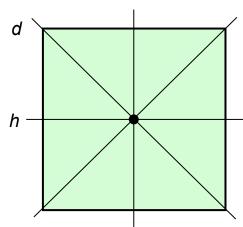
Group theory

Definition: group $\mathcal G$ is a set $\mathcal G=\{a,b,c,\ldots\}$ with a product $a\in\mathcal G$ $b\in\mathcal G$ associative $(a\cdot b)\cdot c=a\cdot (b\cdot c)$ identity $E\in\mathcal G$ with $E\cdot a=a\cdot E=a$ inverse $a\in\mathcal G$ \Rightarrow $a^{-1}\in\mathcal G$ with $a^{-1}\cdot a=a\cdot a^{-1}=E$

Example: C_{4v} symmetry operation of square



$$C_{4v} = \{E, C_4, C_4^{-1}, C_2, \sigma_h, \sigma_h', \sigma_d, \sigma_d'\}$$

$$C_4\cdot C_4=C_2$$
 $\sigma_h\cdot C_4=\sigma_d'$ $C_4\cdot \sigma_h=\sigma_d$ $\sigma_h\cdot C_4
eq C_4\cdot \sigma_h$ non-abelian

Group theory

subgroup: group \mathcal{G}' subset of \mathcal{G}

$$\mathcal{G}'\subset\mathcal{G}$$

examples:
$$C_4=\{E,C_4,C_4^{-1},C_2\}$$
 $C_{2v}=\{E,C_2,\sigma_h,\sigma_h'\}$ $C_2=\{E,C_2\}$ C_4 C_4v

number of elements: $|\mathcal{G}'|$ devides $|\mathcal{G}|$

Group representation

linear transformations: consider n-dimensional vector space $\mathcal{V}=\{|1\rangle,|2\rangle,\ldots,|n\rangle\}$ transformations on \mathcal{V} by unitary n x n-matrices $|k'\rangle=g|k\rangle=\sum_j M_{k'j}(g)|j\rangle$ matrices \hat{M} satisfies all properties of a group

representation

mapping (homomorphism) of group $\, {m {\cal G}} \,$ on $n \, x \, n$ -matrices in $\, {m {\cal V}} \,$

$$g o \hat{M}(g)$$
 conserving group structure $ightharpoonup$ representation of $oldsymbol{\mathcal{G}}$

$$\hat{M}(E) = \hat{1}_{n \times n}$$
 $\hat{M}(g^{-1}) = \hat{M}(g)^{-1}$

equivalent representations: $\hat{M}'(g) = \hat{U}\hat{M}(g)\hat{U}^{-1}$ basis transformation \hat{U}

characters: $\chi(g) = tr \hat{M}(g)$ independent of basis

Group representation

irreducible representation: independent of basis $\{\hat{M}(g)\}$ connects whole \mathcal{V}

trivial representation: n = 1 $g \rightarrow \hat{M}(g) = 1$

example: C_{4v} \hat{M} transformation of $\{\vec{a}_x, \vec{a}_y\}$

$$\vec{a}_y = (0,1) \uparrow$$

$$\vec{a}_x = (1,0)$$

$$E \to \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} C_4 \to \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} C_4^{-1} \to \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} C_2 \to \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\sigma_h \to \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad \sigma'_h \to \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \quad \sigma_d \to \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \sigma'_d \to \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$$

character table

		$oldsymbol{E}$	C_4	C_4^{-1}	C_2	σ_h	σ_h'	σ_d	$\sigma_{m{d}}'$	basis function
A	1	1	1	1			1	1	1	1
\boldsymbol{A}	2	1	1	1	1	-1	-1	-1	-1	0 \
B	1	1	-1	-1	1	1	1	-1	-1	x^2-y^2
B	2	1	-1	-1	1	-1	-1	1	1	xy
E	7	2	0	0	-2	0	0	0	0	$\{x,y\}$

Group representation & quantum mechanics

symmetry operations of Hamiltonian form a group $\mathcal{G}=\{\hat{S}_1,\ldots\}$ Hilbertspace is vector space $\{|\psi_1
angle,\ldots\}$

stationary states:
$$\mathcal{H}|\phi_n\rangle=\epsilon_n|\phi_n\rangle$$

$$[\hat{S},\mathcal{H}]=0 \quad \longrightarrow \quad \mathcal{H}\hat{S}|\phi_n\rangle=\hat{S}\mathcal{H}|\phi_n\rangle=\epsilon_n\hat{S}|\phi_n\rangle$$
 $|\phi_n\rangle \quad \text{and} \quad |\phi_n'\rangle=\hat{S}|\phi_n\rangle \quad \text{degenerate}$

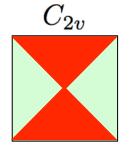
degenerate states form a vector space with an irred. representation of $\, \, \mathcal{G} \,$

$$\{|\phi_1
angle,\ldots,|\phi_m
angle\}$$
 with $\hat{S}|\phi_k
angle=\sum_{k'=1}^m M_{kk'}|\phi_{k'}
angle$

dimension m of representation = degeneracy

Group representation & quantum mechanics

symmetry lowering
$$~C_{4v}
ightarrow C_{2v}$$



	\boldsymbol{E}	C_2	σ_h	σ_h'	basis
A_1'	1	1	1	1	1
A_2'	1	-1	1	-1	\boldsymbol{x}
B_1^{\prime}	1	1	-1	-1	xy
$B_2^{ar{\prime}}$	1	-1	-1	1	\boldsymbol{y}

C_{4v}	C_{2v}
A_1	A_1'
A_2	B_1'
B_1	$A_1^{\bar{\prime}}$
B_{2}	B_1^{7}
$ec{E}$	$A_2' \oplus B_2'$

splitting of degeneracy through symmetry lowering

