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Exercise 3.1 6-Orbital tight-binding model
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Figure 1: One-dimensional chain of atom cores.

In this exercise we want to calculate the band structure of (fictitious) one-dimensional
sodium in the tight-binding approximation. The (single-particle) Hamiltonian of the
system is given by

H =
p2

2m
+

∑
j

−Ze2
|r− rj| , (1)

with Z = 11 for Na and rj = (x, y, ja) and the lattice constant a.

a) As a starting point for the tight-binding approximation, a formulation in terms of
Wannier functions is more practicable. We define the Wannier function wn(x, y; z−
ja) of atom j in band n by

Ψn,k(x, y; z) =
1√
N

∑
j

eikjawn(x, y; z − ja). (2)

Note that the potential is periodic in the z-direction only. The different bands
originate from the atomic orbitals. Since Na has 11 electrons we need to consider
the 6 orbitals n = (1s, 2s, 2px, 2py, 2pz, 3s). Show that within the tight-binding
approximation taking only nearest-neighbor hopping into account, the hamiltonian
can be written as

H =
∑

n

Hn +
∑
n 6=n′

Hn,n′ , (3)

Hn =
∑

j

εnc
†
n,jcn,j + (tnc

†
n,j+1cn,j + h.c.), (4)

Hn,n′ , =
∑

j

tn,n′c†n,j+1cn′,j + tn′,nc
†
n,jcn′,j+1, (5)

where we have omitted spin indices. Define tn and tn,n′ .

b) Approximate the Wannier functions by atomic (hydrogen) states. Use symmetry
arguments to determine whether the tn and tn,n′ are positive, negative, or zero.
Remarks: Choose the phase of the Wannier functions equal on each atomic site. The
(relative) signs and whether the hopping elements are finite follows directly from



the symmetry of the wave functions and the Hamiltonian, except for those elements
containing two pz orbitals or one pz and one s orbital. In these cases determine the
sign of the matrix elements using the fact that the state lower in energy (in a space
spanned only by those orbitals) is the one with the least nodes in the total wave
function. Alternatively, you can argue that the major contribution to the matrix
element originates in the area between the lattice sites.
Attention: It may turn out that for some tn,n′ 6= tn′,n!

Figure 2: Polar plots of hydrogen s and p orbitals.

c) Make the Ansatz tn(a) = tn exp(−a/an), tn,n′(a) = tn,n′ exp(−a/an,n′) with a the
lattice constant and an, an,n′ characteristic length-scales of the order of the atomic
radius. Calculate the resulting band structure for some ratios of a, an and an,n′ .
Remark: For simplicity, choose tn ≡ t1, tn,n′ ≡ t2 etc. If, on the other hand, you
want more challenge, you can actually calculate the matrix elements using hydrogen
wave functions. Be aware, however, that this is a very ambiguous choice and can
not be considered a better approximation to the “real” band structure (keywords:
screening, interaction).

Exercise 3.2 Bloch Oscillations

In the quasi-classical description of a wave-packet peaked around some quasi-momentum
~k the group velocity is given by

ṙ =
1

~
∂εk

∂k
, (6)

while the change of the quasi-momentum is given by

~k̇ = Fext, (7)

with Fext the force due to applied external fields (in addition to the periodic potential).

a) We focus on the one-dimensional tight-binding model with the dispersion relation

εk = 2t cos(ka), (8)

where t is the nearest neighbor hopping constant and a the lattice constant (for
simplicity we consider only one band). Show that a uniform electric field does not
accelerate the electrons but lets them oscillate around some fixed position. This
means that, for sufficiently large fields, all metals would behave like insulators.
Why has this effect never been seen in normal metals? What would change if we
considered semiconductor superlattices instead of metals?



b) We now add a small damping term to Eq. (7) and analyze the consequences. The
rate of change of the quasi-momentum is thus given by

~k̇ = Fext − mṙ

τ
, (9)

where τ is the relaxation time. Show that this damping can lead to a vanishing of the
oscillations and thus to a stationary solution. What is the corresponding condition
and how does the stationary solution look like? Calculate then analytically k(t) for
both situations to verify your considerations.


