λΓa∇aλ =

i

2
λΓµ∇νλ−

1
2
λΓ4+m[λ,Mm] (150)

=
i

2
λiσ

µ←→∇ µλ
i
+
i

2
λi[λj , (σ̃−1

m )ijMm]− i

2
λ
i
[λ
j
, (σ̃m)ijMm]. (151)

If we define
Mij ≡ −

1
2

(σ̃m)ijMm, M ij ≡ 1
2

(σ̃−1
m )ijMm (152)

and use the reality condition of Mm, we get the relationship

(Mij)† =
1
2
εijklMkl ≡M ij . (153)

We can also write MmMm = MijM
ij because of tr(σ̃mσ̃−1

n ) = 4δmn. Inserting
all this in our Lagrangian we get

L = tr(− 1
4
FµνF

µν + iλiσ
µ∇µλ

i
(154)

+
1
2
∇µMij∇µM ij + iλi[λj ,M ij ] (155)

+ iλ
i
[λ
j
,Mij ] +

1
4

[M ij ,Mkl]2) (156)
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which is the 4 dimensional N=4 super-Yang-Mills Lagrangian. The d=4, N=4
transformation law can be obtained in a similar way as in six dimensions.
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