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Introduction

Solid state physics (or condensed matter physics) is one of the most active and versatile branches
of modern physics that have developed in the wake of the discovery of quantum mechanics. It
deals with problems concerning the properties of materials and, more generally, systems with
many degrees of freedom, ranging from fundamental questions to technological applications. This
richness of topics has turned solid state physics into the largest subfield of physics; furthermore,
it has arguably contributed most to technological development in industrialized countries.

Figure 1: Atom cores and the surrounding electrons.

Condensed matter (solid bodies) consists of atomic nuclei (ions), usually arranged in a regular
(elastic) lattice, and of electrons (see Fig. 1). As the macroscopic behavior of a solid is deter-
mined by the dynamics of these constituents, the description of the system requires the use of
quantum mechanics. Thus, we introduce the Hamiltonian describing nuclei and electrons,

Ĥ = Ĥe + Ĥn + Ĥn−e, (1)

with

Ĥe =
∑
i

p̂2
i

2m
+

1
2

∑
i 6=i′

e2

|ri − ri′ | ,

Ĥn =
∑
j

P̂
2

j

2Mj
+

1
2

∑
j 6=j′

ZjZj′e
2

|Rj −Rj′ | , (2)

Ĥn−e = −
∑
i,j

Zje
2

|ri −Rj | ,

where Ĥe (Ĥn) describes the dynamics of the electrons (nuclei) and their mutual interaction and
Ĥn−e includes the interaction between ions and electrons. The parameters appearing are

m free electron mass 9.1094× 10−31kg
e elementary charge 1.6022× 10−19As
Mj mass of j-th nucleus ∼ 103 − 104×m
Zj atomic (charge) number of j-th nucleus

The characteristic scales known from atomic and molecular systems are

Length: Bohr radius aB = ~2/me2 ≈ 0.5× 10−10m
Energy: Hartree e2/aB = me4/~2 = mc2α2 ≈ 27eV = 2Ry

with the fine structure constant α = e2/~c = 1/137. The energy scale of one Hartree is much
less than the (relativistic) rest mass of an electron (∼ 0.5MeV), which in turn is considered small
in particle physics. In fact, in high-energy physics even physics at the Planck scale is considered,
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at least theoretically. The Planck scale is an energy scale so large that even gravity is thought
to be affected by quantum effects, as

EPlanck = c2

√
~c
G
∼ 1019GeV, lPlanck =

√
~G
c3
∼ 1.6× 10−35m, (3)

where G = 6.673× 10−11m3kg−1s−2 is the gravitational constant. This is the realm of the GUT
(grand unified theory) and string theory. The goal is not to provide a better description of
electrons or atomic cores, but to find the most fundamental theory of physics.

string theory

10 meV 10 eV 1 MeV

electrons, cores
atom

phenomenological

standard model

GUT

M-theory

high-energy physics
astrophysics and cosmologysolid state physics

known and established

effective
models theory

most fundamental

semiconductors
magnets
superconductors
ferroelectrics
......

metals
particle physics

Figure 2: Energy scales in physics.

In contrast, in solid state physics we are dealing with phenomena occurring at room temperature
(T ∼ 300K) or below, i.e., at characteristic energies of about E ∼ kBT ∼ 0.03eV = 30meV,
which is even much smaller than the energy scale of one Hartree. Correspondingly, the important
length scales are given by the extension of the system or of the electronic wave functions. The
focus is thus quite different from the one of high-energy physics.
There, a highly successful phenomenological theory for low energies, the so-called standard
model, exists, whereas the underlying theory for higher energies is unknown. In solid state
physics, the situation is reversed. The Hamiltonian (1, 3) describes the known ’high-energy’
physics (on the energy scale of Hartree), and one aims at describing the low-energy properties
using reduced (effective, phenomenological) theories. Both tasks are far from trivial.
Among the various states of condensed matter that solid state theory seeks to describe are
metals, semiconductors, and insulators. Furthermore, there are phenomena such as magnetism,
superconductivity, ferroelectricity, charge ordering, and the quantum Hall effect. All of these
states share a common origin: Electrons interacting among themselves and with the ions through
the Coulomb interaction. More often than not, the microscopic formulation in (1) is too compli-
cated to allow an understanding of the low-energy behavior from first principles. Consequently,
the formulation of effective (reduced) theories is an important step in condensed matter theory.
On the one hand, characterizing the ground state of a system is an important goal in itself. How-
ever, measurable quantities are determined by excited states, so that the concept of ’elementary
excitations’ takes on a central role. Some celebrated examples are Landau’s quasi-particles for
Fermi liquids, the phonons connected to lattice vibrations, and magnons in ferromagnets. The
idea is to treat the ground state as an effective vacuum in the sense of second quantization,
with the elementary excitations as particles on that vacuum. Depending on the system, the
vacuum may be the Fermi sea or some state with a broken symmetry, like a ferromagnet, a
superconductor, or the crystal lattice itself.
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According to P. W. Anderson1, the description of the properties of materials rests on two princi-
ples: The principle of adiabatic continuity and the principle of spontaneously broken symmetry.
By adiabatic continuity we mean that complicated systems may be replaced by simpler systems
that have the same essential properties in the sense that the two systems may be adiabatically
deformed into each other without changing qualitative properties. Arguably the most impres-
sive example is Landau’s Fermi liquid theory mentioned above. The low-energy properties of
strongly interacting electrons are the same as those of non-interacting fermions with renormal-
ized parameters. On the other hand, phase transitions into states with qualitatively different
properties can often be characterized by broken symmetries. In magnetically ordered states the
rotational symmetry and the time-reversal invariance are broken, whereas in the superconduct-
ing state the global gauge symmetry is. In many cases the violation of a symmetry is a guiding
principle which helps to simplify the theoretical description considerably. Moreover, in recent
years some systems have been recognized as having topological order which may be considered
as a further principle to characterize low-energy states of matter. A famous example for this is
found in the context of the Quantum Hall effect.
The goal of these lectures is to introduce these basic concepts on which virtually all more
elaborate methods are building up. In the course of this, we will cover a wide range of frequently
encountered ground states, starting with the theory of metals and semiconductors, proceeding
with magnets, Mott insulators, and finally superconductors.

1P.W. Anderson: Basic Notions of Condensed Matter Physics, Frontiers in Physics Lecture Notes Series,
Addison-Wesley (1984).
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Chapter 1

Electrons in the periodic crystal

In this chapter we discuss the properties of extended electron states in a regular lattice of ions.
Due to the presence of the lattice, the spectrum of the electrons is modified as compared to the
one of free particles, leading to separate energy bands, which determine the qualitative properties
of a solid. In particular, the structure of the electron bands can be used to distinguish in a most
basic way metals, insulators, and semiconductors.
In the following considerations we will initially neglect the interactions among the electrons as
well as the dynamics of the ions. This simplification leads to a single particle description, to
which Bloch’s theorem can be applied.

1.1 Bloch states of electrons in the periodic crystal

1.1.1 Crystal symmetry

We consider a perfect crystal formed by a periodic array of positively charged ions. All crystals
can be characterized by their space group R. In three dimensions, there are 230 different
space groups (cf. Table 1.1), each consisting of translations, rotations, inversions and their
combinations. Translations are represented by a basic set of primitive translation vectors {ai},
which leave the lattice invariant. A translation by one of these vectors shifts a unit cell of
the lattice to a neighboring cell. Any translation that maps the lattice onto itself is a linear
combination of the {ai} with integer coefficients,

a = n1a1 + n2a2 + n3a3. (1.1)

A general symmetry transformation including the other elements of the space group may be
written in the notation due to Wigner,

r′ = gr + a = {g|a}r, (1.2)

with g a rotation, reflection or inversion. The elements g form the so-called generating point
group P. In three dimensions there are 32 point groups. The different types of symmetry
operations involve

basic translations {E|a},

rotations, reflections, inversions {g|0},

screw axes, glide planes {g|a},
where E is the unit element of P. A screw axis is a symmetry operation of a rotation followed
by a translation along the rotation axis. A glide plane is a symmetry operation with reflection
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at the plane followed by a translation along the plane. The symmetry operations form a group
with

unit element {E|0},

inverse {g|a}−1 = {g−1| − g−1a},

associative multiplication {g|a}{g′|a′} = {gg′|ga′ + a}.

(1.3)

In general, these groups are non-Abelian, i.e., the group elements do not commute with each
other. However, there is an Abelian subgroup, the group of translations {E|a}. The elements
g ∈ P do not necessarily form a subgroup, because some of these elements (e.g., screw axes or
glide planes) leave the lattice invariant only in combination with a translation. Nevertheless,

{g|a}{E|a′}{g|a}−1 = {E|ga′} and {g|a}−1{E|a′}{g|a} = {E|g−1a′} (1.4)

always holds. If P is a subgroup of R, then R is said to be symmorphic. In this case, the
space group contains only primitive translations {E|a} (no screw axes nor glide planes). The
14 Bravais lattices are symmorphic. Among the 230 space groups 73 are symmorphic and 157
are non-symmorphic.

crystal system point groups space group numbers
(# point groups, # space groups) Schönflies symbols international tables

triclinic (2, 2) C1, C1̄ 1 - 2

monoclinic (3, 13) C2, Cs, C2h 3 - 15

orthorhombic (3, 59) D2, C2v, D2h 16 - 74

tetragonal (7, 68) C4, S4, C4h, D4, C4v, D2d, D4h 75 - 142

trigonal (5, 25) C3, S6, D3, C3v, D3d 143 - 167

hexagonal (7, 27) C6, C3h, C6h, D6, C6v, D3h, D6h 168 - 194

cubic (5, 36) T, Th, O, Td, Oh 195 - 230

Table 1.1: Table of point and space groups.

1.1.2 Bloch’s theorem

We consider a discrete set of lattice translations {E|a} which leave the Hamiltonian invariant.
This (discrete) translational invariance is induced by the periodic ionic potential and means that
the corresponding translation operator T̂a on the Hilbert space commutes with the Hamiltonian
He +Hie (purely electronic Hamiltonian He, interaction between electrons and ions Hie),

[T̂a,He +Hie] = 0, (1.5)

where
Hie =

∑
s

∫
d3r V (r)Ψ̂†s(r)Ψ̂s(r) (1.6)
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and
V (r) =

∑
j

Vion(r −Rj), (1.7)

where Rj is the position of the j-th ion and Vion(r) is the potential of a single ion. We use Ψ̂s(r)
as the electron field operator in the second quantized formalism. For all lattice translations a,
V (r + a) = V (r) holds.
Neglecting the interactions between the electrons, which is contained in the general He, we are
left with a single particle problem

He +Hie → H0 =
p̂2

2m
+ V (r̂). (1.8)

H0 commutes with T̂a. Bloch’s theorem states that the extended eigenstates of H0 are simul-
taneous eigenstates of T̂a, with eigenvalues on the unit circle of the complex plane. We use the
Bloch ansatz

ψn,k(r) =
1√
Ω
eik·run,k(r), (1.9)

with
T̂aψn,k(r) = ψn,k(r − a) = e−ik·aψn,k(r), (1.10)

which means that the Bloch function un,k(r) = unk(r + a) is periodic (volume Ω). The energy
eigenvalues follow from

H0ψn,k(r) = εn,kψn,k(r), (1.11)

where n is a quantum number called band index and k is the pseudo-momentum (wave vector).
Note that the eigenvalue of T̂a, e−ik·a, implies periodicity in k-space; there are reciprocal lattice
vectors G for which ei(k+G)·a = eik·a holds. A possible basis of the reciprocal lattice vectors
follows from the relation

eiGj ·ai = 1 ⇐⇒ Gj · ai = 2πδij . (1.12)

This defines the first Brillouin zone: One draws lines joining k = 0 and the neighboring recip-
rocal lattice points (spanned by {Gi}). The Brillouin zone is the smallest cell bounded by the
planes that intersect these lines in their middle and which are orthogonal to them. In the one
dimensional simple periodic lattice this defines the interval [−π/a, π/a] (lattice constant a).
The Bloch equation is the wave equation for the periodic function uk,{

(p̂+ ~k)2

2m
+ V (r)

}
uk(r) = εkuk(r), (1.13)

where we have suppressed the band index to simplify the notation. This equation follows from
the relation

p̂eik·r = eik·r(p̂+ ~k), (1.14)

which can be used for more complex forms of the Hamiltonian as well. 1

1H0 may be extended to contain spin-orbit coupling, a relativistic correction which leads to the additional
term

H′0 =
bp2

2m
+ V (br) +

~
4m2c2

{σ ×∇V (br)} · bp, (1.15)

where σ denotes the Pauli matrices

σx =

„
0 1
1 0

«
, σy =

„
0 −i
i 0

«
, σz =

„
1 0
0 −1

«
. (1.16)

The Bloch equation in this case is given by
(bp+ ~k)2

2m
+ V (r) +

~
4m2c2

(σ ×∇V (r)) · (bp+ ~k)

ff
uk(r) = εkuk(r). (1.17)

10



1.2 Nearly free electron approximation

We can compute εn,k numerically rather efficiently by means of various clever methods. In order
to reach an understanding of some of the most essential aspects of the band structure of electrons
in a crystal, we introduce here a simple analytical approach, the so-called nearly free electron
approximation. We start by noting that the periodic potential can be expanded as

V (r) =
∑
G

VGe
iG·r, VG =

1
ΩUC

∫
UC

d3r V (r)e−iG·r, (1.19)

where the sum runs over all reciprocal lattice vectors and the domain of integration is the
unit cell (UC) with volume ΩUC. We assume that the lattice is invariant under inversion, i.e.,
V (r) = V (−r), so that VG = V−G. Note that the uniform component V0 may be set to zero, as
it corresponds to an (irrelevant) energy shift.
The Bloch function can be expanded in the same way,

uk(r) =
∑
G

cGe
iG·r , (1.20)

where the coefficients cG = cG(k) are functions of k. Inserting this ansatz and (1.19) into the
Bloch equation, (1.13), we obtain a system of coupled linear eigenvalue equations for the band
energies εk, (

~2

2m
(k +G)2 − εk

)
cG +

∑
G′

VG−G′cG′ = 0. (1.21)

The solution requires the determination of the eigenvalues of an infinite dimensional matrix.
The resulting band energies εk include corrections to the parabolic dispersion ε

(0)
k = ~2k2/2m

due to the potential.
The problem simplifies under the assumption that the periodic modulation of the potential is
weak. Here, we consider two limits for the wave vector k which are typically of interest. First,
we choose k small, i.e., near the center of the Brillouin zone. A solution of the equation is
then given by c0 ≈ 1 with the energy eigenvalue εk ≈ ~2k2/2m corresponding to the original
parabolic band. For the other coefficients of the wave function we find

cG ≈ − 2mVG
~2{(k +G)2 − k2} � 1 for G 6= 0. (1.22)

Note that this form of cG 6=0 resembles the lowest order correction in the Rayleigh-Schrödinger
perturbation theory. This example corresponds to the lowest branch of the band structure within
this approach.
Next we consider the case when the denominator of the expression in Eq.(1.22) is small, i.e., k
is in a range of the Brillouin zone where k2 ≈ (k+G)2 for some reciprocal G. This means that
the parabolas centered around 0 and −G cross at k = −G/2. Choosing for G a primitive vector
of the reciprocal lattice, the crossing point lies on the Brillouin zone boundary and represents
a point of high symmetry within the Brillouin zone. This situation requires to consider c0 and
cG on an equal footing, while other coefficients are still negligible. Therefore, we consider the
coupled equations for these two coefficients,

The energy eigenstates are no longer spin eigenstates. Instead, they are of pseudo spinor form

uk,±(r) = χk,±↑(r)| ↑〉+ χk,±↓(r)| ↓〉, (1.18)

where σz| ↑〉 = +| ↑〉 und σz| ↓〉 = −| ↓〉. Upon adiabatically switching off spin-orbit coupling, the states with
index +/− turn into the usual spin eigenfunctions | ↑〉 and | ↓〉.
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{
~2k2

2m
− εk

}
c0 + V−GcG = 0,

{
~2

2m
(k +G)2 − εk

}
cG + VGc0 = 0.

(1.23)

Note that VG = V ∗−G. From Eq.(1.23), the secular equation

det

 ~2k2

2m
− εk V ∗G

VG
~2(k +G)2

2m
− εk

 = 0 (1.24)

follows, which allows us to determine

εk =
1
2

{
~2

2m
(k2 + (k +G)2)±

√
[
~2

2m
(k2 − (k +G)2)]2 + 4|VG|2

}
. (1.25)

For the symmetry point k = −G/2 and for VG < 0 we obtain

ε−G/2,± =
~2

2m
G2

4
± |VG|, with uk(r) = ei

G·r
2


sin G·r

2 + ”anti-bonding”,

cos G·r2 − ”bonding”.
(1.26)

This result is equivalent to the splitting of a degenerate level through a symmetry breaking
interaction (hybridization). Note that the scheme applied here is quite analogous to Rayleigh-
Schrödinger perturbation theory for (nearly) degenerate energy levels.
The band structure can thus be constructed by the superposition of parabolic energy spectra
centered around all reciprocal lattice points. At the crossing points of the parabolas we find
a ”band splitting” due to the periodically modulated potential. This leads to band gaps, i.e.,
energy ranges where no Bloch states exist. An illustrative and simple band structure of this
kind can straightforwardly be constructed in a one-dimensional regular lattice as shown in Fig.
1.1.

−π
a

π
a

2π
a−2π

a 0 k

E

band gap

1st Brillouin zone

Figure 1.1: Band structure obtained by the nearly free electron approximation for a regular
one-dimensional lattice.
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1.3 Symmetry properties of the band structure

The symmetry properties are a helpful tool for the analysis of the band structure of crystals,
which can be based on the symmetry group (space and point group) of the crystal lattice.
Consider the action of an element {g|a} of the space group on a Bloch wave function Ψk(r).
We denote the corresponding operator as Ŝ{g|a}, with [Ŝ{g|a},H0] = 0 and define the operation
as2

Ŝ{g|a}ψk(r) = ψk({g|a}−1r) = ψk(g−1r − g−1a). (1.30)

Under a pure translation T̂a′ = Ŝ{E|a′} this new wave function transforms like

T̂a′Ŝ{g|a}ψk(r) = Ŝ{g|a}T̂g−1a′ψk(r) = Ŝ{g|a}e−ik·g
−1a′ψk(r)

= Ŝ{g|a}e−igk·a
′
ψk(r) = e−igk·a

′
Ŝ{g|a}ψk(r),

(1.31)

which implies that

Ŝ{g|a}ψk(r) = λ{g|a}ψgk(r), with |λ{g|a}|2 = 1, (1.32)

or, in Dirac notation,
Ŝ{g|a}|k〉 = λ{g|a}|gk〉; (1.33)

i.e., apart from a phase factor the action of {g|a} corresponds to a rotation of k to g−1k.3 Then
it is easy to see that

εgk = 〈gk|H0|gk〉 = 〈k|Ŝ−1
{g|a}H0Ŝ{g|a}|k〉 = 〈k|H0|k〉 = εk. (1.35)

Consequently, there is a star of equivalent points gk with the same band energy (→ degeneracy)
for each k in the Brillouin zone (cf. Fig. 1.2).
For a general point k the number of points in the star equals the number of point group elements
(without inversion). If k lies on points or lines of higher symmetry, it is left invariant under
a subgroup of the point group. Consequently, the number of “beams” of the star is smaller.
The subgroups leaving k unchanged are called little group of k. If inversion is part of the point
group, −k is always contained in the star of k. In summary, we have the simple relations

εnk = εn,gk, εnk = εn,−k, εnk = εn,k+G. (1.36)

2In Dirac notation we write
ψk(r) = 〈r|ψk〉 (1.27)

for the Bloch state with pseudo-momentum k. The action of the operator bS{g|a} on the state |r〉 is given by

bS{g|a}|r〉 = |gr + a〉 and 〈r|bS{g|a} = 〈g−1r − g−1a|, (1.28)

such that
〈r|bS{g|a}|ψk〉 = ψk(g−1r − g−1a). (1.29)

The same holds for pure translations.
3Symmetry behavior:

bS{g|a}ψk(r) =
1√
Ω
bS{g|a}eik·rX

G

cG(k) eiG·r =
1√
Ω
eik·(g

−1r−g−1a)
X
G

cG(k) eiG·(g
−1r−g−1a)

=
1√
Ω
e−i(gk)·aei(gk)·r

X
G

cG(k) ei(gG)·r = e−i(gk)·a 1√
Ω
ei(gk)·r

X
G

cg−1G(k) eiG·r

= e−i(gk)·a 1√
Ω
ei(gk)·r

X
G

cG(gk) eiG·r = λg|aψgk(r),

(1.34)

where we use the fact that cG = cG(k) is a function of k with the property cg−1G(k) = cG(gk) i.e. bS{g|a}uk(r) =
ugk(r).

13



Figure 1.2: Star of k.

Next, we will consider the energy bands εnk on points and along lines of high symmetry in a
simple cubic lattice (point group Oh), using the nearly free electron method.

Γ-point: As a first example, we consider the center of the Brillouin zone, usually called the Γ-
point (cf. Fig. 1.3). The lowest band at the Γ-point with energy E0 = ε0k=0 = 0 belongs to the
parabola around the center of the first Brillouin zone (ε0k ≈ ~2k2/2m) and is non-degenerate.

ky

M
Z

R
Λ

Γ

Σ

S∆

X

T

kx

kz

Figure 1.3: Points and lines of high symmetry.

The next higher energy level for free electrons is

E1 =
~2

2m

(
2π
a

)2

(1.37)

and originates from the crossing of the parabolas centered around the six nearest neighbor points
of the reciprocal lattice. The reciprocal lattice vectors involved are

G1 = 2π
a (1, 0, 0), G2 = 2π

a (−1, 0, 0),
G3 = 2π

a (0, 1, 0), G4 = 2π
a (0,−1, 0),

G5 = 2π
a (0, 0, 1), G6 = 2π

a (0, 0,−1).
(1.38)

The relevant basis functions for the expansion of the Bloch function are given by

fn(r) = eir·Gn , (1.39)

with n = 1, . . . , 6 and

uk=0(r) =
6∑

n=1

cnfn(r). (1.40)
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The secular equation reads

det



E1 − E v u u u u
v E1 − E u u u u
u u E1 − E v u u
u u v E1 − E u u
u u u u E1 − E v
u u u u v E1 − E

 = 0 (1.41)

with v = V2Gn and u = VGn+Gn′ (n 6= n′). There are three eigenvalues with corresponding
eigenvectors:

Γ E = εnk=G1 (c1, c2, c3, c4, c5, c6) uk=0(r) dΓ

Γ+
1 E1 + v + 4u (1, 1, 1, 1, 1, 1)/

√
(6) φ0 = cosGx+ cosGy + cosGz 1

Γ+
3 E1 + v − 2u (−1,−1,−1,−1, 2, 2)/2

√
3 φ3z2−r2 = 2 cosGz − cosGx− cosGy , 2

(1, 1,−1,−1, 0, 0)/2 φ√3(x2−y2) =
√

3(cosGx− cosGy)
Γ−4 E1 − v (1,−1, 0, 0, 0, 0)/

√
2 φx = sinGx 3

(0, 0, 1,−1, 0, 0)/
√

2 φy = sinGy
(0, 0, 0, 0, 1,−1)/

√
2 φz = sinGz

Here, G = 2π/a and Γ denotes the irreducible representations with dimension dΓ of the point
group around the Γ-point (→ degeneracy). The Γ-point shares the symmetry of the point group
of the crystal, which in this case is the cubic group Oh.4 A set of even and odd irreducible
representations belongs to this group. An irreducible representation can be specified by a vector
space of functions of the vector (x, y, z) or the pseudo-vector (sx, sy, sz) that is left invariant
by symmetry operations of the group (see Table 1.2). Note that each eigenvalue of the above

even basis function odd basis function
Γ+

1 1, x2 + y2 + z2 Γ−1 xyz(x2 − y2)(y2 − z2)(z2 − x2)
Γ+

2 (x2 − y2)(y2 − z2)(z2 − x2) Γ−2 xyz

Γ+
3 {2z2 − x2 − y2,

√
3(x2 − y2)} Γ−3 xyz{2z2 − x2 − y2,

√
3(x2 − y2)}

Γ+
4 {sx, sy, sx} Γ−4 {x, y, z}

Γ+
5 {yz, zx, xy} Γ−5 xyz(x2 − y2)(y2 − z2)(z2 − x2){yz, zx, xy}

Table 1.2: Irreducible representations and representative basis functions of the corresponding
vector spaces for the point group Oh.

secular equation belongs to one of the irreducible representations. The corresponding wave
functions of the eigenstates form a vector space and transform according to the properties of
the representation under symmetry operations.

∆-line: Now we will investigate the evolution of the band energies when we move k away from
the Γ-point and keep k ‖ (0, 0, 1). Some of the degeneracies at the Γ-point are lifted because
the allowed symmetry operations leaving k unchanged are restricted to a subgroup of Oh, the
little group of k. In the case at hand, this subgroup is isomorphic to C4v, which is part of the
tetragonal crystal system. Note that the inversion acts as k→ −k and is not an element of the
little group. The group C4v has four one-dimensional and one two-dimensional representations.
As the line along the (0, 0, 1)-axis in the Brillouin zone is called ∆, we denote the representations
by ∆1, . . . ,∆5 (cf. Table 1.3).
The degeneracies of the states at the Γ-point are partially lifted for k along the ∆-line (cf. Table
1.4). It follows that five bands emanate from the three energy levels at the Γ-point, one of which

4Literature on point groups: Landau & Lifschitz: Vol. III Chapt. XII; Dresselhaus, Dresselhaus & Jorio, Group
Theory - Applications to the Physics of Condensed Matter, Springer; Koster et al., Properties of the thirty-two
point groups, MIT Press (Table book).
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Figure 1.4: The band structure of the simple cubic lattice.

representation base function
∆1 1, z
∆2 xy(x2 − y2)
∆3 x2 − y2

∆4 xy
∆5 {x, y}

Table 1.3: Irreducible representations of C4v and their basis functions.

Oh C4v

Γ+
1 ∆1

Γ+
3 ∆1 ⊕∆3

Γ−4 ∆1 ⊕∆5

Table 1.4: Lifting of degeneracy along the ∆-line.

is two-fold degenerate (Fig. 1.4).

X-point: Once we reach the Brillouin zone boundary at the X-point, the symmetry is larger
than on the ∆-line, namely D4h, the full tetragonal point group which for both parities has five
irreducible representations, four of them one-dimensional, the remaining one two-dimensional (cf.
Table 1.5). Note that C4v is a subgroup of D4h as well as D4h is a subgroup of Oh. Furthermore,
the inversion is an element of D4h, as for the X-point k is equivalent to −k (k− (−k) = 2k = G
is a reciprocal lattice vector).
The set of states with the lowest energy is equivalent to the problem discussed above in equations
(1.23), (1.24) and (1.26). We considerG1 = 0 andG2 = 2π(0, 0, 1)/a with energy (~2/2m)(π/a)2

at the X-point. The levels are split into an (even) bonding state and an (odd) anti-bonding state

X+
1 : E =

~2

2m

(π
a

)2 − |VG2 |, eiG2z/2 cos
(
G2z

2

)
,

X−2 : E =
~2

2m

(π
a

)2
+ |VG2 |, eiG2z/2 sin

(
G2z

2

)
.

(1.42)
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even base function odd base function
X+

1 1 X−1 xyz(x2 − y2)
X+

2 xy(x2 − y2) X−2 z
X+

3 x2 − y2 X−3 xyz
X+

4 xy X−4 z(x2 − y2)
X+

5 {zx, zy} X−5 {x, y}
Table 1.5: Irreducible representations of D4h and their basis functions.

The next higher states are centered around E = (~2/2m)(
√

5π/a)2 and belong to the next-to-
nearest neighbors of the X-point in the reciprocal lattice. There are eight such points, namely

G1 =
2π
a

(1, 0, 0), G2 =
2π
a

(1, 0, 1), G3 =
2π
a

(−1, 0, 0), G4 =
2π
a

(−1, 0, 1),

G5 =
2π
a

(0, 1, 0), G6 =
2π
a

(0, 1, 1), G7 =
2π
a

(0,−1, 0), G8 =
2π
a

(0,−1, 1).

(1.43)

To find the splitting of the energy levels, we project the base functions in (1.43) onto those of
the irreducible representations and find the results displayed in Table 1.6. This analysis shows

representation uk=π(0,0,1)/a(r) degeneracy
X+

1 (cos(Gx) + cos(Gy))eiGz/2 cos(Gz/2) 1
X+

3 (cos(Gx)− cos(Gy))eiGz/2 cos(Gz/2) 1
X+

5 {sin(Gx)e−iGz/2 sin(Gz/2), sin(Gy)eiGz/2 sin(Gz/2)} 2
X−2 (cos(Gx) + cos(Gy))eiGz/2 sin(Gz/2) 1
X−4 (cos(Gx)− cos(Gy))eiGz/2 sin(Gz/2) 1
X−5 {sin(Gx)eiGz/2 cos(Gz/2), sin(Gy)eiGz/2 cos(Gz/2)} 2

Table 1.6: Projections of the base functions 1.43 onto the ones of the irreducible representations
at the X-point (G = 2π/a).

that there are six energy levels where two of them are two-fold degenerate.
This kind of analysis can be applied to all symmetry lines, so that a good qualitative picture of
the symmetries of the bands can be obtained. For more quantitative information, knowledge of
the specific form of the periodic potential is necessary and also more advanced techniques beyond
the nearly free electron approach are required. Nevertheless, the nearly free electron method can
give important qualitative insights into the symmetry related properties of the band structure
(see Fig. 1.4 for a full band structure).

1.4 k · p-expansion - effective masses

Near points of high symmetry in the Brillouin zone (such as the Γ-point), energy bands can be
approximated by a quadratic dependence on kµ in the general form

εk = ε0 +
~2

2m

∑
µ,ν

( m
m∗
)
µν
kµkν + . . . (1.44)
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We consider this expansion in a perturbative formulation. We expand the Hamiltonian (1.17)
around k = 0 (Γ-point) up to second order in k and split it into the three parts

H0 =
p̂2

2m
+ V̂ ,

H1 =
~
m
p̂ · k =

~
m
π̂ · k,

H2 =
~2k2

2m
,

(1.45)

where π̂ may, in general, have a more complicated form than in this example. We assume that
the Hamiltonian H0 can be solved exactly and that H1 and H2 are small perturbations (small
k). Note that the latter is not an operator, but simply a k-dependent contribution to the energy.
For H0 we have

H0|n0〉 = εn|n0〉, (1.46)

where |n0〉 are states at k = 0 with the band index (quantum number) n. For simplicity, we
take these states to be non-degenerate, so that Rayleigh-Schrödinger perturbation theory yields
the perturbed energy

Ek = εn +
~2k2

2m
+

~2

m2

∑
n′ 6=n

∑
µ,ν

〈n0, |π̂µ|n′0〉〈n′0|π̂ν |n0〉
εn − εn′ kµkν , (1.47)

which can be translated into a mass-tensor of the form,( m
m∗
)
µν

= δµν +
2
m

∑
n′ 6=n

〈n0|π̂µ|n′0〉〈n′0|π̂ν |n0〉
εn − εn′ . (1.48)

Thus, the electronic band structure in the vicinity of the Γ-point can be expressed by a mass-
tensor. This approximation is valid for other symmetry points, too. Later, we will find this
approximation very convenient when dealing with problems for which states around the upper
or lower band edges are important which are often, but not always, high-symmetry points.
Note that, at the band edges, all eigenvalues of the mass tensor have the same sign. There are
other symmetry points (usually located at the boundary of the Brillouin zone) where the mass
tensor has both positive and negative eigenvalues. These are called saddle points, which play
an important role in connection with van Hove singularities in the density of states.
Note that, at symmetry points, the energy shift is linear in H1, as

〈n0|π̂|n0〉 = 0. (1.49)

This is because of parity and π̂ being a rank one tensor operator, as can be easily verified by
noting that π̂ · k should be a scalar in Eq.(1.45).5

The resulting selection rules are important for the states |n′0〉 appearing in the matrix elements
of second-order corrections, too. The eigenstates can also be approximated using the Rayleigh-
Schrödinger method, resulting in

|nk〉 = eik·r

|n0〉+
~
m

∑
n′ 6=n
|n′0〉〈n

′0|π̂ · k|n0〉
εn − εn′

 . (1.51)

5In this case, P̂ bπP̂ = −bπ holds for the parity operator P̂ . But P̂ |n0〉 = ±|n0〉 (|n0〉 is a parity eigenstate
whenever the system has inversion symmetry, which carries over to the little group of k = 0). Then,

〈n0|bπ|n0〉 = −〈n0|P̂ bπP̂ |n0〉 = −〈n0|bπ|n0〉, (1.50)

so that the matrix element vanishes.
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Finally, we discuss the case of degenerate levels at the Γ-point. As an example, we consider a
three-fold degenerate level corresponding to the irreducible representation Γ−4 with |nµ0〉 (µ =
x, y, z). The Rayleigh-Schrödinger perturbation theory leads to the problem of diagonalizing the
3× 3-matrix

Hµν =
1

m2∆E
〈nµ0|π̂ · k|n0〉〈n0|π̂ · k|nν0〉. (1.52)

Here, we take into account only one virtual state |n0〉 belonging to Γ1. It is easy to see, that
the matrix has the form Hµν = Akµkν . The solution of the secular equation

det(Hµν − Eδµν) = 0 (1.53)

yields E = 0 (two-fold degenerate) and E = Ak2 (non-degenerate), i.e.,

εk = ε0 +


~2

2m
k2 +Ak2,

~2

2m
k2.

(1.54)

Out of the three-fold degenerate level bands with different effective masses evolve, two of which
are degenerate. By means of this simple consideration we can determine the effective masses at
the band edges and see how degeneracies are lifted in a given direction k.

1.5 Band structures - approximate methods

While the approximation of nearly free electrons gives a qualitatively reasonable picture of the
band structure, it rests on the assumption that the periodic potential is weak, and thus may be
treated as a small perturbation. However, in reality the ionic potential is strong compared to
the electrons’ kinetic energy. This leads to strong modulations of the wave function around the
ions, which is not well described by slightly perturbed plane waves.

1.5.1 Pseudo-potential

In order to overcome this weakness of the plane wave solution, we would have to superpose a
very large number of plane waves, a task which is not easily put into practice. Alternatively,
we can divide the electronic states into the ones corresponding to filled low-lying energy states,
which are concentrated around the ionic core (core states), and into extended (and more weakly
modulated) states, which form the valence and conduction bands. The core electron states
may be approximated by atomic orbitals of isolated atoms. For a metal such as aluminum (Al:
1s22s22p63s23p) the core electrons correspond to the 1s-, 2s-, and 2p-orbitals, whereas the 3s-
and 3p-orbitals contribute dominantly to the extended states of the valence- and conduction
bands. We will focus on the latter, as these determine the low-energy physics of the electrons.
The core electrons are deeply bound and can be considered inert.
We introduce the core electron states as |φj〉, with H|φj〉 = Ej |φj〉. The remaining states have
to be orthogonal to these core states, so that we make the ansatz

|φn,k〉 = |χnk〉 −
∑
j

|φj〉〈φj |χn,k〉, (1.55)

with |χn,k〉 an orthonormal set of states. Then, 〈φn,k|φj〉 = 0 holds for all j. We are free to
choose plane waves for the |χnk〉. The resulting |φn,k〉 are then called orthogonalized plane waves
(OPW). The Bloch functions are superpositions of these OPW,

|ψn,k〉 =
∑
G

bk+G|φn,k+G〉, (1.56)
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where the coefficients bk+G converge rapidly, such that, hopefully, only a small number of OPWs
is needed for a good description.
In a first step, we consider an arbitrary |χnk〉 and insert it into the eigenvalue equation H|φnk〉 =
Enk|φnk〉,

⇒ H|χnk〉 −
∑
j

H|φj〉〈φj |χn,k〉 = Enk

|χnk〉 −∑
j

|φj〉〈φj |χn,k〉


⇒ H|χnk〉+
∑
j

[Enk − Ej ]|φj〉〈φj |χn,k〉 = Enk|χnk〉.
(1.57)

We introduce the operator V̂ ′ =
∑

j [Enk − Ej ]|φj〉〈φj | (an integral operator in real space),
describing a non-local and energy-dependent potential. With this operator we can rewrite the
eigenvalue equation in the form

(H+ V̂ps)|χn,k〉 = (H0 + V̂ + V̂ ′)|χn,k〉 = Enk|χnk〉. (1.58)

This is an eigenvalue equation for the so-called pseudo-wave function (or pseudo-state) |χnk〉,
instead of the Bloch state |ψnk〉, where the modified potential

V̂ps = V̂ + V̂ ′ (1.59)

is called pseudo-potential. The attractive core potential V̂ = V (r̂) is always negative. On the
other hand, Enk > Ej , such that V̂ ′ is positive. It follows that V̂ps is weaker than both V̂ and
V̂ ′.
An arbitrary number of core states

∑
j aj |ψj〉 may be added to |χnk〉 without violating the

orthogonality condition (1.55). Consequently, neither the pseudo-potential nor the pseudo-
states are uniquely determined and may be optimized variationally w.r.t. the {aj} in order to
optimally reduce the spatial modulation of either the pseudo-potential or the wave-function.

wave function

potenial

plane-wave approximation

pseudo-potenial

Figure 1.5: Illustration of the pseudo-potential.

If we are only interested in states inside a small energy window, the energy dependence of the
pseudo-potential can be neglected, and Vps may be approximated by a standard potential (see
Fig. 1.5). Such a simple ansatz is exemplified by the atomic pseudo-potential, proposed by
Ashcroft, Heine and Abarenkov (AHA). The potential of a single ion is assumed to be of the
form

vps(r) =
{
V0 r < Rc,

−Zione
2

r r > Rc,
(1.60)

where Zion is the charge of the ionic core and Rc its effective radius (determined by the core
electrons). The constants Rc and V0 are chosen such that the energy levels of the outermost
electrons are reproduced correctly for the single-atom case. For example, the 1s-, 2s-, and 2p-
electrons of Na form the ionic core. Rc and V0 are adjusted such that the one-particle problem
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p2/2m+vps(r) leads to the correct ionization energy of the 3s-electron. More flexible approaches
allow for the incorporation of more experimental input into the pseudo-potential.
The full pseudo-potential can be constructed from the contribution of the individual atoms,

Vps(r) =
∑
n

vps(r −Rn), (1.61)

where Rn is the lattice vector. For the method of nearly free electrons we need the Fourier
transform of the potential evaluated at the reciprocal lattice vectors,

Vps,G =
1
Ω

∫
d3r Vps(r)e−iG·r =

N

Ω

∫
d3r vps(r)e−iG·r. (1.62)

For the AHA form, this is given by

Vps,G = −4πZione
2

G2

[
cos(GRc)

+
V0

Zione2G

{
(R2

cG
2 − 2) cos(GRc) + 2− 2RcG sin(GRc)

} ]
. (1.63)

For small reciprocal lattice vectors, the zeroes of the trigonometric functions on the RHS of
(1.63) reduce the strength of the potential. For large G, the pseudo-potential decreases in any
case. It is thus clear that the pseudo-potential is always weaker than the original potential.
For complex unit cells containing more than one atom the pseudo-potential may be written as

Vps(r) =
∑
nα

vα[r − (Rn +Rα)], (1.64)

where Rα denotes the position of the α-th base atom in the unit cell. Here, vα is the pseudo-
potential of the α-th ion. In reciprocal space,

Vps,G =
N

Ω

∑
α

e−iG·Rα
∫
d3r vα(r)e−iG·r

=
∑
α

e−iG·RαFα,G.
(1.65)

The form factor Fα,G contains the information of the base atoms and may be calculated or fitted
to experiments.

1.5.2 APW-method (augmented plane wave)

Next, we consider a method introduced by Slater in 1937. It is an extension of the so-called
Wigner-Seitz cell method (1933) and consists of approximating the crystal potential by a so-
called muffin-tin potential. This is a periodic potential, which is taken to be spherically sym-
metric and position dependent around each atom up to a distance rs, and constant for larger
distances. The spheres of radius rs are taken to be non-overlapping and are contained com-
pletely in the Wigner-Seitz cell (Fig. 1.6).6 It is the advantage of this decomposition that the
problem can be solved using a divide-and-conquer strategy. Inside the muffin-tin radius we solve
the spherically symmetric problem, while the solutions on the outside are given by plane waves;
the remaining task is to match the solutions at the boundaries.
The spherically symmetric problem for |r| < rs is solved with the standard ansatz

ϕ(r) =
ul(r)
r

Ylm(θ, φ), (1.66)

6The Wigner-Seitz cell is the analogue of the Brillouin zone in real space. One draws planes cutting each
line joining two atoms in the middle, and orthogonal to them. The smallest cell bounded by these planes is the
Wigner-Seitz cell.
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Figure 1.6: Muffin-tin potential.

where the radial part obeys the differential equation[
− ~2

2m
d2

dr2
+

~2l(l + 1)
2mr2

+ V (r)− E
]
ul(r, E) = 0. (1.67)

We define an augmented plane wave (APW) A(k, r, E), which, for r outside the Muffin-tin
sphere, is a pure plane wave with wave vector k. For this, we employ the representation of plane
waves by spherical harmonics,

eik·r = 4π
∑
l,m

iljl(kr)Y ∗lm(k̂)Ylm(r̂), (1.68)

where jl(x) is the l-th spherical Bessel function. We parametrize

A(k, r, E) =



4π√
ΩUC

∑
l,m

iljl(krs)
rsul(r, E)
rul(rs, E)

Y ∗lm(k̂)Ylm(r̂), r < rs,

4π√
ΩUC

∑
l,m

iljl(kr)Y ∗lm(k̂)Ylm(r̂), r > rs,

(1.69)

where ΩUC is the volume of the unit cell. Note that the wave function is continuous at r = rs,
but that its derivatives are not continuous in general. We can use an expansion similar to the
one in the nearly free electron approximation,

ψk(r) =
∑
G

aG(k)A(k +G, r, E), (1.70)

where the G are reciprocal lattice vectors. The unknown coefficients can be determined varia-
tionally by solving the system of equations∑

G

〈Ak(E)|H − E|Ak+G(E)〉aG(k) = 0, (1.71)

where

〈Ak(E)|H − E|Ak′(E)〉 =
(

~2k · k′
2m

− E
)

ΩUCδk,k′ + Vk,k′ (1.72)
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with

Vk,k′ = 4πr2
s

{
−
(

~2k · k′
2m

− E
)
j1(|k − k′|rs)
|k − k′|

+
∞∑
l=0

~2

2m
(2l + 1)Pl(k̂ · k̂′)jl(krs)jl(k′rs)u

′
l(rs, E)
ul(rs, E)

}
. (1.73)

Here, Pl(z) is the l-th Legendre polynomial and u′ = du/dr. The solution of (1.71) yields the
energy bands. The most difficult parts are the approximation of the crystal potential by the
muffin-tin potential and the computation of the matrix elements in (1.71). The rapid convergence
of the method is its big advantage: just a few dozens of G-vectors are needed and the largest
angular momentum needed is roughly l ≈ 5. Another positive aspect is the fact that the APW-
method allows to interpolate between the two extremes of extended, weakly bound electronic
states and tightly bound states.

1.6 Tightly bound electrons and Wannier functions

If the electrons in the valence and conduction bands are strongly bound to the ions, another
very efficient approximation to the band structure exists. In this case, it is easier to approach
the problem in real space instead of reciprocal space. This leads to the so-called tight-binding
model.
We introduce the Wannier functions as ’Fourier transforms’ of the Bloch functions,

ψk(r) =
1√
N

∑
j

eik·Rjw(r −Rj), (1.74)

where w(r −Rj) is the Wannier function centered around the j-th atom. There is a Wannier
function for each atomic orbital. For the sake of simplicity, we restrict ourselves to the case of
one orbital per atom. The Wannier function obeys the orthogonality relation∫

d3rw∗(r −Rj)w(r −Rl) = δjl. (1.75)

We may assume the one-particle Hamiltonian to be of the form H = −~2∇2/2m + V (r), with
a periodic potential V (r). Then,

εk =
∫
d3r ψ∗k(r)Hψk(r) =

1
N

∑
j,l

e−ik·(Rj−Rl)
∫
d3r w∗(r −Rj)Hw(r −Rl), (1.76)

with

ε0 =
∫
d3r w∗(r −Rj)Hw(r −Rj), (1.77)

tjl =
∫
d3r w∗(r −Rj)Hw(r −Rl) for j 6= l. (1.78)

It follows immediately that the band energy may be written as a discrete sum,

εk = ε0 +
1
N

∑
j,l

tjle
−ik·(Rj−Rl) = ε0 +

∑
l

t0le
ik·Rl , (1.79)

where R0 = 0 is assumed. It is obvious that εk+G = εk. The quantities tjl are called hopping
matrix elements. It is possible to construct an effective Hamiltonian based on the above findings,
which describes the band structure of independent electrons, as

H =
∑
i,j

∑
s

tijc
†
iscjs, (1.80)
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where cis (c†is) annihilates (creates) an electron with spin s at the lattice point i. The Hamiltonian
describes the hopping of electrons from site j to site i. This formulation is advantageous, if the
hopping matrix elements fall off rapidly with the distance between the lattice points. This should
be the case for electronic states which are tightly bound to the ions.
Consider a simple cubic lattice, assuming that tjl = −t for nearest neighbors and zero otherwise.
The band energy follows from a Fourier transform and is given by

εk = ε0 − 2t{cos kxa+ cos kya+ cos kza}, (1.81)

where a is the lattice constant. The same can be applied to more complicated lattices and
systems with several relevant orbitals per atom.

1.7 Semi-classical description of band electrons

In quantum mechanics, the Ehrenfest theorem shows that the expectation values of the position
and momentum operators obey equations similar to the equation of motion in Newtonian me-
chanics. An analogous formulation holds for electrons in a periodic potential, where we assume
that the electron may be described as a wave packet of the form

ψk(r, t) =
∑
k′

gk(k′)eik
′·r−iεk′ t, (1.82)

where gk(k′) is centered around k in reciprocal space and has a width of ∆k. ∆k should be much
smaller than the size of the Brillouin zone for the ansatz to make sense, i.e., ∆k � 2π/a, such
that the wave packet is spread over many unit cells of the lattice since Heisenberg’s uncertainty
principle ∆k∆x > 1 implies ∆x � a/2π. In this way, the pseudo-momentum k of the wave
packet remains well defined. Furthermore, the applied electric and magnetic fields have to be
small enough not to induce transitions between different bands. The latter condition is not very
restrictive in practice.

1.7.1 Semi-classical equations of motion

We introduce the rules of the semi-classical motion of electrons with applied electric and magnetic
fields without proof:

• The band index of an electron is conserved, i.e., there are no transitions between the bands.

• The equations of motion read

ṙ = vn(k) =
1
~
∂εnk
∂k

,

(1.83)

~k̇ = −eE(r, t)− e

c
vn(k)×H(r, t).

• All electronic states have a wave vector that lies in the first Brillouin zone, as k and k+G
label the same state for all reciprocal lattice vectors G.

• In thermal equilibrium, the electron density in the n-th band in the volume element d3k
around k is given by

nF [εn(k)]2
d3k

(2π)3
=

1
e[εn(k)−µ]/kBT + 1

2
d3k

(2π)3
, (1.84)

where the factor 2 is due to the two spin states of an electron. Each state of given k and
spin can be occupied only once (Pauli principle).
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Note that ~k is not the momentum of the electron, but the so-called lattice momentum or pseudo
momentum in the Bloch theory of bands. It is connected with the eigenvalue of the translation
operator on the state. Consequently, the right hand side of the second equation in (1.83) is not
the force that acts on the electron, as the forces exerted by the periodic lattice potential is not
included. The latter effect is contained implicitly through the form of the band energy ε(k),
which governs the first equation.7

A plausibility argument concerning the conservation of energy leads to the second equation in
(1.83). The time derivative of the energy (kinetic and potential)

E = εn(k(t))− eφ(r(t)) (1.87)

has to vanish, i.e.,

0 =
dE

dt
=
∂εn(k)
∂k

· k̇ − e∇φ · ṙ = vn(k) ·
{

~k̇ − e∇φ
}
. (1.88)

From this, Eq. (1.83) follows directly for the electric field E = ∇φ and the Lorentz force is
allowed because the force is always perpendicular to the velocity vn.

1.7.2 Current densities

Later, we will see that homogenous steady (current carrying) states of electron systems can be
described by the momentum distribution n(k). The current density follows from

j = −2e
∫

BZ

d3k

(2π)3
v(k)n(k) = −2e

∫
BZ

d3k

(2π)3
n(k)

1
~
∂ε(k)
∂k

, (1.89)

where the integral extends over all k in the Brillouin zone (BZ) and the factor 2 once again
originates in the two spin states of the electrons. Note that for a finite current density n(k) has
to deviate from the equilibrium Fermi-Dirac distribution in Eq. (1.88). It is obvious that for an
empty band the current density vanishes. The same holds true for a completely filled band, as
n(k) = 1 for all k implies

j = −2e
∫

BZ

d3k

(2π)3

1
~
∂ε(k)
∂k

= 0 (1.90)

because ε(k) is periodic in the Brillouin zone, i.e., ε(k+G) = ε(k) when G is a reciprocal lattice
vector. Thus, neither empty nor completely filled bands can carry currents.
An interesting aspect of band theory is the picture of holes. We compute the current density
for a partially filled band in the framework of the semi-classical approximation,

j = −e
∫

BZ

d3k

4π3
n(k)vn(k) = −e

{∫
BZ

d3k

4π3
v(k)−

∫
BZ

d3k

4π3
[1− n(k)]v(k)

}
= +e

∫
BZ

d3k

4π3
[1− n(k)]v(k). (1.91)

7Bloch oscillation: The fact that the band energy is a periodic function of k leads to a strange oscillatory
behavior. As a one-dimensional example we consider the band energy εk = −2 cos ka, which leads to the following
solution of the semi-classical equations (1.83) in the presence of a homogenous electric field E,

~k̇ = −eE ⇒ k = −eEt
~

⇒ ẋ = −2a

~
sin

„
eEat

~

«
, (1.85)

and it follows that the position x of the electron oscillates,

x(t) =
1

eE
cos

„
eEat

~

«
. (1.86)

This behavior is called Bloch oscillation and implies that the electron oscillates around its initial position rather
than moving in one direction when subjected to an electric field. This effect can be observed under very special
conditions only, it is easily destroyed by damping or scattering.
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This suggests that we can determine the current density from the electrons in filled states with
charge −e or from the ’holes’, missing electrons carrying positive charge in the unoccupied states.
Both descriptions are equivalent in band theory. However, usually it is easier to work with holes
if a band is almost filled, and with electrons if the filling is small.

1.8 Metals and semiconductors

Each state |ψn,k〉 can be occupied by two electrons, one with spin state | ↑〉 and | ↓〉. In the
ground state, all states up to the Fermi energy are filled. The nature of the ground state of
electrons in a solid depends on the number of electrons per atom. Usually, this number is an
integer, so that in the simplest cases we distinguish only two different situations: Firstly, the
bands can be either completely filled or empty if the number of electrons per atom is even. In
this case, the Fermi energy lies in a band gap (cf. Fig. 1.7), and a finite energy is needed to
add or remove an electron, or to excite electrons. If the band gap ∆� bandwidth, we call the
material a semiconductor, for ∆ ∼ bandwidth, it is an insulator. In both cases, for temperatures
kBT � ∆, by the application of small electric voltages no electron motion is possible (no electric
transport). The highest filled band is called valence band, the lowest empty band conduction
band. Note that we will later encounter another form of an insulator, the Mott insulator,
whose insulating behavior is not governed by a band structure effect (kinetic energy), but by a
correlation effect through strong Coulomb interaction. Secondly, if the number of electrons per
atom is odd, one band is half filled (see Fig. 1.7). Then the system is a metal, as charges can
be moved without overcoming a band gap and electrons can be excited with arbitrarily small
energy. The electrons remain mobile down to arbitrarily low temperatures. The prime example
of a metal are the Alkali metals in the first column of the periodic table (Li, Na, K, Rb, Cs), as
all of them have the configuration [noble gas] (ns)1, i.e., one mobile electron per ion.

semiconductor
insulator

EF

EF

EF

E EE

k kk

filled filled filled

metal semimetal
metal

Figure 1.7: Material classes according to band filling: left panel: insulator or semiconductor
(Fermi level in band gap); center panel: metal (Fermi level inside band); right panel: metal or
semimetal (Fermi level inside two overlapping bands).

In general, band structures are more complex. Different bands need not be separated by energy
gaps, but can overlap instead. In particular, this happens if different orbitals are involved in
the structure of the bands. In these systems bands can have any fractional filling (not just filled
or half-filled). The earth alkaline metals are an example for this (second column of the periodic
table, Be, Mg, Ca, Sr, Ba), which are metallic in spite of having two (n, s)-electrons per unit
cell. In cases where two bands overlap at the Fermi energy but the overlap is small, we call it a
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semi-metal. An extreme case is graphite, where valence and conduction band touch in isolated
points, so that there are no electrons at the Fermi energy, but the band gap is zero.
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Chapter 2

Semiconductors

The technological relevance of semiconductors can hardly be overstated. In this chapter, we
review some of their basic properties. Regarding the electric conductivity, semiconductors are
placed in between metals and insulators. Normal metals are good conductors at all temperatures,
and the conductivity usually increases with decreasing temperature. On the other hand, for
semiconductors and insulators the conductivity decreases upon cooling (see Fig. 2.1).

σ

0 0
TT

semiconductor/isolator metal

σ

Figure 2.1: Temperature dependence of the electric conductivity for semiconductors and metals.

Below, we will see that the conductivity may be written as

σ =
ne2τ

m
, (2.1)

where n is the density of (mobile) electrons, τ is the average time between two scattering events
of the electrons, and m and e are the electronic mass and charge, respectively. In metals, n is
independent of temperature, whereas τ decreases with increasing temperature. The latter thus
determines the temperature dependence of the conductivity. In insulators and semiconductors,
there are no mobile charges at T = 0. At finite temperature, they are induced by thermal
excitations from the valence band to the conduction band, yielding

n ∼ 1020cm−3

(
T

300K

)3/2

e−Eg/2kBT , (2.2)

where Eg is the band gap.1 For insulators, the energy gap is huge, e.g., 5.5 eV for diamond.
Consequently, the charge carrier density is around n ∼ 10−73cm−3 at room temperature (300K).

1Actually, one has to count both the excited electrons in the conduction band and the resulting holes in the
valence band, as both contribute to the current,

j = (σ+ + σ−)E, with σ± =
n±e

2τ±
m±

, (2.3)

where + and − stand for holes and electrons, respectively, and n+ = n− holds for thermal excitation. Note that,
in general, the effective masses and scattering times are not the same for the valence and conduction bands.
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By contrast, for semiconductors with an energy gap of 0.5 eV - 1 eV, the density is in the range
n ∼ 103cm−3-1011cm−3, resulting in a conductivity larger by orders of magnitude. However,
the conductivities of both are dwarfed by the metallic conductors (n ∼ 2023cm−3-1024cm−3).
Adding a small amount of impurities, a process called doping with acceptors or donators, the
conductivity of semiconductors can be engineered in various ways, rendering them indispensable
as components in innumerable applications.

2.1 The band structure of the elements in group IV

2.1.1 Crystal structure and band structure

The most important semiconductor for applications is silicon (Si) that - like carbon (C), germa-
nium (Ge) and tin (Sn) - belongs to the group IV of the periodic table. These elements have
four electrons in their outermost shell in the configuration (ns)2(np)2 (n = 2 for C, n = 3 for Si,
n = 4 for Ge, and n = 5 for Sn). All elements form crystals with a diamond structure (cf. Fig.
reffig:diamond), i.e., a face-centered cubic lattice with a unit cell containing two atoms at (0, 0, 0)
and (1

4 ,
1
4 ,

1
4) (for Sn this is called α-Sn). The crystal structure is stabilized by hybridization of

the four valence electrons, leading to covalent bonding of oriented orbitals,

|ψ1〉 = |ns〉+ |npx〉+ |npy〉+ |npz〉, |ψ2〉 = |ns〉+ |npx〉 − |npy〉 − |npz〉,

|ψ3〉 = |ns〉 − |npx〉+ |npy〉 − |npz〉, |ψ4〉 = |ns〉 − |npx〉 − |npy〉+ |npz〉.
(2.4)

Locally, the neighbors of an atom form a tetrahedron around it, which leads to the diamond
structure of the lattice.

Figure 2.2: Crystal structure of diamond (face-centered cubic).

A simplified picture of the band structure around the Γ-point can be obtained by applying the
free-electron approximation discussed in the last chapter. There is a parabolic band centered
around the center of the Brillouin zone (0, 0, 0) (the Brillouin zone of the FCC lattice is illustrated
in Fig. 2.3). The corresponding representation is Γ1. The next multiplet with an energy of ε =
6π2~2/ma2 derives from the parabolic bands emanating from the neighboring Brillouin zones,
with G = (2π/a)(±1,±1,±1). Note that the reciprocal lattice of a face-centered cubic lattice is
body-centered cubic. The eight states are split into Γ1⊕Γ2⊕Γ4⊕Γ5. The order of the resulting
energies can be obtained from band structure calculations, yielding εΓ5 < εΓ4 < εΓ2 < εΓ1 . The
essential elements of the low-energy band structure of C and Si are shown in Fig. 2.4.
There are eight electrons per unit cell. It follows that the bands belonging to Γ1 (non-degenerate)
and Γ5 (threefold degenerate) are completely filled. The maximum of the valence band is located
at the Γ-point and belongs to Γ5. Because of the existence of an energy gap between valence
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Figure 2.3: Brillouin zone of the face-centered cubic lattice.
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Figure 2.4: Band structure of C and Si.

band and conduction band, the system is a semiconductor. The gap is indirect, meaning that
the mininum of the conduction band and the maximum of the valence band lie at different points
in the Brillouin zone, i.e., the gap is minimal between the Γ-point of the valence band and some
finite momentum ~k0 along the [100]-direction of the conduction band.2

Here are some facts about semiconductors:

• Carbon has an energy gap of around 5.5eV in the diamond structure. The large energy
gap causes the transparency of diamond in the visible range (∼1.5eV - 3.5eV), as the
electromagnetic energy in this range cannot be absorbed by the electrons.

• The energy gap of silicon is 1.12eV and thus much smaller; furthermore, it is indirect.

• Germanium has an indirect gap of 0.67eV.

• GaAs is another important semiconductor, composed of one element of the third and fifth
group, respectively. In contrast to C, Si, and Ge, the energy gap is direct.

In the following, we illustrate the fact that C, Si and Ge are semiconductors by investigating
the bonding between neighboring atoms. All oriented bonds in the diamond structure are

2Energy gaps in semiconductors and insulators are said to be direct if the wave-vector connecting the maximum
of the valence band and the minimum of the conduction band vanishes. Otherwise a gap is called indirect (see
Fig. 2.5).
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Figure 2.5: Illustration of direct and indirect band gaps.

covalent and consist of two electrons (cf. Fig. 2.6). The bonding can be described by molecular
(Hund-Mullikan) orbitals, i.e., as a superposition of two orbitals ψA(r) and ψB(r), belonging
to neighboring atoms (A and B). They correspond to the oriented orbitals in (2.4), and are
essentially Wannier wave-functions. For the molecular orbitals it follows that

Ψ±(r) =
1√
2
{ψA(r)± ψB(r)} . (2.5)

HOLPRIGER ABSATZ
The two electrons in the molecular orbital form a spin-singlet in the bonding state Ψ+(r) with
lower energy than the anti-bonding state Ψ−(r), which remains empty. The electrons in the
bonding state remain localized: in order to be mobile an electron has to occupy the anti-
bonding states, as all bonding states are occupied. The energy gap derives from the energy cost
to populate the anti-bonding state. The ratio of the kinetic energy gain of a mobile electron
to the energy difference between the bonding and anti-bonding state determines the size of the
gap, which may even vanish.

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Figure 2.6: Schematic electronic structure of a semiconductor with covalent bonds.

2.1.2 k · p - approximation and effective mass

The band structure in the vicinity of the band edges can be very well described using the k · p
method, as we show now for silicon. First, we consider the maximum of the valence band at
k = 0 (Γ-point), with electronic states

{|yz〉, |zx〉, |xy〉} (2.6)
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belonging to the representation Γ+
5 . By symmetry considerations we obtain, in second order

perturbation theory, the secular equation for the degenerate subspace,

det

 ak2
x + b(k2

y + k2
z)− E ckxky ckxkz

ckxky ak2
y + b(k2

x + k2
z)− E ckykz

ckxkz ckykz ak2
z + b(k2

x + k2
y)− E

 = 0. (2.7)

The general form of the eigenvalues is complicated, but it can be shown that the threefold
degeneracy of the energies is lifted when moving away from the Γ-point. On the ∆- (C4v)
and Λ-lines (C3v), which have higher symmetry, there is one twofold degenerate and one non-
degenerate band (cf. Fig. 2.4):

∆-line: k = k(1, 0, 0), E1(∆2) = ak2, E2,3(∆5) = bk2,

Λ-line: k = k√
3
(1, 1, 1), E1(Λ1) = (a+ 2b+ 2c)k2, E2,3(Λ3) = (a+ 2b− c)k2,

(2.8)

where ∆i and Λi are irreducible representations of the point group C4v and C3v, respectively.3

The minimum of the conduction band is located on the ∆-line at k0 = k0(1, 0, 0) with k0 ≈
0.8ΓX. Apart from spin, the corresponding band is non-degenerate. It follows that the k · p-
approximation is given by

Ek = a′(kx − k0)2 + b′(k2
y + k2

z), (2.9)

due to the symmetry around k0 = k0(1, 0, 0). The electronic properties are determined by the
states close to the band edges, so that these approximations play an important role in the physics
of semiconductors.

2.2 Electronic properties and elementary excitations

We consider a simple two-band model to illustrate the most basic properties of the excitation
spectrum of a semiconductor. The Hamiltonian is given by

H =
∑
k,s

εV,kĉ
†
V,ksĉV,ks +

∑
k,s

εC,kĉ
†
C,ksĉC,ks, (2.10)

where εV,k and εC,k are the band energies of the valence band and conduction band, respectively.
The operator c†nks (cnks) creates (annihilates) an electron with (pseudo-)momentum k and spin
s in the band n, n = V,C. In the ground state |Φ0〉,

|Φ0〉 =
∏
k,s

ĉ†V,ks|0〉, (2.11)

the valence band is completely filled, whereas the conduction band is empty. The product on the
right hand side runs over all wave vectors in the first Brillouin zone. The ground state energy
is given by

E0 = 2
∑
k

εV,k. (2.12)

The total momentum and spin of the ground state vanish.
3Spin-orbit coupling has been neglected so far. Including the spin degrees of freedom would lead to a splitting

of the energies at k = 0 into a two-fold degenerate level (Γ+
6 ) and a four-fold degenerate one (Γ+

8 ).
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2.2.1 Electron-hole excitations

A simple excitation of the system consists of removing an electron (i.e., creating a hole) from
the valence band and putting it into the conduction band, i.e.,

|C,k + q, s;V,k, s′〉 = c†C,k+q,scV,ks′ |Φ0〉, (2.13)

where the possibility of changing the spin s of the electron to s′ and of shifting the wave vector
of conduction electrons by q is included (|C,k+q, s;V,k, s′〉 is assumed to be normalized). The
electron-hole pair may either be in a spin-singlet (pure charge excitation) or a spin-triplet state
(spin excitation). Apart from spin, the state is characterized by the wave vectors k and q. The
excitation energy is given by

E = εC,k+q − εV,k. (2.14)

The spectrum of such an electron-hole excitation with given q is determined by the spectral
function

I(q, E) =
∑
k

|〈C,k + q, s;V,k, s′|c†C,k+q,scV,ks′ |Φ0〉|2δ(E − (εC(k + q)− εV (k)). (2.15)

Excitations exist for all pairs ω and q for which I(q, ω) does not vanish and, consequently, only
above a q-dependent threshold, which is minimal for q = k0, where k0 = 0 (k0 6= 0) for a
direct (indirect) energy gap. As k is not fixed, there is a continuum of excited states above the
threshold for each q (see Fig. 2.7).

continuum

∆E

k0

q

E

Figure 2.7: Electron-hole excitation spectrum. Excitations exist in the shaded region, where
I(q, E) 6= 0.

For the electron-hole excitations considered here, interactions are irrelevant, and the electrons
involved are treated as non-interacting particles. Note the analogy with the Dirac-sea in rel-
ativistic quantum mechanics: The electron-hole excitations of a semiconductor correspond to
electron-positron pair creation in the Dirac theory.

2.2.2 Excitons

Taking into account the Coulomb interaction between the electrons, there is another class of
excitations called excitons. In order to discuss them, we extend the Hamiltonian (2.10) by the
Coulomb interaction,

V̂ =
∑
s,s′

∫
d3r d3r′Ψ̂†s(r)Ψ̂†s′(r

′)
e2

|r − r′|Ψ̂s′(r′)Ψ̂s(r), (2.16)

where the field operators are defined by

Ψ̂s(r) =
1√
Ω

∑
n=V,C

∑
k

un,k(r)eik·r ĉn,ks, (2.17)
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where un,k(r) are the Bloch functions of the band n = C, V .
Now, we consider a general particle-hole state,

|Φq〉 =
∑
k

A(k)ĉ†C,k+q,sĉV,k,s′ |Φ0〉 =
∑
k

A(k)|C,k + q, s;V,k, s′〉, (2.18)

and demand that it satisfies the stationary Schrödinger equation (H + V̂ )|Φq〉 = E|Φq〉. This
two-body problem can be expressed as∑

k′

〈C,k + q, s;V,k, s′|H+ V̂ |C,k′ + q, s;V,k′, s′〉A(k′) = EA(k). (2.19)

The matrix elements are given by

〈C,k + q, s;V,k, s′|H|C,k′ + q, s;V,k′, s′〉 = δk,k′{εC,k+q − εV,k} (2.20)

and

〈C,k + q, s;V,k, s′|V̂ |C,k′ + q, s;V,k′, s′〉 =

2δS,0
Ω2

∫
d3r d3r′ u∗C,k+q(r)uV,k(r)uC,k′+q(r

′)u∗V,k′(r
′)e−iq·(r−r

′) e2

|r − r′|
− 1

Ω2

∫
d3r d3r′ u∗C,k+q(r)uV,k(r′)uC,k′+q(r)u∗V,k′(r

′)ei(k
′−k)·(r−r′) e2

|r − r′| , (2.21)

where δS,0 = 1 if the excitation is a spin-singlet and δS,0 = 0 otherwise. The first term is
the exchange term, and the second term the direct term of the Coulomb interaction. Now we
consider a semiconductor with a direct energy gap at the Γ-point. Thus, the most important
wave vectors are those around k = 0. We approximate

u∗n,k′(r)un,k(r) ≈ 1
Ω

∫
d3ru∗n,k′(r)un,k(r) =

1
Ω
〈un,k′ |un,k〉 ≈ 1, (2.22)

which is reasonable for k ≈ k′. In the same manner, we see that

u∗Ck+q(r)uV,k(r) ≈ 1
Ω
〈uC,k+q|uV,k〉 ≈ 1

Ω
〈uC,k|uV,k〉 = 0. (2.23)

Note that the semiconductor is a dielectric medium with a dielectric constant ε (D = εE).
Classical electrodynamics states that

∇ ·E =
4πρ
ε
, (2.24)

i.e., the Coulomb potential is partially screened due to dielectric polarization. Including this
effect in the Schrödinger equation phenomenologically, the matrix element (2.21) takes on the
form

− 4πe2

Ωε|k − k′|2 . (2.25)

Thus, we can write the stationary equation (2.19) as

(εC,k+q − εV,k − E)A(k)− 1
Ω

∑
k′

4πe2

ε|k − k′|2A(k′) = 0. (2.26)

We include the band structure using the k · p - approximation which, for a direct energy gap,
leads to

εC,k =
~2k2

2mC
+ E0 + Eg and εV,k = E0 − ~2k2

2mV
, (2.27)
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where E0 denotes the energy of the valence band top. We define a so-called envelope function
F (r) by

F (r) =
1√
Ω

∑
k

A(k)eik·r. (2.28)

This function satisfies the differential equation[
−~2∇2

2µex
+

~2

2i

(
1
mV
− 1
mC

)
q ·∇− e2

ε|r|
]
F (r) =

{
E − Eg − ~2q2

2µex

}
F (r), (2.29)

where µex is the reduced mass, i.e., µ−1
ex = m−1

V +m−1
C . The term linear in ∇ can be eliminated

by the transformation

F (r) = F ′(r) exp
(
i

2
mV −mC

mV +mC
q · r

)
, (2.30)

and after some algebraic manipulations we obtain[
−~2∇2

2µex
− e2

ε|r|
]
F ′(r) =

{
E − Eg − ~2q2

2Mex

}
F ′(r), (2.31)

where Mex = mV +mC .
The stationary equation (2.31) is equivalent to the Schrödinger equation of a hydrogen atom.
The energy levels then are given by

Eq = Eg − µexe
4

2ε2~2n2
+

~2q2

2Mex
, (2.32)

which implies that there are excitations below the particle-hole continuum, corresponding to
particle-hole bound states. This excitation spectrum is discrete and there is a well-defined
relation between energy and momentum (q), which is the wave vector corresponding to the
center of mass of the particle-hole pair. This non-trivial quasi-particle is called exciton. In the
present approximation it takes on the form of a simple two-particle state. In fact, however, it
may be viewed as a collective excitation, as the dielectric constant includes the polarization by
all electrons. When the screening is neglected, the excitonic states would not make sense as
their energies would not be within the band gap but much below. For the case of weak binding
considered above, the excitation is called a Wannier exciton. The typical binding energy is

Eb ∼ µex

mε2
Ry. (2.33)

Typical values of the constants on the right hand side are ε ∼ 10 and µex ∼ m/10, so that the
binding energy is in the meV range. This energy is much smaller than the energy gap, such that
the excitons are inside the gap, as shown schematically in Fig. 2.8.

excitons

q

E

continuum
electron-hole

Figure 2.8: Qualitative form of the exciton spectrum below the electron-hole continuum.
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The exciton levels are dispersive and their spectrum becomes increasingly dense with increasing
energy, similar to the hydrogen atom. When they merge with the particle-hole continuum the
bound state is ‘ionized’, i.e., the electron and the hole dissociate and behave like independent
particles.
Strongly bound excitons are called Frenkel excitons. In the limit of strong binding, the pair is
almost local, so that the excitation is restricted to a single atom rather than involving the whole
semiconductor band structure.
Excitons are mobile, but they carry no charge, as they consist of an electron and a hole with
opposite charges. For small densities they approximately obey Bose-Einstein statistics, as they
are made from two fermions. In special cases, Bose-Einstein condensation of excitons can be
observed experimentally.

2.2.3 Optical properties

Excitation in semiconductors can occur via the absorption of electromagnetic radiation. The
energy and momentum transferred by a photon is ~ω and ~q, respectively. With the relation
ω = c|q| we may estimate this momentum transfer in a semiconductor with Eg ∼ 1eV ∼ e2/a
(speed of light c, lattice constant a ≈ 10aB) to be

k =
ω

c
=

~ω
hc

2π ∼ e2

hc

2π
a

= α
2π
a
� 2π

a
, (2.34)

which shows that momentum transfer can be ignored.
For semiconductors with a direct energy gap (e.g., GaAs) the photo-induced electron-hole exci-
tation is most easy and yields absorption rates with the characteristics

Γabs(ω) ∝


(~ω − Eg)1/2, dipole-allowed,

(~ω − Eg)3/2, dipole-forbidden.
(2.35)

Here, the terms “dipole-allowed” and “dipole-forbidden” have a similar meaning as in the exci-
tation of atoms regarding whether matrix elements of the type 〈uV,k|r|uC,k〉 are finite or vanish,
respectively. Obviously, dipole-allowed transitions occur at a higher rate for photon energies
immediately above the energy gap Eg, than for dipole-forbidden transitions.
For semiconductors with indirect energy gap (e.g., Si and Ge), the lowest energy transition
connecting the top of the valence band to the bottom of the conduction band is not allowed
without the help of phonons which contribute little energy but much momentum transfer, as
~ωQ � ~ω with ωQ = cs|Q| and the sound velocity cs � c. The requirement of a phonon
assisting in the transition reduces the transition rate to

Γabs(ω) ∝ c+(~ω + ~ωQ − Eg)2 + c−(~ω − ~ωQ − Eg)2, (2.36)

where Q corresponds to the wave vector of the phonon connecting the top of the valence band
and the bottom of the conduction band. There are two relevant processes: either the phonon is
absorbed (c+-process) or it is emitted (c−-process) (see Fig. 2.9).
In addition, absorption processes including exciton states exist. This leads to discrete absorption
peaks below the absorption continuum. In Fig. 2.10, we show the situation for a direct-gap
semiconductor.
Naturally, the recombination of electrons and holes is important as well; in particular, if it is
a radiative recombination, i.e., leads to the emission of a photon. Additionally, other recom-
bination channels such as recombination at impurities, interfaces and through Auger processes
are possible. The radiative recombination for the direct-gap semiconductors is most relevant for
applications. There, the photon emission rate follows the approximate law

Γem(ω) ∝ [Nγ(ω) + 1](~ω − Eg)1/2e−~ω/kBT , (2.37)

with the photon density Nγ(ω). This yields the dominant rate for ~ω very close to Eg.
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Figure 2.9: Phonon-assisted photon absorption in a semiconductor with indirect gap: phonon
absorption (left panel) and phonon emission (right panel).

n = 3
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electron-hole
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n = 2

Eg

Γ
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Figure 2.10: Absorption spectrum including the exciton states for a direct-gap semiconductor
with dipole-allowed transitions. The exciton states appear as sharp lines below the electron-hole
continuum starting at ~ω = Eg.

2.3 Doping semiconductors

Let us replace a Si atom in a Si semiconductor by aluminium Al (group III) or phosphorus P
(group V), which then act as impurities in the crystal lattice. Both Al and P are in the same
row of the periodic table, and their electron configurations are given by

Al : {(1s)2(2s)2(2p)6}(3s)2(3p), P : {(1s)2(2s)2(2p)6}(3s)2(3p)3.

Al (P) has one electron less (more) than Si.

2.3.1 Impurity state

We consider the case of a P-impurity contributing an additional electron whose dynamics is
governed by the conduction band of the semiconductor. For the sake of simplicity, we describe
the conduction band by a single isotropic band with effective mass m∗,

εk =
~2k2

2m∗
. (2.38)
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The P-ion represents a positively charged center, which attracts the additional electron. In the
simplest model, this situation is described by the so-called Wannier equation{

−~2∇2

2m∗
− e2

ε|~r|
}
F (r) = EF (r), (2.39)

where ε is the dielectric constant in which the screening of the ionic potential is contained.
Analogous to the discussion of the exciton states, F (r) is an envelope wave function of the
electron; again, the problem resembles that of a hydrogen atom. Therefore, the low energy
states of the additional electron are bound states around the P-ion. The electron may become
mobile when this “hydrogen atom” is ionized. The binding energy relative to the minimum of
the conduction band given by

En = − m∗e4

2~2ε2n2
= − m∗

mε2n2
Ry, (2.40)

and the effective radius of the lowest bound state by

r1 =
~2ε

m∗e2
=
εm

m∗
aB, (2.41)

where aB = 0.53Å is the Bohr radius. For Si, m∗ ≈ 0.2m and ε ≈ 12, such that

E1 ≈ −20meV and r1 ≈ 30Å. (2.42)

Thus, the resulting states are weakly bound, with energies inside the band gap.
We conclude that the net effect of the P-impurities is to introduce additional electrons into the
crystal that can be easily transferred to the conduction band by thermal excitation (ionization).
One speaks of an n-doped semiconductor (n: negative charge). In full analogy one can consider
Al-impurities, thereby replacing electrons with holes: An Al-atom introduces an additional hole
into the lattice which is weakly bound to the Al-ion (its energy is slightly above the band edge
of the valence band) and may dissociate from the impurity by thermal excitation. This case is
called p-doping (p: positive charge). In both cases, the chemical potential is tied to the dopand
levels, i.e., it lies between the dopand level and the valence band for p-doping and between the
dopand level and the conduction band in case of n-doping (Fig. 2.11).

µ

valence bandvalence bandvalence band

conduction bandconduction bandconduction band

n-doped p-dopedno doping

impurity levels

µ
impurity levels

µ

Figure 2.11: Position of the chemical potential in semiconductors.

The electric conductivity of semiconductors (in particular at room temperature) can be tuned
strongly by doping with so-called ‘donators’ (n-doping) and ‘acceptors’ (p-doping). Practically
all dopand atoms are ionized, with the electrons/holes becoming mobile. Combining differently
doped semiconductors, the possibility to engineer electronic properties is enhanced even more.
This is the basic reason for the semiconductors being ubiquitous in modern electronics.
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2.3.2 Carrier concentration

Let us briefly consider the carrier concentration in semiconductors at room temperature. Carriers
are always created in form of electron hole pairs; following the “reaction formula”

e+ h↔ γ, (2.43)

where γ denotes a photon which is absorbed (e-h-creation) or emitted (e-h-recombination) and
accounts for the energy balance. The carrier concentration is described by a mass action law of
the form,

nenh = n(T )2 = n0

(
T

T0

)3

e−Eb/kBT , (2.44)

where T0, n0 and Eg are parameters specific to the semiconductor. In the case of Si nenh ≈
1020cm−3 at T = 300K. Thus, for the undoped semiconductor, ne = nh ≈ 1010cm−3. On the
other hand, for n-doped Si with a typicial donor concentration of nD ≈ 1017cm−3 we can safely
assume that most of the donors are ionized at room temperature such that ne ≈ nD and

nh =
n(T )2

ne
≈ 103cm−3. (2.45)

Therefore, the vast majority of mobile carriers are electrons, while the hole carriers are negligible.
The opposite is true for p-doped Si.

2.4 Semiconductor devices

Semiconductors are among the most important components of current high-technology. In this
section, we consider a few basic examples of semiconductor devices.

2.4.1 pn-contacts as diodes

pn-junctions–made by combining a p-doped and an n-doped version of the same semiconductor–
are used as rectifiers4. When contacting the two types of doped semiconductors the chemical
potential, which is pinned by the dopand (impurity) levels, is important for the behavior of the
electrons at the interface. In electrostatic equilibrium, the chemical potential is constant across
the interface. This is accompanied by a “band bending” leading to the ionization of the impurity
levels in the interface region (see Fig. 2.12). Consequently, these ions produce an electric dipole
layer which induces an electrostatic potential shift across the interface. Additionally, the carrier
concentration is strongly reduced in the interface region (depletion layer).
In the absence of a voltage over the junction, the net current flow vanishes and the dipole is
in electrostatic equilibrium. This can also be interpreted as the equilibrium of two oppositely
directed currents, called the drift current and the diffusion current. From the point of view of
the electrons, the dipole field excerts a force pulling the electrons from the p-side to the n-side.
This leads to the drift current Jdrift. On the other hand, the electron concentration gradient
leads to the diffusion current Jdiff from the n-side to the p-side. The diffusion current is directed
against the potential gradient, so that the diffusing electrons have to overcome a potential step.
The equilibrium condition is given by

0 = Jtot = Jdiff + Jdrift ∝ C1(T )e−Eg/kBT − C2(T )e−Eg/kBT = 0, (2.46)

where C1 = C2 = C. Both currents are essentially determined by the factor C(T )e−Eg/kBT . For
the drift current, this dependence stems from the dependence of the current on the concentration
of mobile charge carriers (electrons and holes on the p-side and n-side, respectively), which are

4dt. Gleichrichter
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Figure 2.12: Occupation of the impurity levels of a pn-junction.

created by thermal excitation. The magnitude of the drift current depends on the concentration
because, in regions where the dipole field is large, all electrons on the p-side are pulled to the n-
side (and vice versa for holes). Applying a voltage does not change this contribution significantly.
For the diffusion current, the factor C(T )e−Eg/kBT describes the thermal activation over the
dipole barrier. This contribution strongly depends on the applied voltage, as the height of the
barrier directly depends on the voltage. For zero voltage, the height of the barrier is essentially
given by the energy gap Eb ≈ Eg. With an applied voltage, this is modified according to
Eb ≈ Eg + eU , where eU = µn − µp. From these considerations, the well-known current-voltage
characteristic of the pn-junctions follows directly as

Jtot(U) = C(T )e−Eg/kBT
{
eeU/kBT − 1

}
. (2.47)

For U > 0, the current is rapidly enhanced with increasing voltage. This is called forward bias.
By contrast, charge transport is suppressed for U < 0 (reverse bias), leading to small currents
only. The current-voltage characteristics J(U) (see Fig. 2.13) shows a clearly asymmetric
behavior, which can be used to rectify ac-currents. Rectifiers (or diodes) are an important
component of many integrated circuits.

eU

n-dopedp-doped

µ
∆

∆− eU

eU

∆− eU

µ

∆

n-dopedp-doped U

forward bias

J

reverse bias

Figure 2.13: The pn-junction with an applied voltage and the resulting J-U characteristics.

2.4.2 Semiconductor diodes and light

LED (Light Emitting Diode): As mentioned above, the recombination of electrons and holes can
lead to the emission of photons (radiating recombination) with a rather well-defined frequency
essentially corresponding to the energy gap Eg. Excess electron-hole pairs can be produced in
pn diodes by running a current in forward direction. Using semiconductors with different energy
gaps allows the tuning of the color of the emitted light. Direct-gap semiconductors are most
suitable for this kind of devices. Well-know are the semiconductors of the GaAs-GaN series (see
table 2.1).
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semiconductor GaAs GaAs0.6P0.4 GaAs0.4P0.6 GaP GaN
wave length (nm) 940 660 620 550 340
color infrarot rot gelb grün ultraviolet

Table 2.1: Materials used for LEDs and their properties.

There are, however, certain problems concerning the emission of light by semiconductors. In
particular, the difference in refractive indices inside and outside the device leads to large reflective
losses (nSC ≈ 3 und nair ≈ 1). Thus, the efficiency, defined asN(photons emitted)/N(p-h pairs created),
is small, but still better than the efficiency of conventional light bulbs.

Solar cell: The population of charge carriers can be changed by the absorption of light. Suppose
that the n-side of a diode is exposed to irradiation by light, which leads to excess hole carriers
(minority charge carriers). Some of these holes can diffuse towards the pn-interface and will
be drawn to the p-side by the dipole field. In this way, they induce an additional current JL

modifying the current-voltage characteristics to

Jtot = Jpn − JL = Js(eeU/kBT − 1)− JL. (2.48)

It is important for the successful migration of the holes to the interface dipole that they do not
recombine too quickly. When Jtot = 0, the voltage drop across the diode is UL. The maximum
efficiency is reached by applying an external voltage Uc < UL such that the product Jc × Uc is
maximized (cf. Fig. 2.14).

power
maximal

rectangle

U

contacts

p

n

non-reflecting layer

UL

J

−JL

Figure 2.14: Solar cell design and shifted current-voltage characteristics. The efficiency is max-
imal for a maximal area of the power rectangle.

2.4.3 MOSFET

The arguably most important application of semiconductors is the transistor, an element existing
with different architectures. Here we consider the MOSFET (Metal-Oxide-Semiconductor-Field-
Effect-Transistor). A transistor is a switch allowing to control the current through the device
by switching a small control voltage. In the MOSFET, this is achieved by changing the charge
carrier concentration in a p-doped semiconductor using a metallic gate. The basic design of a
MOSFET is as follows (see Fig. 2.15): A thin layer of SiO2 is deposited on the surface of a
p-type semiconductor. SiO2 is a good insulator that is compatible with the lattice structure of
Si. Next, a metallic layer, used as a gate electrode, is deposited on top of the insulating layer.
The voltage between the Si semiconductor and the metal electrode is called gate voltage UG. The
insulating SiO2 layer ensures that no currents flow between the electrode and the semiconductor
when a gate voltage is applied. The switchable currents in the MOSFET flow between the source
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Figure 2.15: Schematic design of a MOSFET device.
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Figure 2.16: Depletion layer at SiO2-semiconductor interface: Eg > UG > 0 (left panel); UG >
Eg inversion layer (right panel).

and the drain which are heavily n-doped semiconductor regions. We consider the two typical
switching states:

“off” The gate voltage UG = 0. Virtually no current flows, as the conduction band of the
p-doped semiconductor is almost empty.

“on” The gate voltage is positive, UG > 0. In this case, the energy of the Si bands is lowered,
such that in a certain region within the Si the acceptor levels are filled with electrons (or,
equivalently, holes are removed). This depletion layer has the extension d. The negative
charge of the acceptors leads to a position-dependent potential Φ(z), where z is the distance
from the boundary between SiO2 and Si. Φ(z) satisfies the Poisson equation

d2

dz2
Φ(z) =

4πρ(z)
ε

, (2.49)

where the charge density originates in the occupied acceptor levels,

ρ(z) =
{ −enA, z < d,

0, z > d,
(2.50)

and nA is the density of acceptors. The boundary conditions are

Φ(z = 0) = UG and Φ(z = d) = 0. (2.51)

Thus, the solution for z ≤ d is given by

Φ(z) =
2πenA
ε

(z − d)2, with d2 =
εUG

2πenA
. (2.52)

The thickness of the depletion layer increases with increasing gate voltage. When the
applied gate voltage is sufficiently large (UG > Eg), a so-called inversion layer is created

42



(cf. Fig. 2.16). The conduction band is bent down so close to the boundary that its lower
edge lies below the chemical potential. The electrons accumulating in this inversion layer
provide carriers connecting the n-type source and drain electrodes and allow for a large
current. This is the “on” configuration.

Conduction band electrons accumulating in the inversion layer behave like a two-dimensional
electron gas. In this system , the quantum Hall effect (QHE) can occur. It is characterized by
highly unusual charge transport properties in the presence of a large magnetic field.
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Chapter 3

Metals - properties of interacting
electrons

The electronic states in a periodic atomic lattice are extended and have an energy spectrium
forming energy bands. In the ground state these energy states are filled successively starting at
the bottom of the electronic spectrum until the number of electrons is exhausted. A metallic
state occurs whenever in this way a band is only partially filled. The fundamental difference that
distinguishes metals from insulators and semiconductors is the absence of a gap for electron-
hole excitations, so that these can be excited at arbitrarily small energies. This difference has
profound phenomenological consequences.
We will consider a simplified model suitable for the description of simple metals like the Alkali
metals Li, Na, or K, with an (atomic) electron configuration consisting of closed shell cores
and a single valence electron in an ns-orbital. Restricting ourselves to the valence electron and
applying the approximation of nearly free electrons, we find that the lowest band around the
Γ-point is half-filled. We will then neglect the influence of the periodic lattice potential and
consider the problem of a free electron gas subject to the (repulsive) Coulomb interaction.

3.1 The Jellium model of the metallic state

The Jellium model is the probably simplest possible model of a metal that can be used to discuss
qualitative and in parts even quantitative aspects of simple metals. The main simplification made
is to replace the ionic lattice by a homogeneous positively charged background (called Jellium).
The uniform charge density enion is chosen such that the whole system (ions + electrons) is
charge neutral, i.e. nion = n, where n is the electron density.
We begin with the single-particle wave functions of the free electrons which are given by the
usual plane waves

ψk,s(r) =
1√
Ω
eik·r (3.1)

where Ω is the volume of the system (needed for normalization of the wave function), k and
s =↑, ↓ denote the wave vector and spin, respectively. We consider periodic boundary conditions
for the wave function by taking the space to be a cube of side length L and demanding that

ψk,s(r + (L, 0, 0)) = ψk,s(r + (0, L, 0)) = ψk,s(r + (0, 0, L)) = ψk,s(r)

⇒ k = 2π
L (nx, ny, nz) mit nx, ny, nz = 0,±1,±2, . . . .

(3.2)

The energy of a single particle state is given by εk = ~2k2/2m. The non-interacting ground
state is obtained by filling all single particle states up to the Fermi energy with two electrons.
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In the language of second quantization the ground state is thus given by

|Ψ0〉 =
∏

|k|≤kF ,s
ĉ†k,s|0〉 (3.3)

where kF is the Fermi wave vector (The corresponding Fermi energy is εF = ~2k2
F /2m). Counting

the filled electronic states, we have

n =
1
Ω

∑
|k|≤kF ,s

1 = 2
∫

d3k

(2π)3
1 = 2

4π
3

k3
F

(2π)3
⇒ kF = {3π2n}1/3 (3.4)

where kF is the radius of the Fermi sphere in k-space around k = 0. The operators ĉ†k,s (ĉk,s)
create (annihilate) an electron with wave vector k and spin s.
Now we compute the ground state energy of the Jellium system variationally, using the density
n as the only variational parameter. Varying the density is equivalent to varying the lattice
constant, and accordingly in this way we obtain an understanding of the stability of a metal,
i.e. the cohesion of the ion lattice through the mobile electrons (in contrast to the stability of
semiconductors due to covalent chemical bonding). We denote the variational state as |Ψ0〉 with
a given kF . The second quantized Hamiltonian has the form

H = Hkin +Hee +Hei +Hii

Hkin =
∑
k,s

εkĉ
†
ksĉks

Hee =
1
2

∑
s,s′

∫
d3r d3r′ Ψ̂†s(r)Ψ̂†s′(r

′)
e2

|r − r′|Ψ̂s′(r′)Ψ̂s(r)

Hei = −
∑
s

∫
d3r d3r′

ne2

|r − r′|Ψ̂
†
s(r)Ψ̂s(r)

Hii =
1
2

∫
d3r d3r′

n2e2

|r − r′| ,

(3.5)

where we have used the electron field operator with the definitions

Ψ̂†s(r) =
1√
Ω

∑
k

ĉ†k,se
−ik·r und Ψ̂s(r) =

1√
Ω

∑
k

ĉk,se
ik·r (3.6)

The variational energy can be computed from Eg = 〈Ψ0|H|Ψ0〉 and consists of four different
contributions: First we have the kinetic energy

Ekin = 〈Ψ0|Hkin|Ψ0〉 =
∑
k,s

εk 〈Ψ0|ĉ†ksĉks|Ψ0〉︸ ︷︷ ︸
= nks

= 2Ω
∫

d3k

(2π)3
εk nks = N

3
5
εF (3.7)

with

nks =


1 |k| ≤ kF

0 |k| > kF

(3.8)

where N = Ωn is the number of valence electrons. Second there is the energy resulting from the
Coulomb repulsion between the electrons,

Eee =
1
2

∫
d3r d3r′

e2

|r − r′|
∑
s,s′

〈Ψ0|Ψ̂†s(r)Ψ̂†s′(r
′)Ψ̂s′(r′)Ψ̂s(r)|Ψ0〉︸ ︷︷ ︸

= n2 −G(r − r′)

= EHartree + EFock ; (3.9)
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The third contribution originates in the attractive interaction between ions and electrons,

Eei = −
∫
d3r d3r′

e2

|r − r′|n
∑
s

〈Ψ0|Ψ̂†s(r)Ψs(r)|Ψ0〉︸ ︷︷ ︸
= n

; (3.10)

Finally we have the repulsive ion-ion interaction

Eii = 〈Ψ0|Hii|Ψ0〉 =
1
2

∫
d3r d3r′

n2e2

|r − r′| . (3.11)

The Coulomb repulsion between the electrons leads to two terms, called the direct (or Hartree)
term describing the Coulomb energy of a uniformly spread charge distribution, and the exchange
or Fock term resulting from the exchange hole that follows from the Fermi-Dirac statistics (Pauli
exclusion principle). The pair correlation function is 1∑

s,s′

〈Ψ0|Ψ̂†s(r)Ψ̂†s′(r
′)Ψ̂s′(r′)Ψ̂s(r)|Ψ0〉 = n2 −G(r − r′) (3.18)

with

G(r) =
9n2

2

(
kF |r| cos kF |r| − sin kF |r|

(kF |r|)3

)2

(3.19)

1Derivation of the pair correlation function: We use Eq.(3.6) and express,

〈Ψ0|bΨ†s(r)bΨ†s′(r′)bΨs′(r
′)bΨs(r)|Ψ0〉

=
1

Ω2

X
k,k′,q,q′

e−i(k−k′)·re−i(q−q′)·r′〈Φ0|bc†ksbc†qs′bcq′s′bck′s|Φ0〉 .
(3.12)

We distinguish two cases: (1) s 6= s′,

〈Φ0|bc†ksbc†qs′bcq′s′bck′s|Φ0〉 = δkk′δqq′nksnqs′ (3.13)

and (2) s = s′,
〈Φ0|bc†ksbc†qsbcq′sbck′s|Φ0〉 = (δkk′δqq′ − δkq′δqk′)nksnqs , (3.14)

which lead to

〈Ψ0|bΨ†s(r)bΨ†s′(r′)bΨs′(r
′)bΨs(r)|Ψ0〉 =

1

Ω2

X
k,q

nksnq,s′ =
n2

4
(3.15)

for s 6= s′ and

〈Ψ0|bΨ†s(r)bΨ†s(r′)bΨs(r
′)bΨs(r)|Ψ0〉 =

1

Ω2

X
k,q

n
1− ei(q−k)·(r−r′)

o
nksnq,s (3.16)

for s = s′. This leads eventually to Eq.(3.18) with

G(r) = 2

(
1

Ω

X
k

eik·rnks

)2

= 2

(Z
|k|≤kF

d3k

(2π)3
eik·r

)2

= 2


1

2π2r

Z kF

0

dk k sin kr

ff2

= 2


1

2π2

sin kF r − kF r cos kF r

r3

ff2

(3.17)

and n = k3
F /3π

2 (k = |k| and r = |r|).
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Fig. 3.1: Pair correlation function.

it is easy to verify by direct computation that the EHartree + Eei + Eii = 0 (these are the terms
that would occur in a classical electrostatic calculation, implying that the binding energy of
metals is a quantum effect), so that only the kinetic energy and the Fock term remain. The
latter is negative,

EFock = −Ω
9n2

4

∫
d3r

e2

|r|
{

sin kF |r| − kF |r| cos kF |r|
(kF |r|)3

}2

= −N 3e2

4π
kF . (3.20)

Thus, the total energy per electron is given by

Eg
N

=
3
5

~2k2
F

2m
− 3e2

4π
kF =

{
2.21
r2
s

− 0.916
rs

}
Ry (3.21)

where we defined dimensionless quantity rs by

n =
3

4πd3
⇒ rs =

d

aB
=
(

9π
4

)1/3 me2

~2kF
, (3.22)

where d is the average radius of the volume occupied by one electron and 1Ry = e2/2aB.
This energy can be minimized with respect to rs, yielding rs,min = 4.83 ⇒ d ≈ 2.41Å.
This corresponds to a lattice constant of a = (4π/3)1/3d ≈ 3.9Å. This estimate is roughly in
agreement with the actual lattice constants of the Alkali metals (group I, first column of the
periodic table): rs,Li = 3.22, rs,Na = 3.96, rs,K = 4.86, . . . . Apparently, the delocalized electrons
lead to cohesion of the positive background. The good agreement of this simple estimate with the
experimental values is due to the fact that for the Alkali metals have only one valence electron
in an s-orbital that is delocalized, whereas the the core electrons are in a noble gas configuration
and thus relatively inert.
Note that in the variational approach outlined above correlation effects among the electrons
due to the Coulomb repulsion have been neglected. In particular, electrons can be expected to
’avoid’ each other not just because of the Pauli principle, but also as a result of the repulsive
interaction. However, for the problem under consideration this effect turns out to be small for
rs ∼ rs,min:

Etot

NRy
=

2.21
r2
s

− 0.916
rs

+ 0.062lnrs − 0.096︸ ︷︷ ︸
correlationcorrections

+ · · · (3.23)

which can be obtained by more sophisticated quantum field theoretical analysis.

3.2 Charge excitations and dielectric function

In analogy to semiconductors, the elementary excitations of metallic systems are the electron-
hole excitations, which for metals, however, can have arbitrarily small energies. One particularly
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drastic consequence of this behavior is the strong screening of the long-ranged Coulomb potential.
A negative test charge in a metal decreases the electron density in its vicinity, and the induced
cloud of positive charges (relative to uniform charge density) weakens the Coulomb potential:

V (r) =
e2

r
→ V ′(r) = e2 e

−r/l

r
(3.24)

i.e. the Coulomb potential is modified into the short-ranged Yukawa potential. In contrast, due
to the finite energy gap for electron-hole excitations the charge distribution in semiconductors
cannot adapt to perturbations easily, so that even the screened Coulomb potential is still long-
ranged. As we have mentioned earlier, the semiconductor acts as a dielectric medium and its
screening effects are accounted for by the polarization of localized electric dipoles,

V (r) =
e2

r
→ V ′(r) =

e2

εr
, (3.25)

i.e. the Coulomb potential is renormalized by the dielectric constant ε.

3.2.1 Response and Lindhard function

We will now investigate the response of an electron gas to a time- and position-dependent weak
external potential Va(r, t) in more detail based on the equation of motion. We introduce the
Hamiltonian

H = Hkin +HV =
∑
k,s

εkĉ
†
ksĉks +

∑
s

∫
d3r Va(r, t)Ψ̂†s(r)Ψ̂s(r) (3.26)

where the second term is considered as a small perturbation. In a first step we consider the
linear response of the system to the external potential. On this level we may restrict ourself to
one Fourier component in the spatial and time dependence of the potential,

Va(r, t) = Va(q, ω)eiq·r−iωteηt with η → 0+ , (3.27)

which includes the adiabatic switching on of the potential. To linear response this potential
would induce a modulation of the electron density of the form nind(r, t) = n0 + δnind(r, t) with

δnind(r, t) = δnind(q, ω)eiq·r−iωt . (3.28)

Using Eq.(3.6) we obtain for the density operator in momentum space,

ρ̂q =
∑
s

∫
d3rΨ̂†s(r)Ψ̂s(r)e−iq·r =

1
Ω

∑
k,s

ĉ†k+qsĉks =
1
Ω

∑
k,s

ρ̂k,q,s , (3.29)

which leads to
HV =

1
Ω

∑
k,q,s

ρ̂k,−q,sVa(q, ω)eiq·r−iωt . (3.30)

The relevant density operator to describe the electron density is ρ̂q(t) in Heisenberg representa-
tion. We use now the equation of motion for ρ̂k,q,s(t):

i~
d

dt
ρ̂k,q,s = [ρ̂k,q,s,H] = [ρ̂k,q,s,Hkin +HV ]

= {εk+q − εk} ρ̂k,q,s +
{
ĉ†ksĉks − ĉ†k+qsĉk+qs

}
Vq(q, ω)e−iωteηt .

(3.31)

we now take the thermal average 〈Â〉 = Tr(Âe−βH)/Z, and follow the linear response scheme
by taking the same time dependence for ρ̂k,q,s(t) as for the potential, so that the equation of
motion reads,

(~ω + i~η)〈ρ̂k,q,s〉 = {εk+q − εk} 〈ρ̂k,q,s〉+ (n0k,s − n0k+q,s)Va(q, ω) (3.32)
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where n0k,s = 〈ĉ†ksĉks〉 and therefore

δnind(q, ω) =
1
Ω

∑
k,s

〈ρ̂k,q,s〉 =
1
Ω

∑
k,s

n0k+q,s − n0k,s

εk+q − εk − ~ω − i~ηVa(q, ω) . (3.33)

This defines the dynamical linear response function δnind(q, ω) = χ0(q, ω)Va(q, ω),

χ0(q, ω) =
1
Ω

∑
k,s

n0k+q,s − n0k,s

εk+q − εk − ~ω − i~η (3.34)

which is known as the Lindhard function.
The density δnind(r, t) can be considered again as a source for a additional Coulomb potential
which can be determined by means of the Poisson equation,

∇2Vind(r, t) = −4πe2δnind(r, t) ⇒ Vind(q, ω) =
4πe2

q2
δnind(q, ω) . (3.35)

Now we go one step beyond simple linear response by saying that the induced charge distribution
is not only driven by the external potential Va but actually by the potential V felt by the electrons
in the metal. This is a renormalized potential and consists of Va and Vind. We determine now
V in a self-consistent way,

V (q, ω) = Va(q, ω) + Vind(q, ω) = Va(q, ω) +
4πe2

q2
χ0(q, ω)V (q, ω) , (3.36)

which leads to

V (q, ω) =
Va(q, ω)
ε(q, ω)

with ε(q, ω) = 1− 4πe2

q2
χ0(q, ω) . (3.37)

This defines the dynamical dielectric function ε(q, ω) and describes the renormalization of the
external potential due to the dynamical response of the electrons in the metal.
We may use this also to define the response function based on Eq.(3.35) and (3.36),2

χ(q, ω) =
χ0(q, ω)
ε(q, ω)

=
χ0(q, ω)

1− 4πe2

q2
χ0(q, ω)

, (3.39)

resulting from the relation,

δn(q, ω) = χ0(q, ω)V (q, ω) = χ(q, ω)Va(q, ω) . (3.40)

The response function χ(q, ω) contains information not only about the renormalization of po-
tentials, but also on the excitation spectrum of the metal. We may separate χ into its real and
imaginary part, χ(q, ω) = χ1(q, ω) + iχ2(q, ω). Using the relation

lim
η→0+

1
z − iη = P

(
1
z

)
+ iπδ(z) (3.41)

2Eq. (3.39) can be written in the form of a geometric series,

χ(q, ω) = χ0(q, ω)

"
1 +

4πe2

q2
χ0(q, ω) +

„
4πe2

q2
χ0(q, ω)

«2

+ · · ·

#
. (3.38)

From the point of view of perturbation theory, this series corresponds to summing a limited subset of perturbative
terms to infinite order. This approximation is called Random Phase Approximation (RPA) and is based on the
assumption the phase relation between different particle-hole excitations entering the perturbation series are
random such that interference terms vanish on the average. This approximation is used quite frequently, in
particular, in the discussion of instabilities of a system towards an ordered phase.
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where the Cauchy principal value of the first term has to be taken, we may separate the Lindhard
function into

χ01(q, ω) =
1
Ω

∑
k,s

P
{
n0,k+q − n0,k

εk+q − εk − ~ω

}

χ02(q, ω) =
1
Ω

∑
k,s

(n0,k+q − n0,k)δ(εk+q − εk − ~ω)

(3.42)

The real part will be important later in the context of instabilities of metals. The excitation
spectrum is visible in the imaginary part which relates to the absorption of energy by the elec-
trons subject to a time-dependent external perturbation. 3 Note that the χ02(q, ω) corresponds
to Fermi’s golden rule known from time-dependent perturbation theory, i.e. the transition rate
from the ground state to an excited state of energy ~ω and momentum q.

k+q

k

Fermi−See Fermi−See

Fig. 3.2: Electron-hole excitation.

The relevant excitations for the Lindhard function are particle-hole excitations. Starting from
the ground state of a completely filled Fermi sea, we remove an electron with momentum k
and insert it outside the Fermi sea in a state with momentum k + q (see Fig.3.2). The energy
difference is

Ek,q = εk+q − εk > 0 . (3.43)

In analogy to the semiconducting case, there is a continuum of particle-hole excitations in the
energy-momentum plane. This is sketched in Fig. 3.3. Note the absence of an energy gap for
excitations.

3.2.2 Collective excitation - plasma resonance

For the bare electron-hole excitations the Coulomb interaction was ignored, such that the bare
Lindhard function provides information about spectrum. Including the Coulomb interaction we
will show that a new collective excitation exists, the so-called plasma resonance. For a long-
ranged interaction like the Coulomb interaction this resonance appears at finite frequency at
small momenta q. We will derive it here using the response function χ(q, ω).
Assuming here |q| � kF we expand χ0(q, ω) in q, starting with

εk+q = εk + q ·∇kεk + · · · und n0,k+q = n0,k +
∂n0

∂ε
q ·∇kεk + · · · (3.44)

Note that ∂n0/∂εk = −δ(εk − εF ) at T = 0 and ∇kεk = ~vF = ~vFk/k is the Fermi velocity.
This leads to the following approximation:

χ0(q, ω) ≈ −2
∫

d3k

(2π)3

q · vF δ(εk − µ)
q · vF − ω − iη

≈ 2
(2π)2

∫
d cos θ

k2
F

~vF

{
qvF cos θ
ω + iη

+
(
qvF cos θ
ω + iη

)2

+
(
qvF cos θ
ω + iη

)3

+
(
qvF cos θ
ω + iη

)4

+ · · ·
}

=
k3
F q

2

3π2m(ω + iη)2

{
1 +

3
5

v2
F q

2

(ω + iη)2

}
=

n0q
2

m(ω + iη)2

{
1 +

3
5

v2
F q

2

(ω + iη)2

}
(3.45)

3See Chapter 6 ”Linear response theory” of the course ”Statistical Physics” FS09.
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We now use this to approximate χ,

χ(q, ω) ≈ n0q
2R(q, ω)2

(ω + iη)2 − 4πe2n2
0

m
R(q, ω)2

=
n0q

2R(q, ω)
ωp

{
1

ω + iη − ωpR(q, ω)
− 1
ω + iη + ωpR(q, ω)

} (3.46)

with

R(q, ω)2 =
(

1 +
3v2
F q

2

5ω2

)
and ω2

p =
4πe2n0

m
. (3.47)

Using Eq.(3.41) from Eq.(3.45) we obtain the imaginary part as

Imχ(q, ω) ≈ πn0q
2R(q, ωp)
ωp

[δ(ω − ωpR(q, ωp))− δ(ω + ωpR(q, ωp))] (3.48)

which yields sharp excitation modes,

ω(q) = ωpR(q, ωp) = ωp

{
1 +

3v2
F q

2

10ω2
p

+ · · ·
}
, (3.49)

which is called plasma resonance with ωp as the plasma frequency.

ωp

Plasmaresonanz

ω

F q2k

Fig. 3.3: Excitation spectrum in the ω-q-plane. The large shaded region corresponds to the
electron-hole continuum and the sharp line outside the continuum represents the plasma

resonance which is damped when entering the continuum.

Similar to the exciton, the plasma excitation has a well-defined energy-momentum relation
and may consequently be viewed as a quasiparticle (plasmon) which has bosonic character.
When the plasmon dispersion merges with the electron-hole continuum it is damped (Landau
damping) because of the allowed decay into electron-hole excitations. The resulting finite life-
time corresponds to a finite width of the resonance of the collective excitation.

Metall ω
(exp)
p (eV) ω

(theo)
p (eV)

Li 7.1 8.5
Na 5.7 6.2
K 3.7 4.6
Mg 10.6 -
Al 15.3 -

Values of the plasma frequency. For the alkali metals a theoretically determined ωp is given for
comparison, using Eq.(3.47) with m the free electron mass and n determined through

rs,Li = 3.22, rs,Na = 3.96 and Rs,K = 4.86.
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It is possible to understand the plasma excitation within a classical picture. Consider negatively
charged electrons in a positively charged ionic background. When the electrons are shifted by
an amount r w.r.t. the ions, a polarization P = −n0er results. The polarization causes an
electric field E4πP which acts as a restoring force. The equation of motion for an individual
electron describes harmonic oscillations:

m
d2

dt2
r = −eE = −4πe2n0r . (3.50)

+
r

Fig. 3.4: Classical view point for the plasma excitation.

The oscillation frequency is

ω2
p =

4πe2n0

m
(3.51)

the same as in eq. (3.47).

3.2.3 Screening

Now turn to the situation of a static field (ω = 0). Using the expansion (3.44) we obtain

χ0(q, 0) = − 1
Ω

∑
k,s

δ(εk − εF ) = − 1
π2

k2
F

~vF
= −3n0

2εF
⇒ 1

ε(q, 0)
=

1

1 + k2
TF
q2

(3.52)

with the so-called Thomas-Fermi wave vector k2
TF = 6πe2n0/εF . The effect of the modified

(renormalized) q-dependence of the dielectric function can be understood by considering the
potential Va of a point charge:

V (q) =
Va(q)
ε(q, 0)

=
4πe2

q2 + k2
TF

⇒ V (r) =
e2

r
e−kTF r . (3.53)

The potential is screened by a reorganization of the electrons and turns from the long-ranged
Coulomb potential into a Yukawa potential with exponential decay. The screening length is k−1

TF ,
the Thomas-Fermi screening length. In metals kTF is typically of the same order of magnitude
as kF , i.e. the screening length is of order 5Å which is roughly the distance between neighboring
atoms.4

Friedel oscillations: We can evaluate the static dielectric function for a system of free electrons,
obtaining (after a simple calculation)

ε(q, 0) = 1 +
4e2mkF
πq2

{
1
2

+
4k2

F − q2

8kF q
ln
∣∣∣∣2kF + q

2kF − q
∣∣∣∣} . (3.58)

4Thomas-Fermi approach for electron gas: The Thomas-Fermi theory for the charge distributions slowly varying
in space is based on the approximation that we can always assume the electrons form locally a Fermi gas. The
potential of ρex(r) induces a charge redistribution relative to the uniform density of electrons ne(EF ) (density of
gas with Fermi energy EF , neutralizing the ionic background charge). Within Thomas-Fermi approximation the
induced charge distribution can then be written as

ρind(~r) = −e {ne(EF + eΦ(~r))− ne(EF )} mit ne(EF ) =
k3
F

3π2
=

1

3π2~2
(2mEF )3/2 (3.54)

where EF = ~2k2
F /2m. This approach is justifie, if the potential Φ(~r) change slowly compared to k−1

F , so that
dass locally we may describe the electron gas as filled Fermi sphere of corresponding electron density. The Poisson
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Noticably the dielectric function varies little for small q � kF . At q = ±2kF there is a logarith-
mic singularity. This is a consequence of the sharpness of the Fermi surface in k-space. Consider
the induced charge of a point charge at the origin. 5

δn(r) = e

∫
d3q

(2π)3

{
1
ε(q)

− 1
}
na(~q, 0)eiq·r = −e

r

∫ ∞
0

g(q)na(~q, 0) sin qr dq (3.60)

with
g(q) =

q

2π2

ε(q)− 1
ε(q)

. (3.61)

Note that g(q) vanishes for both q → 0 and q →∞. Using partial integration twice, we find

δn(r) =
e

r3

∫ ∞
0

g′′(q) sin qrdq (3.62)

where
g′(q) ≈ A ln|q − 2kF | and g′′(q) ≈ A

q − 2kF
(3.63)

dominate around q ∼ 2kF . Hence

δn(r) ≈ eA

r3

∫ 2kF+Λ

2kF−Λ

sin[(q − 2kF )r] cos 2kF r + cos[(q − 2kF )r]sin2kF r
q − 2kF

dq → πeA
cos 2kF r

r3
.

(3.64)
with a cutoff Λ→∞. The induced charge distribution exhibits so-called Friedel oscillations.

einfach
i

r

Thomas−Fermi

Lindhard−Form

n

Fig. 3.5: Friedel oscillations of the charge distribution.

equation may now be formulated as

~∇2Φ(~r) = −4π[ρind(~r) + ρex(~r)] ≈ 4πe2 ∂ne(E)

∂E

˛̨̨̨
E=EF

Φ(~r)− 4πρex(~r)

=
1

l2TF
Φ(~r)− 4πρex(~r)

(3.55)

with the Thomas-Fermi screening length lTF defined as,

l−2
TF = 4πe2 ∂ne(E)

∂E

˛̨̨̨
E=EF

=
6πe2ne
EF

. (3.56)

with ne = ne(EF ) as the uniform electron density. For a point charge of magnitude Q at the origin we obtain,

Φ(~r) = Q
e−r/lT F

r
. (3.57)

This is the Yukawa potential as obtained above.
5The charge distribution can be deduced from the Poisson equation (3.35):

δn(q) =
q2

4πe2
Vi(q) = χ0(q, 0)V (q) = χ0(q, 0)

Va(q)

ε(q, 0)
=

1− ε(q, 0)

ε(q, 0)
na(~q, 0) (3.59)

The charge distribution in real space can be obtained by Fourier transformation.
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Dielectric function in various dimensions: Above we have treated the dielectric function for a
three-dimensional parabolic band. Similar calculations can be performed for one- and two-
dimensional systems. In general, the static susceptibility is given by

χ0(q, ω = 0) =



− 1
2πq

ln
∣∣∣∣s+ 2
s− 2

∣∣∣∣ , 1D

− 1
2π

{
1−

(
1− 4

s2

)
θ(s− 2)

}
, 2D

− kF
2π2

{
1− s

4

(
1− 4

s2

)
ln
∣∣∣∣s+ 2
s− 2

∣∣∣∣}
(3.65)

where s = q/kF . Interestingly χ0(q, 0) has a singularity at q = 2kF for all dimensionalities.
The singularity becomes weaker as the dimensionality is increased. In one dimension, there is
a logarithmic divergence, in two dimensions there is a kink, and in three dimensions only the
derivative diverges. Later we will see that these singularities may lead to instabilities of the
metallic state, in particular for the one-dimensional case.

0

F

χ(   ,0)q

χ(0,0)

3D

2D

1D

q

1

0 2k

Fig. 3.6: Lindhard functions for different dimensions. The lower the dimension the stronger
the singularity at q = 2kF .

3.3 Lattice vibrations - phonons in metals

The atoms in a lattice of a solid can vibrate around their equilibrium positions. We will describe
in the following by treating the lattice as a continuous elastic medium. This approximation is
sufficient to obtain some of the essential features of the interaction between lattice vibrations
and electrons, in particular screening effects. The approach is limited, however, to mono-atomic
unit cells because the internal structure of a unit cell is neglected.

3.3.1 Vibration of a isotropic continuous medium

When an elastic medium is deformed an infinitesimal volume element d3r around the point r is
generally moved to a different point r′(r). The deformation may be described by defining the
displacement field u(r) = r′(r)− r at any point of the (undeformed) medium. In general, u is
also a function of time. In the simplest form of an isotropic medium the elastic energy for small
deformations is given by

Eel =
λ

2

∫
d3r {∇ · u(r, t)}2 (3.66)
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where λ is the elastic modulus, neglecting shear contributions. 6 The continuum form above
is valid for wavelengths that are much longer than the lattice constant, so that details of the
arrangement of atoms in the lattice can be neglected. The kinetic energy of the motion of the
medium is

Ekin =
ρ0

2

∫
d3r

{
∂u(r, t)
∂t

}2

(3.68)

where ρ0 = Mini is the mass density (ni: atom/ion density). Variation of the Lagrangian
functional L[u] = Ekin − Eel leads to the equation of motion

1
c2
s

∂2

∂t2
u(r, t)−∇(∇ · u(r, t)) = 0 (3.69)

where c2
s = λ/ρ0. The displacement field can be expanded into normal modes,

u(r, t) =
1√
Ω

∑
k

ek

{
qk(t)eik·r + qk(t)∗e−ik·r

}
⇒ d2

dt2
qk + ω2

kqk = 0 (3.70)

where ωk = cs|k| = csk. Note that within our simplification for the elastic energy (3.67) all
modes are longitudinal wave, i.e. ∇ × u(r, t) = 0 with ek ‖ k. The energy in terms of the
normal modes reads

E =
∑
k

ρ0ω
2
k {qk(t)q∗k(t) + q∗k(t)qk(t)} . (3.71)

Now we switch to a Hamiltonian description by defining the new variables

Qk =
√
ρ0(qk + q∗k) und Pk =

d

dt
Qk = −iωk√ρ0(qk − q∗k) (3.72)

in terms of which the energy is given by

E =
1
2

∑
k

{
P 2
k + ω2

kQ
2
k

}
(3.73)

Thus, the system is equivalent to an ensemble of independent harmonic oscillators, one for each
normal mode k. Consequently, the system may be quantized by defining the operators Pk → P̂k
and Qk → Q̂k which obey the commutation relations

[Q̂k, P̂k′ ] = i~δk,k′ . (3.74)

As usually, it is more convenient to use the raising and lowering operators

b̂k =
1√

2~ωk

(
ωkQ̂k + iP̂k

)
und b̂†k =

1√
2~ωk

(
ωkQ̂k − iP̂k

)
, (3.75)

with the commutation relations

[̂bk, b̂
†
k′

] = δk,k′ , [̂bk, b̂k′ ] = [̂b†k, b̂
†
k′

] = 0 (3.76)

6Note that the most general form of the elastic energy of an isotropic medium takes the form

Eel =

Z
d3r

X
α,β=x,y,z

»
λ

2
(∂αuα)(∂βuβ) + µ(∂αuβ)(∂αuβ)

–
(3.67)

where ∂α = ∂/∂rα. The Lamé coefficients λ and µ characterize the elastic properties. λ describes density
fluctuations which lead to longitudinal elastic waves, whereas µ corresponds to shear deformations and leads to
transversely polarized elastic waves. Note that transverse elastic waves are not important for the coupling of
electrons and lattice viabrations.
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According to the correspondence principle, the quantum mechanical Hamiltonian corresponding
to the energy (3.73) is

H =
∑
k

~ωk
{
b̂†kb̂k +

1
2

}
(3.77)

In analogy to the treatment of the electrons in second quantization we say that the operators b̂†k
(̂bk) create (annihilate) a phonon, a quasiparticle with well-defined energy-momentum relation,
ωk = cs|k|. The phonon operators obey bosonic commutation relations, so that the phonons
behave as bosons. Using Eqs.(3.70,3.72,3.75) the displacement field operator û(r) can now be
defined as

û(r) =
1√
Ω

∑
k

ek

√
~

2ρ0ωk

[
b̂ke

ik·r + b̂†ke
−ik·r

]
. (3.78)

As mentioned above, the continuum approximation is valid for long wavelengths (or small k) only.
For wavevectors with k ∼ π/a the discreteness of the lattice appears in the form of corrections
to the linear dispersion ωk ∼ |k|. Since the number of degrees of freedom (3× number of atoms)
is limited there is a maximal wave vector called the Debye wavevector kD.7 We define in this
way the Debye frequency ωD = cskD and the Debye temperature ΘD = ~ωD/kB.
In the continuous medium approximation there are only acoustic phonons, for the inclusion of
optical phonons the arrangement of the atoms within a unit cell has to be considered.

3.3.2 Phonons in metals

The consideration above is certainly valid for semiconductors, where ionic interactions are due to
covalent chemical bonds and oscillations around the equilibrium position may be approximated
by a harmonic potential, so that the form of the elastic energy above is well motivated. The
situation is more subtle for metals, where the ions interact through the long-ranged Coulomb
interaction and held to together through the mobile conduction electrons. In this situation we
can take another viewpoint and consider motion of the ions as a collective excitation of the
system analogous to the electronic plasma excitation. We focus here on the limiting case k→ 0,
so that the excitation energy is given by the ionic plasma frequency:

electrons: ω2
p =

4πn0e
2

m
⇒ ions: Ω2

p =
4πni(Zie)2

Mi
(3.79)

where ni = n0/Zi denotes the density of ions with charge number Zi und mass Mi. Apparently
the excitation energy does not vanish as k→ 0.
The shortcoming in this discussion is that we neglected the (feedback) effects of the electrons
that can follow the slow ionic motion ”instantaneously” due to their much smaller mass. The
finite plasma frequency is a consequence of the long-range nature of the Coulomb potential
(as mentioned earlier), but as we have seen above the electrons tend to screen the potentials,
in particular for small wavevectors k. The ’bare’ ionic plasma frequency is thus not what is
observed in metals.
The presence of the electrons leads to a renormalization of the Coulomb potential by a factor
1/ε(k, ω). The restoring force of the lattice vibrations is caused by the Coulomb potential, so
that the phonon frequency (which is proportional to the square root of the restoring force) is
given by

ω2
k =

Ω2
p

ε(k, 0)
=

k2Ω2
p

k2 + k2
TF

≈ (csk)2 , (3.80)

the linear dispersion of a sound wave (ωk = cs|k|), and the renormalized velocity of sound cs is

c2
s ≈

Ω2
p

k2
TF

=
Zmω2

p

Mik2
TF

=
1
3
Z
m

Mi
v2
F . (3.81)

7See course of Statistical Physics HS09.

56



For the comparison of the energy scales we find,

ΘD

TF
=

~ωD
EF

=
~cskD

1
2~kF vF

=
2kD
kF

cs
vF
∼ cs
vF

=
√

1
3
Z
m

Mi
� 1 (3.82)

Kohn anomaly: Note that phononic frequencies are much smaller than the (electronic) plasma
frequency, so that the approximation

ω2
k =

Ω2
p

ε(k, 0)
(3.83)

is valid even for larger wavevectors. Employing the Lindhard form of ε(k, 0), we find that the
phonon frequency is singular at |k| = 2kF as noted ealier. More explicitly we have

∂ωk
∂k
→∞ for k → 2kF . (3.84)

This behavior is called the Kohn anomaly and results from the interaction between electrons
and phonons. This effect is not contained in the previous elastic medium model that neglected
ion-electron interactions.

3.3.3 Peierls instability in one dimension

The Kohn anomaly has particularly drastic effects in one-dimensional electron systems, where
the electron-phonon coupling leads to an instability of the metallic state.
We consider a one-dimensional Jellium model and treat the ions as an elastic medium with
a displacement field u along the extended direction (x-axis). We neglect the electron-electron
interaction, so that the Hamiltonian reads,

H =
∑
k,s

~2k2

2m
c†kscks − n0

∑
s

∫
dx dx′ V (x− x′) d

dx
u(x)Ψ̂†s(x

′)Ψ̂s(x′) +
λ

2

∫
dx

(
du

dx
(x)
)2

.

(3.85)
In the general theory of elastic media ∇ · u = −δn/n0 describes density modulations, so that
the second term in (3.85) models the coupling of the electrons to charge density fluctuations of
the positively charged background.8 V (x − x′) is the screened Coulomb interaction mediating
the charge density modulation of the ions to the electrons. We consider the ground state of
N electrons (corresponding to a density n = N/L). For a uniform background, the Fermi
wavevector of free electrons is readily determined to be

N =
∑
s

∫ +kF

−kF
dk 1 = 2

L

2π
2kF ⇒ kF =

π

2
n . (3.86)

Now we consider the Kohn anomaly of this system by finding the renormalization of the elastic
modulus in (3.85) perturbatively. The electron-phonon coupling in momentum space can be
written as

V̂ep = i
∑
k,q,s

q{Ṽ−quq ĉ†k+q,sĉk,s − Ṽqu−q ĉ†k,sĉk+q,s} , (3.87)

where Ṽq = 4πe2/q2ε(q, 0) and

u(x) =
1√
L

∑
q

uqe
−iqx and V (x) =

1√
L

∑
q

Ṽqe
iqx; . (3.88)

8Note that only phonon modes with a finite value of ∇ ·u couple in lowest order to the electrons. This is only
possible of longitudinal modes. Transverse modes are defined by the condition ∇ · u = 0 and do not couple to
electrons in lowest order.
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We compute the second order correction to the ground state energy using Rayleigh-Schrödinger
perturbation theory (note that the linear energy shift vanishes):

∆E(2) = −
∑
k,q,s

q2|Ṽq|2uqu−q
∑
n

|〈Ψ0|ĉ†k,sĉk+q,s|n〉|2 + |〈Ψ0|ĉ†k+q,sĉk,s|n〉|2
En − E0

=
∑
q

|Ṽq|2q2uqu−q
∑
k

nk+q − nk
εk+q − εk = Ω

∑
q

|Ṽq|2q2χ0(q, 0)uqu−q

(3.89)

where the virtual states |n〉 are electron-hole excitations of the filled Fermi sea. This term is a
correction to the elastic term in (Ωλ/2)

∑
q q

2uqu−q = (Ωρ0/2)
∑

q ω
2
ququ−q in (3.85) shows that

the elastic modulus and, thus, the phonon frequency is renormalized:

ω(ren)2
q ≈ ω2

q +
|Ṽq|2q2

ρ0
χ0(q, 0) = ω2

q −
|Ṽq|2q
2πρ0

ln
∣∣∣∣q + 2kF
q − 2kF

∣∣∣∣ (3.90)

q

q

2k F

ωq
(ren)

ω

Fig. 3.7: Kohn anomaly for the one-dimensional system with electron-phonon coupling. The
renormalization of the phonon frequency is divergent at q = 2kF .

From the behavior for q → 0 we infer that the velocity of sound is renormalized. However, a
much more drastic modification occurs at q = 2kF . Here the phonon spectrum is ’softened’, i.e.
the frequency vanishes and even becomes negative (the latter is an artifact of the perturbation
theory). 9 This hints at an instability triggered by the (Bose-Einstein) condensation of bosons
with a wave vector of q = 2kF . This coherent superposition of many phonons corresponds
classically to a static periodic deformation of the ionic background with wave vector 2kF .10

The unphysical behavior of the frequency ωq indicates that the current problem can not be
dealt with using perturbation theory around the uniform state. Instead we can assume that the
background shows a periodic density modulation (coherent phonon state)

u(x) = u0 cos(Qx) (3.95)
9Note that the expression

ω2
q =

Ω2
p

ε(q, 0)
(3.91)

in (3.83) does not yield negative energies but a zero of ωq at q = 2kF instead.
10Coherent state: We introduce the coherent state

|Φ(coh)
Q 〉 = e−|α|

2/2
∞X
n=0

(bb†Q)n

n!
αn|0〉 (3.92)

which does not have a definite phonon number for the mode of wave vector Q. On the other hand, this mode is
macroscopically occupied, since

nQ = 〈Φ(coh)
Q |bb†QbbQ|Φ(coh)

Q 〉 = |α|2 (3.93)

and, moreover, we find

〈Φ(coh)
Q |bu(x)|Φ(coh)

Q 〉 =
1

L

~
2ρ0ωQ

h
αeiQx + α∗e−iQx

i
= u0 cos(Qx) (3.94)

with u0 = ~α/ρ0LωQ, assuming α being real.
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where Q = 2kF and u(x), and investigate the effect of this modulation on the electron-phonon
system. To this end we show that such a modulation lowers the energy of the electrons. Assuming
that u0 is small we can evaluate the electronic energy using the approximation of nearly free
electrons, treating Q as a reciprocal lattice vector. The electronic spectrum for 0 ≤ k ≤ Q is
approximately determined by the secular equation

det

(
~2k2

2m − E ∆
∆∗ ~2(k−Q)2

2m − E

)
= 0

⇒ Ek± =
~2

4m

[
(k −Q)2 + k2 ±

√
{(k −Q)2 − k2}2 + 16m2|∆|2/~4

] (3.96)

∆ follows from the Fourier transform of the potential V (x),

∆ = −iQu0nṼQ with ṼQ =
∫
dx eiQxV (x) (3.97)

The total energy is then given by

Etot(u0) = 2
∑

0≤k<Q
Ek− +

λLQ2

4
u2

0 (3.98)

where all states of the lower band (Ek−) are occupied and all states of the upper band (Ek+)
are empty. We minimize Etot with respect to u0:

0 =
1
L

dEtot
du0

= − ~2

2m
32Q2m2n2Ṽ 2

Q

~4
u0

∫ Q

0

dk

2π
1√

{(k −Q)2 − k2}2 + 16m2Q2n2Ṽ 2
Qu

2
0/~4

+
λ

2
Q2u0

= −u0

4Qmn2Ṽ 2
Q

~2π

∫ +kF

−kF
dq

1√
q2 + 4m2n2Ṽ 2

Qu
2
0/~4

+
λ

2
Q2u0

= −u0

8Qmn2Ṽ 2
Q

~2π
arsinh

(
~2kF

2mnṼQu0

)
+
λ

2
Q2u0 .

(3.99)
We solve this equation for u0 using arsinh(x) ≈ ln(2x) für x� 1.

u0 =
~2kF

mnṼQ
exp

{
− ~2kFπλ

8mn2Ṽ 2
Q

}
=

2
kF

εF

nṼQ
e−1/N(0)g (3.100)

where εF = ~2k2
F /2m is the Fermi energy and N(0) = 2m/π~2kF is the density of states

at the Fermi energy. We introduce the coupling constant g = 4n2Ṽ 2
Q/λ that describes the

phonon-induced effective electron-electron interaction. The coupling is the stronger the more
polarizable (softer) ionic background, i.e. when the elastic modulus λ is small. Note that the
static displacement u0 depends exponentially on the coupling and on the density of states.
The underlying reason for this so-called Peierls instability to happen lies in the opening of an
energy gap at k = ±kF , i.e. at the Fermi energy.

∆E = EkF+ − EkF− = 2|∆| = 8εF exp
(
− 1
N(0)g

)
(3.101)

The gap is associated with a lowering of the energy of the electron states in the lower band in
the vicinity of the Fermi energy. For this reason this kind of instability is called a Fermi surface
instability. Due to the gap the metal has turned into a semiconductor with an energy gap for
all electron-hole excitations.
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µ

E E

kk +Q−Q

FIg. 3.8: Change of the electron spectrum. The modulation of the ionic background yields gaps
at the Fermi points and the system becomes an insulator.

The modulation of the electron density follows the charge modulation due to the ionic lattice
deformation, which can be seen by expressing the wave function of the electronic states,

ψ′k(x) =
1√
Ω

∆eikx + (Ek − εk)ei(k−Q)x√
(Ek − εk)2 + |∆|2 (3.102)

which is a superposition of two plane waves with wave vectors k and k−Q, respectively. Hence
the density is

ρk(x) = −e|ψ′k(x)|2 = − e
Ω

{
1− 2(εk − Ek)|∆|

(Ek − εk)2 + |∆|2 sinQx
}

(3.103)

and its modulation is given by

δρ(x) =
∑
k

ρk(x) + en =
e

2

∫ kF

0

dk′

2π
m|∆| sinQx√

~4k2
Fk
′2 +m2|∆|2

=
en|∆|
16εF

ln
∣∣∣∣2εF|∆|

∣∣∣∣ sin(2kFx). (3.104)

Such a state with a spatially modulated electronic charge density is called a charge density wave
(CDW) state.
This instability is important for quasi-one-dimensional metals which are for example realized
in organic conductors such as TTF·TCNQ (tetrathiafulvalene tetracyanoquinomethane). In
higher dimensions the effect of the Kohn anomaly is generally less pronounced, so that in this
case spontaneous deformations rarely occur. An exception that will be dealt with later are
systems with a so-called nested Fermi surface that in some respects resemble one-dimensional
systems. On the other hand, the electron-phonon interaction does have drastic consequences for
metals that exhibit superconductivity, another kind of Fermi surface instability.

3.3.4 Phonons and the dielectric function

We have seen that an external potential Va is screened by the polarization of the electrons.
As the positively charged ionic background is polarized, too, it should also be included in the
renormalization of the external potential. In general, we write

εVren = Va. (3.105)

To proceed we define the ’bare’ (unrenormalized) ionic dielectric function εionn and the renor-
malized one εionren. The latter includes the effect of screening by the electrons onto the ionic
interactions. It is illuminating to consider the renormalization from two different points of view:
1) The ionic potential is included into the external potential, so that the remaining screening is
due to the electrons only:

εelVren = Va + Vion ; (3.106)

2) The electronic potential is included into the external potential, so that the potential is renor-
malized by the ions exclusively:

εionn Vren = Va + Vel (3.107)
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Note that in (3.107) all effects of electron polarization are included in Vel, so that the dielectric
function results from the ’bare’ ions. Adding (3.106) to (3.107) and subtracting (3.105), we
obtain

(εel + εionn − ε)Vren = Va + Vel + Vion = Vren ⇒ ε = εel + εionn − 1 (3.108)

In order to relate the renormalized potential to the external potential, we can make the ansatz

Vren =
1
ε
Va =

1
εionren

1
εel
Va (3.109)

i.e. the effective potential Va/εel that results from polarization of the electrons is additionally
screened by the ions which interact via interactions that are screened by the electrons. Using
(3.108) we obtain

εionren = 1 +
1
εel

(εionn − 1) (3.110)

Taking into account the discussion of the plasma excitation of the bare ions in (3.47,3.79) above
we approximate

εionn = 1− Ω2
p

ω2
(3.111)

so that we obtain

ε = 1 +
k2
TF

k2
− Ω2

p

ω2
=
(

1 +
k2
TF

k2

)(
1− ω2

k

ω2

)
(3.112)

for small wave vectors k and using

εel = 1 +
k2
TF

k2
. (3.113)

The Coulomb interaction between the electrons is replaced by an effective interaction:

V eff (q, ω) =
4πe2

q2ε(q, ω)
=

4πe2

k2
TF + q2

{
1 +

ω2
q

ω2 − ω2
q

}
. (3.114)

This interaction corresponds to the matrix element for a scattering process of two electrons with
momentum exchange q and energy exchange ω.

ε+ω

’ ε−ω’

q,

k, k+q,

k’−q,k’,

ε

ε
Fig. 3.9: Diagram for the electron-electron interaction involving also electron-phonon coupling.

The phonon frequency is always less than the Debye frequency ωD. Hence the effect of the
phonons is irrelevant for energy exchanges that are much larger than ωD. The time scale
for such energies would be too short for the slow ions to move and influence the interaction.
Interestingly, the interaction is attractive for ω < ωD because of overcompensation by the ions.
This aspect of the electron-phonon interaction is relevant for superconductivity.
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3.4 Fermi Surfaces - the de Haas-van Alphen effect

The ground state of a metal is characterized by the existence of a discontinuity of the occu-
pation number function nk in momentum space - the Fermi surface. The de Haas-van Alphen
experiment is one of the best methods to verify the existence and to determine the shape of a
Fermi surface. It is based on the behavior of electrons at low temperatures in a strong magnetic
field.

3.4.1 Landau levels

Consider a free electron gas subject to a uniform magnetic field B = (0, 0, B). The one-particle
Hamiltonian for an electron is given by

H =
1

2m

(
~
i
∇− e

c
A

)2

− gµB
~
ŜzB (3.115)

where we have chosen the Landau gauge for the vector potential, A = (0, Bx, 0), and, as usually,
B = ∇×A = (0, 0, B). Hence the Hamiltonian (3.115) can be written as

H =
1

2m

{
−~2 ∂

2

∂x2
+
(

~
i

∂

∂y
− e

c
Bx

)2

− ~2 ∂
2

∂z2

}
− gµB

~
ŜzB . (3.116)

The vector potential in this gauge acts like a confining harmonic potential along the x-axis. As
translational invariance in the y- and z−directions is maintained, the eigenfunctions take the
form

ψ(r) = eikzzeikyyφ(x)ξs (3.117)

where ξs is the spin wave function. The eigenstates are then found from the solution of the
harmonic oscillator problem, so that we have

φn,ky(x) =
1√

2nn!2π`2
Hn[(x− ky`2)/`]e−(x−ky`2)2/2`2 (3.118)

where Hn(x) are the Hermite polynomials, `2 = ~c/|eB| (`: magnetic length) and the energies
are

En,kz ,s =
~2k2

z

2m
+ ~ωc

(
n+

1
2

)
− gµB

~
Bs (3.119)

where s = ±~/2, n = 0, 1, 2, .... and we have introduced the cyclotron frequency ωc = |eB|/mc.
Note that the energy does not depend on ky. The apparently different spatial dependences of
the wave functions for the x- and y-directions are merely a consequence of the chosen gauge.11

The fact that the energy does not depend on ky in the chosen gauge indicates a huge degeneracy
of the eigenstates. To obtain the number of degenerate states we concentrate on kz = 0 and
neglect the electron spin. We take the electrons to be confined to a cube of volume L × L × L
with periodic boundary conditions. The wave function φ(x) is centered around ky`

2 with the
conditions 0 < ky`

2 < L and ky = 2πny/L. The degeneracy is given by the number of different
values for ny,

0 <
2πny
L

`2 < L ⇒ Nn =
L2

2π`2
(3.121)

11Like the vector potential, the wave function is a gauge dependent quantity. To see this, observe that under a
gauge transformation the wave function undergoes a postition dependent phase shift:

A(r, t)→ A′(r, t) = A(r, t) + ∇χ(r, t) ⇒ ψ(r, t)→ ψ′(r, t) = ψ(r, t)ei~cχ(r,t)/e (3.120)
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The energies correspond to a discrete set of one-dimensional systems, so that the density of states
is determined by the structure of the one-dimensional dispersion (with square root singularites
at the band edges) along the z−direction:

N0(E,n, s) =
Nn

Ω

∑
kz

δ(E − En,kz ,s) =
1

2π`2

∫
dkz
2π

δ

(
E − ~2k2

z

2m
− ~ωc

(
n+

1
2

)
+
gµB

~
Bs

)

=
(2m)3/2ωc

8π2~2

1√
E − ~ωc(n+ 1/2) + gµBBs/~

(3.122)
The total density of states is obtained by summing over n = 0, 1, 2, . . . and s = ±~/2. This
should be compared to the density of states without the magnetic field,

N0(E) =
1
Ω

∑
k,s

δ

(
E − ~2k2

2m

)
=

(2m)3/2

2π2~3

√
E (3.123)

The density of states for one spin-component is shown in Fig. 3.10.

B=00

B=0
E

N

Fig. 3.10: Density of states for electrons in a magnetic field due to Landau levels. The dashed
line shows the density of states in the absence of a magnetic field.

3.4.2 Oscillatory behavior of the magnetization

In the presence of a magnetic field, the smooth density of states of the three-dimensional metal
is replaced by a discontinuous form dominated by square root singularities. The position of the
singularities depends on the strength of the magnetic field. In order to understand the resulting
effect on the magnetization, we consider the free energy

F = Nµ− TS = Nµ− kBT
∑

kz ,ky ,n,s

ln
(

1 + e−(En,kz,s−µ)/kBT
)

(3.124)

and use the general thermodynamic relation M = −∂F/∂B. For the details of the tedious calcu-
lation, we refer e.g. to J. M. Ziman, ”Principles of the Theory of Solids” (German: ”Prinzipien
der Festkörpertheorie”), and merely present the result:

M = NχPB

1− 1
3

+
πkBT

µBB

√
εF
µBB

∞∑
ν=1

1√
ν

sin
(
π
4 − πνεF

µBB

)
sinh

(
π2νkBT
µBB

)
 . (3.125)

Here χP is the Pauli-spin susceptibility (originating in the Zeeman-term) and the second term−1/3χP =:
χL is the diamagnetic Landau susceptibility that is due to induced orbital currents (the Landau
levels).
For sufficiently low temperatures, kBT < µBB, the magnetization as a function of the applied
field exhibits oscillatory behavior. The dominant contribution comes from the summand with
ν = 1. The oscillations are a consequence of the singularities in the density of states that
influence the magnetic moment upon successively passing through the Fermi energy as the
magnetic field is varied.

πεF
µB

∆
(

1
B

)
= 2π ⇒ ∆

(
1
B

)
=

2µB
εF

=
2~e
2mc

2m
~2k2

F

=
2πe
~c

1
A(kF )

=
1

Φ0A(kF )
(3.126)
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where A(kF ) = πk2
F is the cross sectional area of the Fermi sphere perpendicular to the magnetic

field and Φ0 = hc/e the magnetic flux quantum.

3.4.3 Onsager equation

The behavior we have found for free electrons above generalizes to the case of arbitrary band
structures. In this case, however, there are usually no exact solutions available. Instead we
discuss the behavior of electrons within the quasiclassical approximation (Sect.1.7) and consider
the closed orbits of a wave packet subject to a magnetic field. From the quasi-classical equations
of motion for the center of mass of the wave packet (1.83) we have

ṙ = vk =
1
~
∂εk
∂k

and ~k̇ = −e
c
vk ×B. (3.127)

The time needed for travelling along a path between k1 and k2 is given by

t2 − t1 =
∫ k2

k1

dk
1
|k̇| =

~c
eB

∫ k2

k1

dk

|vk,⊥| (3.128)

where vk,⊥ denotes the component of the velocity that is perpendicular to B. Let ∆k be a
vector in the plane of the motion that is both perpendicular to k̇ and B, and that points from
an orbit of energy ε to one with energy ε+ ∆ε. Then, we have

∆ε =
∂ε

∂k
·∆k =

∂ε

∂k⊥
·∆k =

∣∣∣∣ ∂ε∂k⊥
∣∣∣∣ |∆k| = ~|vk,⊥||∆k| ⇒ 1

|vk,⊥| =
~|∆k|

∆ε
, (3.129)

because ∂ε/∂k⊥ and ∆k are perpendicular to orbits of constant energy. Hence

t2 − t1 =
~2c

eB

1
∆ε

∫ k2

k1

|∆k|dk =
~2c

eB

∆A12

∆ε
⇒ t2 − t1 =

~2c

eB

∂A1,2

∂ε
(3.130)

for infinitesimal ∆k.
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Fig. 3.11: Motion of electrons in k-space. The shaded area shows the area covered by the
displacement vector ∆k during the motion.

Here ∆A1,2 is the (k-space) area swept by ∆k when going from k1 to k2. One period takes the
time T (ε) with

T (ε) =
~2c

eB

∂A(ε)
∂ε

. (3.131)

Using now the discrete Landau levels with energies En,kz , we can infer from Bohr’s correspon-
dence prinicple the following relation when the number of the Landau levels involved is large:

En+1,kz − En,kz =
h

T (En,kz , kz)
. (3.132)

This result states that the difference between the energies of adjacent energy levels is given by
the inverse period of classical closed orbits. As we are interested in the energy levels close to
the Fermi energy (En,kz ∼ εF ) we have

n ∼ εF
~ωc
� 1 (3.133)
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Invoking (3.131) and (3.132) we can show that

∆A = A(En+1,kz)−A(En,kz) =
2πeB

~c
(3.134)

where we have used that to a good approximation

∂A(ε)
∂ε

=
A(En+1,kz)−A(En,kz)

En+1,kz − En,kz
=
T

~
eB

~c
. (3.135)
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Fig. 3.12: Tubes of quantized electronic states in a magnetic field along the z-axis. A
maximum of the magnetization occurs every time a tube crosses the extremal Fermi surface

arrea as the magnetic field is increased.

The area bounded by two neighboring classical orbits with quantum mechanically allowed en-
ergies is ∆A irrespective of the quantum number n. It follows that the area enclosed by one
classical orbit with given quantum numbers n and kz is

A(En,kz , kz) = (n+ γ)∆A (3.136)

where γ is an ’integration constant’. This equation is called the Onsager equation. The area
corresponding to an extremal density of states at the Fermi surface belongs to the orbit with
En,kz = εF :

A(εF , kz = 0) = ∆A(n+ γ) =
2πeB

~c
(n+ γ) (3.137)

so that in general the period of the oscillations is given by

∆
(

1
B

)
=

2πe
~c

1
A(εF )

(3.138)

The oscillations in the magnetization thus allow to measure the cross sectional area of the Fermi
’sphere’. By varying the orientation of the field the topology of the Fermi surface can be mapped.
As an alternative to the measurement of magnetization oscillations one can also measure resis-
tivity oscillaltions known under the name Schubnikov-de Haas effect. For both methods it is
crucial that the Landau levels are sufficiently clearly recognizable. Apart from low temperatures
this necessitates sufficiently clean samples. In this context, sufficiently clean means that the
average life-time τ (average time between two scattering events) has to be much larger than the
period of the cyclotron orbits, i.e. ωcτ � 1. This follows from the uncertainty relation

∆ε ∼ ~
τ
� ~ωc (3.139)
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3.5 Quantum Hall Effect

The Hall effect (discovered by Edwin Hall in 1879) is caused by the Lorentz force, a force that
a magnetic field exerts on a moving charg. This force is perpendicular both to the velocity and
to the magnetic field. For an electrical current, the Lorentz force leads to a transverse voltage,
when a magnetic field is applied in a direction non-collinear with the current in the conductor.
This so-called Hall effect can be used to investigate some properties of the charge carriers (most
prominently, it can be used to distinguish between electrons and holes). Before we treat the
quantum version, we briefly review the original Hall effect. To this end we consider the classical
equation of motion

m∗
dv

dt
= −e

{
E +

v

c
×B

}
, (3.140)

where m∗ is the effective electron mass. For the Hall geometry shown in Fig. 3.13 with the
current along the y-direction and the magnetic field in z-direction, this leads to the steady state
condition vx = 0, so that {

E +
v

c
×B

}
x

= 0 . (3.141)

For given current and magnetic field this is a condition on Ex, the solution Ex = −vBz/c yields
the Hall voltage that compensates the Lorentz force. The Hall conductivity can be defined using
the definition of the current density, j = −n0ev:

σH =
jy
Ex

=
n0ec

Bz
= ν

e2

h
, (3.142)

where ν = n0hc/Be. Hence knowledge of the Hall conductivity can be used to determine not
only the charge density n0, but also the sign of the charge carriers, i.e. whether the Fermi
surfaces encloses the Γ-point (electron-like, negative charge) or a point on the boundary of the
Brillouin zone (hole-like, positive charge).

V

yV

B z

x

I

x

y

Fig. 3.13: Hall bar. The current runs a long the y-direction and the magnetic field is applied
along z-direction. The voltage Vy determines the conductance along the Hall bar, while Vx

corresponds to the (transverse) Hall voltage.

In 1980 Klaus von Klitzing and coworkers (von Klitzing, Dorda, and Pepper, Phys. Rev. Lett.
45, 494 (1980)) made an astonishing discovery in measurements of the Hall effect in a two-
dimensional electron system. This system was realized in the inversion layer of GaAs-MOSFET
elements and behaves like a two-dimensional electron gas with a high mobility b = eτ/m∗ (mean
free path l = 10Å and low density (n0 ∼ 1011/cm2). The two relevant dimensions correspond
to the boundary layer, whereas the electrons are confined in the third dimension (like in a
potential well, cf. section 2.5.3). For high magnetic fields of around 1 − 30T von Klitzing
observed a quantization of the Hall conductivity at sufficiently low temperatures (T < 4K),
such that the conductivity was an integer multiple of e2/h:

σH = N
e2

h

e2

h
=

1
25812.8Ω

(3.143)
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where N = 1, 2, 3, . . .. At the same time, the longitudinal conductivity σyy vanished and assumed
finite values only when σH crossed over from one quantized value to the next.
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Fig. 3.14: Integer Quantum Hall effect: As a function of the filling factor ν plateaus in σxy
appear at multiples of e2/h. The longitudinal conductance σyy is only finite for fillings where

σxy changes between plateaus.

In 1982 Tsui, Störmer and Gossard (Phys. Rev. Lett. 48, 1559 (1982)) discovered an additional
quantization of σH , corresponding to certain rational multiples of e2/h. Correspondingly, one
now distinguishes between the integer quantum Hall effect (IQHE) and the fractional quantum
Hall effect (FQHE). These discoveries marked the beginning of a whole new field in solid state
physics that continues to produce interesting results.

3.5.1 Hall effect of the two-dimensional electron gas

The quantum mechanical treatment of the Hall conductivity takes the Hamilton operator (3.115)
as its starting point. We continue to use the Landau gauge for the vector potential, A =
(0, Bx, 0), so that we arrive again at (3.116). For the two-dimensional gas there is no motion in
the z-direction (bound state in a potential well), so that the highly degenerate energy eigenvalues
are given by En = ~ωc(n + 1/2), where again ωc = |eB|/m∗c. Initially, we will concentrate on
the lowest Landau level (n = 0) with the wave function

φ0,ky =
1√

2π`2
e−(x−ky`2)2/2`2eikyy . (3.144)

where ` =
√

~c/|eB| defines the magnetic length (extension of the wave function in the magnetic
field). Whereas the wave function takes the form of a plane wave in y-direction the energy does
not depend on ky, leading to the huge degeneracy within the Landau levels mentioned above.
In x-direction, the wave function is localized around X = ky`

2. Note that the shape of the wave
function (and thus the apparent asymmetry between x- and y-directions) is due to the particular
gauge chosen and that because of the degeneracy this choice of basis is far from unique.
Now we augment the Hamiltonian by an electric field in x-direction, i.e. we add a potential
U(r) = −eExx. This term can be absorbed into the harmonic potential in (3.116) and leads to
a shift of the center of the wave function in x-direction: X ′(ky) = X(ky)−eEx/m∗ω2

c . Moreover
the degneracy is lifted and the energy of the lowest Landau level takes the form (by completing
the square):

En=0(ky) =
~ωc
2
− eExX ′(ky) +

m∗

2

(
cEx
B

)2

(3.145)

for φ0ky . Thus the energy depends on ky. The velocity is given by

vy(ky) =
1
~
dE0(ky)
dky

= −eEx`
2

~
= −cEx

B~
(3.146)
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From this we can determine the current density,

jy = −en0vy(ky) = en0
cEx
B~

=
eν

2π`2
cEx
B~

= ν
e2

h
Ex (3.147)

where ν = n02π`2 ∝ B−1 is the filling of the Landau level.12 The Hall conductivity is then

σH =
jy
Ex

= ν
e2

h
. (3.148)

This leads to a linear relation between σH and ν ∝ B−1. as derived previously based on the
quasiclassical approximation.

3.5.2 Integer Quantum Hall Effect

The steps or plateaus observed by von Klitzing in the Hall conductivity σH of the two-dimensional
electron gas as a function of the magnetic field correspond to the values σH = Ne2/h, as if ν
were an integer. In the plateau the longitudinal conductivity of the electron gas vanishes,

σyy =
jy
Ey

= 0 , (3.149)

and is finite at the transition points of σH between two plateaus only, cf. Fig. 3.14. This fact
is in contrast to the consideration above as well.
The solution to this mysterious behavior lies in the disorder that is always present in the real
inversion layer. Due to the disorder the electrons move in a randomly modulated potential
landscape U(x, y). In two dimensions, even small amounts of disorder lead to the localization
of electronic states. To investigate this new aspect we consider the lowest Landau level in the
symmetric gauge A = (−y, x, 0)B/2. The Schrödinger equation in polar coordinates is given by

~2

2m∗

{
−1
r

(
∂

∂r
r
∂

∂r

)
−
(

∂

r∂ϕ
− i e

2~c
Br

)2
}
ψ(r, ϕ) + U(x, y)ψ(r, ϕ) = Eψ(r, ϕ) (3.150)

Without the external potential U(x, y) we find the solution

ψn=0,m(r, ϕ) =
1√

2π`22mm!

(r
`

)m
e−imϕe−r

2/4`2 (3.151)

where all values of m = 0, 1, 2, 3, . . . correspond to the same energy E0 = ~ωc/2. The wave
functions are concentrated on circles of radius rm =

√
2m`.

x y

|ψ|2

Fig. 3.15: Wavefunction of a Landau level state in the symmetric gauge.

Note that the magnetic flux threading such a circle is given by

πBr2
m = πB2m`2 = 2πmB

~c
eB

= m
hc

e
= mΦ0 (3.152)

12Note that ν−1 = B/n0Φ0 (Φ0 = hc/e: flux quantum), i.e. ν−1 is the number of flux quanta Φ0 per electron.
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and that it is an integer multiple of the flux quantum Φ0 = hc/e.
Now we consider the effect of the potential. The gauge can be adjusted to the potential land-
scape. If we assume the potential to be rotationally invariant around the origin, the symmetric
gauge is already optimal. A simple exact solution is possible for the potential

U(x, y) = U(r) =
C1

r2
+ C2r

2 + C3; . (3.153)

It turns out that we obtain all eigenstates in the lowest Landau level using the ansatz

ψ̃0,m(r, ϕ) =
1√

2π`∗22αΓ(α+ 1)

( r
`∗
)α

e−imϕe−r
2/4`∗2 (3.154)

with
α2 = m2 + C∗1 ,

1
`∗2

=
1
`2
√

1 + C∗2 (3.155)

where C∗1 = 2m∗C1/~2 and C∗2 = 8`4m∗C2/~2 are dimensionless parameters. The degeneracy in
the Landau level is lifted:

E0,m =
~ωc
2

{
`2

`∗2
(α+ 1)−m

}
+ C3 (3.156)

The wave functions are concentrated around the radius rm =
√

2α`∗. For weak potentials
C∗1 , C∗2 � 1 and m� 1 the energy is given by

E0,m ≈ ~ωc
2

+
C1

r2
m

+ C2r
2
m + C3 · · · , (3.157)

i.e. the wave function adjusts itself to the potential landscape. It turns out that the same is true
for arbitrarily structured potential landscapes. The wave function describes electrons on quasi-
classical trajectories that trace the equipotential lines. Consequently the states described here
are localized in the sense that they are attached to the structure of the potential. Application
of an electric field can not set the electrons in the concentric rings in motion: The electrons
are localized and do not contribute to electric transport. This holds true for any slowly varying
potential.

Picture of the potential landscape: When the magnetic field is varied the filling ν = n02π`2 of
the Landau level is accordingly adjusted. Whereas in the tranlationally invariant case all states
of a given level are degenerate, these states are now spread over a certain energy range. In
the quasi-classical approximation, these states correspond to equipotential trajectories that are
either filled or empty depending on the magnetic field, i.e. they are either below or above the
chemical potential.
These considerations lead to an intuitive picture on localized and extended state trajectories.
We may consider the potential landscape like a real landscape where the the trajectories are
contour lines. Assume that we fill now water into such a landscape. For small filling we find
lakes whose shores are closed and correspond to contour lines. They are the equivalent of close
trajectories and represent localized electronic states. At very high water level only the large
”mountains” would reach out of the water forming islands in the sea. The coastlines again
represent closed trajectories of localized electron states. At the boundary between the lakes
to the islands topology as we fill water we find a water level at which the coast lines become
arbitrarily long and percolate through the whole landscape. These contour lines now correspond
to extended (non-localized) electron states. From this picture we conclude that when we fill
gradually a Landau level in the random potential at low filling all state are localized. At some
special intermediate level we fill extended states and the states at higher chemical potential
would be localized again. The presence of filled extended states plays a crucial role in the
followng argument.
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extended

closed

Fig. 3.16: Contour plot of potential landscape. There are closed trajectories and extended
percolating trajectories.

Laughlin’s gauge argument: We consider a Hall element that is deformed into a so-called Corbino
geometry, i.e. a circular disc with a hole in the middle as shown in Fig. 3.17. The Hall element is
threaded by a constant and uniform magnetic field B. In addition we can introduce an arbitrary
flux through the hole without influencing the uniform field in the disc. The flux Φ through the
hole is irrelevant for all localized electron trajectories because only the extended (percolating)
trajectories can wind around the hole of the disc and receive an Aharonov-Bohm phase. When
the flux is increased adiabatically, the vector potential is changed by an amount

δA = ∇χ ⇒ δAϕ =
δΦ
2πr

⇒ ψ → ψeieχ/~c = ψeiδΦϕ/Φ0 . (3.158)

If the disc was translationally (clean) invariant, we could use the wave functions ψ0,m in (3.151),
so that Bπr2

m = nΦ0 + δΦ. The single-valuedness of the wave function implies that m has to
be adjusted, m → m − δΦ/Φ0. Increasing Φ by one flux quantum leads to a decrease of m by
1. Hence gauge invariance implies that the wave functions are shifted in their radius. The same
argument may be used for the higher Landau levels.

x

y

V

y
I

B

L

Φ

Fig. 3.17: Corbino disk for Laughlin’s argument.

This argument is topological in nature and doesn’t change for independent electrons when dis-
order is introduced. The transfer of one electron between neighboring extended states due to
the change of Φ by Φ0 leads to a net shift of one electron from the outer to the inner boundary.
We assume an electric field Ex to be applied in the radial direction (x-direction), resulting in
the energy change

∆εV = −eExL (3.159)

where L is the distance of the boundaries. There is a further change in electromagnetic energy
because the constant current Iy in the disc when we increase the magnetic flux:

∆εI =
IyδΦ
c

. (3.160)
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Following the Aharanov-Bohm argument that there is no change of the energy of the system
when flux is change by multiples of Φ0, the two energies should compensate. Thus, setting
δΦ = Φ0 leads to

∆εV + ∆εI = 0 ⇒ σH =
jy
Ex

=
Iy
LEx

=
ec

Φ0
=
e2

h
. (3.161)

Such a contribution to σH is obtained for each filled Landau level each which contributes with
(percolating) extended states. Hence for n filled levels we have σH = ne2/h. In summary the
universality of the quantization is ensured by the topological character of the Hall conductivity.

N(E) N(E)N(E)

E E E

translationsinvariant Unordnung
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lokalisiert ausgedehnt

B=0 B=0

Fig. 3.18: Density of states for the two-dimensional electron gas. Left panel: without magnetic
field; Middle panel: with magnetic field in a clean system, showing sharp strongly degenerate
Landau levels; Right panel: with magnetic field in disordered system, showing spread Landau

levels where most of the states are localized (closed trajectories) and only few states in the
center percolate.

Localized and extended states: The density of states of the two-dimensional electron gas (2DEG)
is given by

N2DEG(E) = 2
∑
kx,ky

δ

(
E − ~2(k2

x + k2
y)

2m

)
=
LxLym

2π
, (3.162)

whereas for the Landau levels we have

NLN(E) =
LxLy
2π`2

∑
n

δ(E − En) . (3.163)

According to our previous discussion the main effect of the potential is to lift the degeneracy
of the states comprising a Landau level. This remains true for random potential landscapes.
Most of the states are then localized and do not contribute to electric transport. Only the few
extended states can contribute to the transport when they are filled (see Fig. 3.18).
For partially filled extended states the Hall conductivity σH is not universal because not all
states that are necessary for transferring one electron from one edge to the other, when the
flux is changed by Φ0 (in Laughlin’s argument) are occupied. Thus the charge transfered does
not amount to a complete−e. The appearance of partially filled extended states marks the
transition from one plateau to the next and are accompanied by a finite longitudinal conductivity
σyy. When all the extended states of a Landau level are occupied, they cannot contribute to
(longitudinal) transport, i.e. in the range of a plateau σyy vanishes. Note that because of thermal
occupation the plateaus shrink when the temperature is increased. This is the reason that the
Quantum Hall Effect is observable only for sufficiently low temperatures (T < 4K).

Edge states and Büttiker’s argument: The confining potential at the edge also belongs to the
potential landscape. Equi-potential tracetories of states close to the edge are always extended
and ”percolate” along the edge. These wave functions have been discussed in section 3.5.1.
From (3.145) we find that the energy is not symmetric in ky (wave vector along the edge), i.e.
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E(ky) 6= E(−ky). This implies that the states are chiral and can move in one direction only for
a given energy. The edge states on the opposing edges move in opposite directions, a fact that
can be readily verified by inspection of (3.145) based on Fig.3.19.
The total current flowing along the edge for a given Landau level is

I =
∑
ky

e

Ly
vy , (3.164)

i.e. we have one state per ky that extends over the whole length of the Hall element. Thus the
density is given by 1/Ly. For the wave vector we assume quantization corresponding to periodic
boundary conditions: ky = 2πny/Ly with ny = 0,±1,±2, . . .. The velocity may be found from
(3.146). In summary we have

I =
e

2π~

∫
occupied

dky
dEn(ky)
dky

=
e

h

∫
occupied

dX
dE

dX
=
e

h
(µ− E(0)

n ) (3.165)

where X = ky`
2 is the transversal position of the wave function. Sufficiently far away from

the boundary En is independent of X and approaches the value E
(0)
n = ~ωc(1/2 + n) of a

translationally invariant electron gas. µ is the chemical potential.
The potential difference between the two opposing edges leads to a net current along the edge
direction of the Hall bar,

µA − µB = eVH = eExLx =
h

e
(IA + IB) =

h

e
IH ⇒ σH =

IH
ExLx

=
e2

h
. (3.166)

where for µA = µB we have IA = −IB. Note that IH = IA + IB only for the case that there are
no currents in the bulk of the system, which is ensured by the localization of the states at the
chemical potential.
This approach leads to the same quantization, as every Landau level contributes one edge state:
σH = ne2/h (n is the number of occupied Landau levels). Note that this argument is independent
of the precise shape of the confining edge potential.
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n=0

Fig. 3.19: Edge state picture: Left panel: chiral edge state exist on both edges of the Hall bar
with opposite chirality; middle panel: single Landau level without and with transverse potential
different, where the latter yields a finite net current due to current imbalance between left and

right edge; Right panel: many Landau levels, whose number defines the Hall conductance value.

The effect on the longitudinal conductivity can be discussed from this point of view, too. However
it is simpler to discuss the resistivity. Like the conductivity σ̂ the resistivity ρ̂ is a tensor:

j = σ̂E
E = ρ̂j

}
⇒ σyy =

ρyy
ρ2
yy + ρ2

xy

, σxy =
ρxy

ρ2
yy + ρ2

xy

. (3.167)

For a finite Hall resistivity ρxy it follows that the longitudinal resistivity ρyy = 0 in two dimen-
sions.
For the edge states electrons with a given energy can move in one direction only. Thus, there
is no backward scattering by obstacles as long as the edges are far apart from each other such
that no scattering between the two edges can occur. Then ρyy = 0 and hence σyy = 0. A finite
resistivity can occur only for the case that there are extended states in the bulk so that the edge
states on opposite edges are no longer separated from each other.

72



3.5.3 Fractional Quantum Hall Effect

Only two years after the discovery of the Integer Quantum Hall Effect Störmer and Tsui observed
more series of plateaus of the Hall resistivity in a 2DEG realized with very high quality MOSFET
inversion layers at low temperatures. The most pronounced of these plateaus is observed at a
filling of ν = 1/3 (ρxy = h/νe2 or σxy = νe2/h). Afterwards an entire hierarchy of plateaus at
fractional values of ν, ν = p/m (p and m are integers).

ν =
1
3
,

2
3
,

2
5
,

3
5
,

3
7
, . . . . (3.168)

The emergence of these new plateaus is called the Fractional Quantum Hall Effect.

Fig. 3.20: Fractional Quantum Hall effect

Again it was Laughlin who found the key concept to explain the FQHE. Unlike the IQHE, this
new quantization feature cannot be understood from a single-electron picture, and it is based
on the Coulomb repulsion between the electrons and the accompanying correlation. Laughlin
investigated the case ν = 1/3 and made the following ansatz for the wave function:

Ψ1/m(z1, . . . , zN ) ∝
∏
i<j

(zi − zj)m exp

(
−
∑
i

|zi|2
4`2

)
(3.169)

where z = x − iy is a complex number representing the coordinates of the two-dimensional
system. We have limited ourselves to a consideration of the lowest Landau level. For the
plateau at ν = 1/3 the exponent is m = 3. This state gives a stable plateau with σH = e2/3h.

121 2

Aharanov−Bohm−Phase

Austausch

Fig. 3.21: Exchange of two particles in two dimensions involves the motion of the particles
around each other. There are two topologically distinct paths.
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Later Jain came up with a very intuitive interpretation of the Laughlin state based on the
concept of so-called composite fermions. In fact, Laughlin’s state can be written as

Ψ1/m =
∏
i<j

(zi − zj)m−1Ψ1 (3.170)

where Ψ1 is the Slater determinant describing the completely filled lowest Landau level. 13

Thus
∏
i<j(zi − zj)m−1 acts as a so-called Jastro factor that introduces correlation effects into

the wave function, as Ψ1 contains only the correlations due to the Pauli exclusion principle, but
not those due to the Coulomb repulsion. The Jastro factor leads to an additional suppression
of the wave function when two electrons approach each other. In the form introduced above, it
leads to an additional phase factor for the electrons when they encircle each other. In particular,
exchanging two electrons leads to a phase

exp(i(m− 1)π) = exp
(
i
e

~c
m− 1

2
Φ0

)
= 1 (3.174)

as shown in Fig. 3.21, which holds for m odd only. Thus, the sign of the wave function still
changes when two electrons are exchanged.
For the case m = 3 there are three flux quanta Φ0 per electron. Now we define a composite
fermion as an electron that has two negative flux quanta attached to it. These objects may
be considered as independent fermions because the attached flux quanta compensate the Jastro
factor through factors of the type (zi−zj)−2. The exchange of two such objects in two dimensions
leads to an additional Aharanov-Bohm phase that is just the opposite of the phase in (3.174).
The presence of the flux −2Φ0 per electron has the consequence that the composite fermions
are subject to an effective field composed of the external field and the attached flux quanta:

Beff =
1
3
B +

{
2
3
B −

∑
i

2Φ0(zi)

}
(3.175)

For an external field of B = 3n0Φ0 the expression in the brackets vanishes and we have an effec-
tive field of Beff = n0Φ0 (Fig. 3.22). Thus we can treat the composite fermions as independent
electrons that form an Integer Quantum Hall state with ν = 1 for B = 3n0Φ0, that we have
discussed above.

13 The Slater determinant of the lowest Landau level is obtained from the states of the independent electrons.
We use the symmetric gauge, so that states are labelled by the quantum number m′. Apart from the normalization
the states are given by

φm′(z) = zm
′
e|z|

2/4`2 where m′ = 0, 1, 2, . . . (3.171)

as in (3.151) (z = x− iy). The Slater determinant for N independent electrons is

Ψ1(z1, . . . , zN ) =
1√
N !

Det

264 φ0(z1) · · · φN (z1)
...

...
φ0(zN ) · · · φN (zN )

375

=
1√
N !

Det

26664
1 z1 z2

1 · · · zN1
1 z2 z2

2 · · · zN2
...

...
...

...
1 zN z2

N · · · zNN

37775 exp

 
−
X
i

|zi|2

4`2

!
.

(3.172)

The last determinant is a so-called Vandermonde determinant that can be written in the form of a product so
that

Ψ1 =
Y
i<j

(zi − zj) exp

 
−
X
i

|zi|2

4`2

!
(3.173)

where the prefactor is a homogenous polynomial with roots zi = zj (Pauli principle). We also see that the state
has a definite total angular momentum Lz = N~.
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This point of view can be applied to other Fractional Quantum Hall states, too, e.g.

ν =
n

2nk + 1
(3.176)

where we assume n filled Landau levels and consider composite fermions with attached flux of
−2kΦ0 each:

Beff = n0
Φ0

ν
− 2kn0Φ0 = n0

Φ0

n
⇒ 1

n
+ 2k =

1
ν
. (3.177)
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Fig. 3.22: Composite Fermions: electrons with attached magnetic flux lines, here for the state
of ν = 1/3.

Despite the apparent simplicity of the treatment in terms of indpendent composite fermions
one should keep in mind that in fact one is dealing with a strongly correlated electron state.
The structure of the composite fermions is a manifestation of the fact that the fermions are not
independent electrons. There are no composite fermions in the vacuum, they can exist within a
certain many-body state only. The Fractional Quantum Hall state also supports unconventional
with fractional charges. For example for the case ν = 1/3 there are excitations with charge
e∗ = e/3. These are so-called ’topological’ excitations, that can exist only in correlated systems.
The Fractional Quantum Hall system is a very peculiar ’ordered’ state of a two-dimensional
electron system that has many interesting and complex properties. 14

14Additional literature on the QHE:
Integer QHE: K. von Klitzing et al., Physik Journal 4 (6), 37 (2005);
Fractional QHE: R. Morf, Physik in unserer Zeit 33, 21 (2002); J.K. Jain, Advances in Physics 41, 105 (1992).
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Chapter 4

Landau’s Theory of Fermi Liquids

Up to now, we have considered electrons as more or less independent particles, the effect of their
interactions entering in terms of the renormalization of potentials and collective excitations
(plasma resonance) only. The underlying assumption of our discussion was that electrons in the
presence of interactions may still be described as particles with a well-defined energy-momentum-
relation, and that their groundstate is a Fermi sea with a sharp Fermi surface. While there is
no guarantee that this assumption holds in general (and in fact it doesn’t hold always), we will
show in this chapter that in metals the description of electrons as quasiparticles can be justified.
This quasiparticle picture will leadd us to Landau’s phenomenological theory of Fermi liquids.

4.1 Life-Time of quasiparticles

We fist consider the life-time of a state consisting of a filled Fermi sea to which one electron
of given momentum and energy is added. Let ~k be its momentum and εk = ~2k2/2m with
|k| > kF and εk > εF its energy. The interaction between the electrons can induce this state to
decay into a many-body state. In momentum space the interaction has the form

Hee =
∑
k,k′,q

∑
s,s′

Ṽ (q)ĉ†k−q,sĉ
†
k′+q,s′

ĉk′,s′ ĉk,s , (4.1)

where Ṽ (q) represents the interaction in momentum space (q is the momentum transfer in the
scattering process of two electrons). Below we will use the screened Coulomb potential,

Ṽ (q) =
4πe2

q2ε(q, 0)
(4.2)

which is short-ranged. As we are only interested in very small energy transfers ω(� εF ) the
static approximation is admissible. In a perturbative treatment, to lowest order the effect of the
interaction is the creation of a particle-hole excitation in addition to the single electron above
the Fermi energy.

k’

k

k−q
k’+q

Fig. 4.1: The decay of an electron state above the Fermi energy happens through scattering by
creating particle-hole excitations.
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The transition is allowed whenever energy and momentum are conserved:

k = (k − q)− k′ + (k′ + q) und εk = εk−q − εk′ + εk′+q (4.3)

We calculate the life-time (τk) of the initial state with momentum k using Fermi’s golden rule
which yields the transition rate from the initial state of a filled Fermi sea and one particle with
momentum k to a state with two electrons above the Fermi sea, with momenta k−q and ~k′+q,
and a hole with k′, as shown in fig. 4.1:

1
τk

=
2π
~

1
Ω2

∑
k′,q

∑
s′

∣∣∣Ṽ (q)
∣∣∣2 n0,k′(1− n0,k−q)(1− n0,k′+q)δ(εk−q − εk − (εk′ − εk′+q)) (4.4)

Note that the terms n0,k′(1− n0,k−q)(1− n0,k′+q) take care of the Pauli principle, in the sense,
that final state after scattering exists, i.e. the hole state (k′) lies inside and the two particle
states (k − q,k′ + q) lies outside the Fermi sea.
First we perform the integral running over k′ under the condition that the energy εk′+q − εk′ is
small. Then we can reduce the integral to the following for:

S(ωq,k, q) =
1
Ω

∑
k′

n0,k′(1− n0,k′+q)δ(εk−q − εk − (εk′ − εk′+q))

=
1

(2π)3

∫
d3k′ n0,k′(1− n0,k′+q)δ(εk′+q − εk′ − ~ωq,k) =

N(εF )
4

ωq,k
qvF

(4.5)

where N(εF ) = mkF /π
2~2 is the density of states of the electrons at the Fermi surface and

ωq,k = ~(2k · q − q2)/2m > 0. 1

To compute the remaining integral over q we assume that the matrix element |4πe2/q2ε(q, 0)|2
depends only weakly on q, especially for small q, i.e. the interaction is short-ranged. In spherical

1For small ω (justified, because ~ω ≤ (2kF q− q2)/2m for most allowed ω) the integral may be computed using
cylindrical coordinates, where q points along the axis of the cylinder:

S(q, ω) =
1

(2π)2

Z k1

k2

dk′⊥k
′
⊥

Z kF

0

dk′‖ δ

 
~2q2

2m
+

~2qk′‖
m

− ~ω

!
=

m

4π2~2q

`
k2

1 − k2
2

´
(4.6)

with k2
1 = k2

F − k2
‖,0 und k2

2 = k2
F − (k‖,0 + q)2, where k‖,0 = (2mω − ~q2)/2~q is enforced by the delta function.

q

||

kF

k
F

k
2

k1

k

Fig. 4.2: Geometry of the conservation laws.

The wave vectors k2 und k1 are the upper and lower limits of integration determined from the condition n0,k′(1−
n0,k′+q) > 0 and can be obtained by simple geometric considerations. Eq. (4.5) follows immediately.
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coordinates, the integral reads

1
τ~k

=
2π
~
· N(εF )

4vFΩ

∑
~q,s′

∣∣∣Ṽ (q)
∣∣∣2 ωq,k

q

=
N(εF )

(2π)22~vF

∫
d3~q

∣∣∣Ṽ (q)
∣∣∣2 ωq,k

q

=
N(εF )

(2π)4mvF

∫
dq
∣∣∣Ṽ (q)

∣∣∣2 q2

∫ θ2

θ1

dθ sin θ(2k cos θ − q)

=
N(εF )

(2π)4mvF

∫
dq
∣∣∣Ṽ (q)

∣∣∣2 q2

[
− 1

4k
(2k cos θ − q)2

]θ2
θ1

.

(4.7)

The restriction of the domain of integration of θ follows from the two conditions k2 ≥ (~k−~q)2 ≥
k2
F and (~k − ~q)2 = k2 − 2kq cos θ + q2. From the first condition, cos θ2 = q/2k, and from the

second, cos θ1 = (k2 − k2
F + q2)/2kq. Thus,

1
τ~k

=
N(εF )

(2π)4mvF

∫
dq
∣∣∣Ṽ (q)

∣∣∣2 1
4k
(
k2 − k2

F

)2
≈ N(εF )

(2π)4vF
m

kF

1
~4

(
ε~k − εF

)2 ∫
dq
∣∣∣Ṽ (q)

∣∣∣2
=

1
8π~3

N(εF )
v2
F

(
ε~k − εF

)2 ∫
dq
∣∣∣Ṽ (q)

∣∣∣2 .
(4.8)

Note that convergence of the last integral over q requires that the integrand does not diverge
stronger than qα (α < 1) for q → 0. The dielectric constant obtained in the previous chapter
certainly fulfills this condition.
Essentially, the result states that

1
τk
∝ (εk − εF )2 (4.9)

for k slightly above the Fermi surface. This implies that the state |ks〉 occurs as a resonance
with decay width ~/τk. Nevertheless, we find that

~/τk
εk − εF

k→kF→ 0 (4.10)

i.e. the resonance becomes arbitrarily sharp as the Fermi surface is approached, so that the
quasiparticle concept is asymptotically valid in this limit. Consequently, the momentum of
an electron is a good quantum number in the vicinity of the Fermi surface. Underlying this
result is the Pauli exclusion principle, which restricts the phase space for decay processes of
single particle states close to the Fermi surface. In addition, the assumption of short ranged
interactions is crucial, and long ranged interactions can change the behavior drastically due to
the larger number of decay channels.
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Fig. 4.3: Quasiparticle spectrum: Quasiparticle peaks appear the sharper the closer the energy
lies to the Fermi energy. The area under the ”sharp” quasiparticle peak corresponds to the

quasiparticle weight. The missing quasiparticle weight is transfered to higher energies
(incoherent part).

4.2 Phenomenological Theory of Fermi Liquids

The existence of well-defined fermionic quasiparticles in spite of the underlying complex many-
body physics led Landau to the following phenomenological theory. Like the states of indepen-
dent electrons, quasiparticle states can be characterized by their momentum (k and spin σ).
In fact, there is a one-to-one mapping of the free electrons to the quasiparticles. Consequently,
the number of quasiparticles and the number of electrons coincide. We define the momentum
distribution function of quasiparticles, nσ(k), subject to the condition:

N =
∑
k,σ

nσ(k) . (4.11)

In analogy with the Fermi-Dirac distribution of free electrons, in the ground state this distribu-
tion function is a simple step function,

n(0)
σ (k) = Θ(kF − |k|) (4.12)

kF
k

F

n
0ks

n  (k)

k
k

σ

Fig. 4.4: Schematic picture of the distribution function: Left panel: modified distribution
function of the original electron states; right panel: distribution function of quasiparticle states

making a simple step function.

For a spherically symmetric electron system, the quasiparticle Fermi surface is a sphere with
the same radius as the one for free electrons of the same density. For a general point group
symmetry the Fermi surface may be deformed by the interactions without changing the un-
derlying symmetry. The volume enclosed by the Fermi surface is always conserved despite the
deformation (This is the content of the Luttinger theorem, J.M. Luttinger, Phys. Rev. 119,
1153 (1960)). Note that the distributions n(0)

σ (k) and n0ks = 〈ĉ†kσ ĉkσ〉 are not identical (Fig.
4.3). Interestingly, n0ks is still discontinuous at the Fermi surface, but the height of the jump
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is smaller than 1, in general. The latter is a measure for the quasiparticle ’weight’ at the Fermi
surface, i.e. the amplitude of the corresponding free electron state in the quasiparticle state.
The modification of the electron distribution function indicates the involvement of electron-hole
excitations in the renormalization of the electronic propertries, which deplete the Fermi sea and
populate the states above the Fermi level.
Small deviations from the ground state distribution are described by

δnσ(k) = nσ(k)− n(0)
σ (k) (4.13)

which contains the essential information on the low-energy physics of the system. Consequently,
δnσ(k) is concentrated on momenta k very close to the Fermi energy only, where the quasiparticle
concept is valid. This distribution function enters a phenomenological energy functional of the
following form:

E = E0 +
∑
k,σ

εσ(k)δnσ(k) +
1

2Ω

∑
k,k′

∑
σ,σ′

fσσ′(k,k′)δnσ(k)δnσ′(k′) +O(δn3) (4.14)

where E0 denotes the energy of the ground state. Here εσ(k) and fσσ′(k,k′) are phenomenolog-
ical parameters which have to be determined by experiments. The variational derivative

ε̃σ(k) =
δE

δnσ(k)
= εσ(k) +

1
Ω

∑
k′,σ′

fσσ′(k,k′)δnσ′(k′) + · · · (4.15)

yields an effective energy-momentum relation ε̃σ(k), which depends on the distribution of all
quasiparticles. A quasiparticle moves in the ”mean-field” of all other quasiparticles, so that
changes in the distribution affect ε̃σ(k). The second variational derivative defines a coupling
between the quasiparticles

δ2E

δnσ(k)δnσ′(k′)
=

1
Ω
fσσ′(k,k′) . (4.16)

We introduce a parametrization for these couplings by assuming that the dependence on k,k′

can be reduced to the relative angle θk̂,k̂′ (spherical symmetry). The radial dependence is ignored
as we consider quasiparticles in the vicinity of the Fermi surface only.

fσσ′(k,k′) = fs(k̂, k̂′) + σσ′fa(k̂, k̂′) ⇒ f s,a(k̂, k̂′) =
∞∑
l=0

fs,al Pl(cos θk̂,k̂′) (4.17)

with k̂ = k/|k| and Pl(z) are Legendre-polynomials (s, a stands for symmetric bzw. antisymmetric).
We introduce the following parameters:

N(εF )fsl = F sl und N(εF )fal = F al , (4.18)

where N(εF ) = m∗kF /~2π2 is the density of states. The notation F sl = Fl and F al = Zl is also
used frequently in the literature.

4.2.1 Specific heat and density of states

For the Fermi-Dirac distribution at low temperatures

δnσ(k) = n(0)
σ (T,k)− n(0)

σ (0,k) ⇒ 1
Ω

∑
k

δnσ(k) ∝ T 2 +O(T 4). (4.19)

Thus, to leading order one can use

nσ(k) =
1

e(ε(k)−µ)/kBT + 1
(4.20)
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with εσ(k) in place of the the renormalized ε̃σ(k), as ε̃ differs from ε at order T 2 only. When
focussing on leading terms (usually T 0 and T 1) these corrections may be neglected.
In order to discuss the specific heat, we employ the expression for the entropy of a fermion gas.
For each quasiparticles with a given spin there is one ’orbital’ labelled by k. The entropy density
may be computed from the distribution function.

S = −kB
Ω

∑
k,σ

{nσ(k)ln[nσ(k)] + [1− nσ(k)]ln[1− nσ(k)]} (4.21)

Taking a derivative with respect to T we obtain the specific heat,

C

T
=
∂S

∂T
= −kB

Ω

∑
k,σ

eξ(k)/kBT

(eξ(k)/kBT + 1)2︸ ︷︷ ︸
=(2 cosh(ξ(k)/2kBT ))−2

ξ(k)
kBT 2

ln
nσ(k)

1− nσ(k)︸ ︷︷ ︸
=ξ(k)/kBT

(4.22)

where we have introduced ξ(k) = ε(k)− µ. In the limit T → 0

C

T
≈ N(εF )

4kBT 3

∫
dξ

ξ2

cosh2(ξ/2kBT )
≈ k2

BN(εF )
4

∫ +∞

−∞
dy

y2

cosh2(y/2)
=
π2k2

BN(εF )
3

= γ , (4.23)

which is the usual behavior C = γT . The density of states at the Fermi surface follows from

∇kε(k)|kF = vF =
~kF
m∗

⇒ N(εF ) =
2
Ω

∑
k

δ(ε(k)− εF ) =
k2
F

π2~vF
=
m∗kF
π2~2

=
3
2
n

εF
(4.24)

which defines the effective mass m∗.

4.2.2 Compressibility

A Fermi gas has a finite compressibility because each fermion occupies a certain amount of space
due to the Pauli principle. The compressibility κ is defined by

κ = − 1
Ω

(
∂Ω
∂p

)
T,N

(4.25)

where p is the uniform (hydrostatic) pressure, which - at zero temperature - is determined by
the change of the ground state energy upon changing the volume:

p = −∂E
∂Ω

= −∂Ωε̂(n)
∂Ω

= −ε̂+
N

Ω
∂ε̂

∂n
⇒ 1

κ
= Ω

∂2E

∂Ω2
= n2 ∂

2ε̂

∂n2
(4.26)

where E = Ωε̂(n) and n is the quasiparticle density (n = N/Ω). The chemical potential follows
from

µ =
(
∂E

∂N

)
T,Ω

=
(
∂ε̂

∂n

)
T,Ω

⇒ 1
κ

= n2

(
∂µ

∂n

)
T,Ω

. (4.27)

A change of the volume via applying pressure yields a change of the particle density n for fixed
particle number N . On the other hand, we may keep the volume constant and change the
particle number by altering the chemical potential, which then also leads to a change of n.
In momentum space increasing (decreasing) n means enlarging (decreasing) the volume of the
Fermi sphere. The relation between n and kF is given by,

n =
N

Ω
=

k3
F

3π2
⇒ δn =

k2
F

π2
δkF . (4.28)

This yields a deviation of the distribution function, δnσ(k) which is isotropic (see Fig. 4.5 , left
panel).
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The chemical potential also depends on kF and the distribution function, µ = ε̃(kF , nσ(k)).

δµ = vF~δkF +
δε̃(kF )
δnσ′(k′)

δnσ′(k′)
δkF

δkF = vF~δkF +
1
Ω

∑
k′,σ′

fσ,σ′(kF ,k′)δ(k′ − kF )δkF (4.29)

so that

∂µ

∂kF
= ~vF +

4πk2
F

(2π)3

∫
dΩk̂′

4π

∑
σ′

fσσ′(k̂, k̂′) =
~2kF
m∗

{
1 +N(εF )

∫
dΩk̂′

4π
fs(k̂, k̂′)

}
(4.30)

Finally, using (4.18) and (4.27), we find

1
κ

= n2 ∂µ

∂kF

∂kF
∂n

=
n2

N(εF )
{1 + F s0 } =

2
3
nεF {1 + F s0 } . (4.31)

The Landau parameter F s0 as well as the effective mass m∗ included in N(εF ) describe the
renormalization of the compressibility.

k
F

kδk kδ
F Fδ

F

k
F

Fig. 4.5: Deviations of the distribution functions: Left panel: isotropic increase of the Fermi
surface as used for the uniform compressibility; right panel: spin dependent change of size of

the Fermi surface as used for the uniform spin susceptibility.

4.2.3 Spin susceptibility

If we apply a magnetic field, the Zeeman coupling yields a shift of the quasiparticle energies
depending on their spin orientation. For an isotropic system, without loss of generality, we can
assume the magnetic field to be directed into the z-direction. The energy shift is

δε̃σ(k) = −gµBHσ

2
+

1
Ω

∑
k′,σ′

fσ,σ′(k,k′)δnσ′(k′) = −g̃µBHσ

2
. (4.32)

The gyromagnetic factor g̃ differs from the value of g = 2 for free electrons due to interactions,

1
Ω

∑
k′,σ′

fσσ′(k,k′)δnσ′(k′) =
1
Ω

∑
k′,σ′

fσσ′(k,k′)
∂nσ′(k′)
∂ε̃σ′(k′)

δε̃σ′(k′)

=
1
Ω

∑
k′,σ′

fσσ′(k,k′)δ(ε̃σ′(k′)− εF )g̃µBH
σ′

2

(4.33)

From this and (4.32) we derive

g̃ = g − g̃N(εF )
∫
dΩk̂′

4π
fa(k̂, k̂′) = g − g̃F a0 ⇒ g̃ =

g

1 + F a0
. (4.34)

The magnetization can be computed from the distribution function,

M = gµB
∑
k,σ

σ

2
δnσ(k) = gµB

∑
k,σ

σ

2
∂nσ(k)
∂ε̃σ(k)

δε̃σ(k) = gµB
∑
k,σ

σ

2
δ(ε̃σ(k)− εF )g̃µBH

σ

2
(4.35)
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and the susceptibility is given by

χ =
M

HΩ
=
µ2
BN(εF )
1 + F a0

(4.36)

The changes in the distribution function induced by the magnetic field feed back into the sus-
ceptibility, so that the latter may be either weakened or enhanced.

4.2.4 Effective mass and Galilei invariance

We have initially introduced the effective mass of quasiparticles in εσ(k) by hand. In this
section we would like to show that overall consistency requires a relation of the effective mass
with a certain Landau parameter. The effective mass is the result of the interactions among the
electrons.
This consistency is connected with the Galilean invariance when we shift the momenta of all
particles by ~q which shall be very small compared to the Fermi momentum in order to be
compatible with the assumption of the Fermi liquid theory, i.e. the distribution function given
by

δnσ(k) = n(0)
σ (k + q)− n(0)

σ (k) ≈ q ·∇n(0)
σ (k) . (4.37)

is concentrated around the Fermi energy (see Fig.4.6).

n=−1δ n=+1δ

F qk

Fig. 4.6: Distribution function due to a Fermi surface shift (Galilei transformation).

We calculate now the current density using the distribution function nσ(k) = n
(0)
σ (k) + δnσ(k).

Within the Fermi liquid theory this yields,

jq =
1
Ω

∑
k,σ

v(k)nσ(k) (4.38)

with

v(k) =
1
~
∇kε̃σ(k) =

1
~

∇kεσ(k) +
1
Ω

∑
k′,σ′

∇kfσσ′(k,k′)δnσ(k′)

 . (4.39)

Thus we obtain for the current density,

jq =
1
Ω

∑
k,σ

~k
m∗

nσ(k) +
1

Ω2

∑
k,σ

∑
k′,σ′

{n(0)
σ (k) + δnσ(k)}1

~
∇kfσσ′(k,k′)δnσ(k′)

=
1
Ω

∑
k,σ

~k
m∗

δnσ(k)− 1
Ω2

∑
k,σ

∑
k′,σ′

1
~
{∇kn

(0)
σ (k)}fσσ′(k,k′)δnσ(k′) +O(q2)

=
1
Ω

∑
k,σ

~k
m∗

δnσ(k) +
1

Ω2

∑
k,σ

∑
k′,σ′

fσσ′(k,k′)
~k′

m∗
δnσ(k) +O(q2) = j1 + j2 .

(4.40)
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where, for the second line, we performed an integration by parts and neglect terms quadratic in
δn and, in the third line, use fσσ′(k,k′) = fσ′σ(k′,k) and

∇kn
(0)
σ (k) =

∂n
(0)
σ (k)

∂εσ(k)
∇kεσ(k) = −δ(εσ(k)− εF )∇kεσ(k) = −δ(εσ(k)− εF )

~k
m∗

. (4.41)

The first term of Eq.(4.40) denotes quasiparticle current, j1, while the second term can be
interpreted as a drag current, the induced motion of the other particles due to interaction
(backflow), j2.
Now we turn to a different viewpoint, looking at the system as being in the inertial frame with a
velocity ~q/m, as all particles received the same momentum. The current density then is given
by

jq =
N

Ω
~q
m

=
1
Ω

∑
k,σ

~k
m
nσ(k) =

1
Ω

∑
k,σ

~k
m
δnσ(k) . (4.42)

Since these two viewpoints are equivalent the resulting currents should be the same. Thus, we
compare Eq.(4.40) and (4.42) and obtain the equation,

~k
m

=
~k
m∗

+
1
Ω

∑
k′,σ′

fσσ′(k,k′)δ(εσ(k′)− εF )
~k′

m∗
(4.43)

which then leads to
1
m

=
1
m∗

+N(εF )
∫
dΩk̂′

4π
fs(k̂, k̂′)

k̂ · k̂′
m∗

⇒ m∗

m
= 1 +

1
3
F s1 .

(4.44)

The factor 1/3 originates in the term 1/(2l + 1) for l = 1 as∫ +1

−1
dz Pl(z) Pl′(z) =

2δll′
2l + 1

(4.45)

Thus, for consistency the relation of Eq.(4.44) between m∗ and F s1 must hold. Generally, we
find that F s1 > 0 so that quasiparticles in a Fermi liquid are ”heavier” than bare electrons.

4.2.5 Stability of the Fermi liquid

Upon inspection of the renormalization of the quantities

κ

κ0
=
m∗

m

1
1 + F s0

,
χ

χ0
=
m∗

m

1
1 + F a0

mit
m∗

m
= 1 +

1
3
F s1 (4.46)

one notes that for example the compressibility κ and the susceptibility χ diverge for F s0 → −1
or F a0 → −1, indicating an instability of the system. A diverging spin susceptibility leads
to a ferromagnetic state with a split Fermi surface, one for each spin direction. A diverging
compressibility leads to a spontaneous contraction of the system.
More generally, the deformation of the quasiparticle distribution function may vary over the
Fermi surface, so that arbitrary deviations of the simple Fermi liquid state may be classified by
this deformation,

δnσ(k̂) =
∞∑
l=0

δnσ,lPl(cos θk̂) (4.47)
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For charge density deformations δn+l(k̂) = δn−l(k̂) holds, whereas spin density deformations are
described by δn+l(k̂) = −δn−l(k̂). Stability of the Fermi liquid against any of these deformations
requires

1 +
F s,al

2l + 1
> 0. (4.48)

In general, the renormalization of the Fermi liquid leads to a change in the Wilson ratio

R

R0
=

χ

χ0

γ0

γ
=

1
1 + F a0

(4.49)

where R0 = χ0/γ0 = 6µ2
B/π

2k2
B. Note that the Wilson ratio does not depend on the effective

mass.
A remarkable feature of the Fermi liquid theory is that even very strongly interacting Fermions
remain Fermi liquids, notably the quantum liquid 3He and so-called heavy Fermion systems,
which are compounds of transition metals and rare earths. Both are strongly renormalized
Fermi liquids. For 3He we give a some of the parameters here for zero pressure and for pressures
just below the critical pressure at which He solidifies (pc ≈ 2.5MPa = 25bar):

pressure m∗/m F s
0 F a

0 F s
1 κ/κ0 χ/χ0

0 3.0 10.1 -0.52 6.0 0.27 6.3
< pc 6.2 94 -0.74 15.7 0.065 24

The trends are obvious here. The higher the pressure the denser the liquid and the stronger the
interaction are. Approaching the solidification the compressibility is reduced, the quasiparticles
become heavier (slower) and the magnetic response increases drastically.
Finally the heavy Fermion systems are characterized by the extraordinary enhancements of the
effective mass which for many of these compounds lie between 100 and 1000 times the electron
mass (e.g. CeAl3, UBe13 etc.). This large mass leads also the notion of an ”almost localized
Fermi liquid”, as the large effective mass is generated by the hybridization of itinerant conduction
electrons with strongly interacting (localized) electron states in partially filled 4f - or 5f -orbitals
of Lanthandide and Actinide atoms, respectively.

4.3 Microscopic considerations

A rigorous derivation of the Landau Fermi-liqid theory requires methods of quantum field theory
and is beyond the scope of these lectures. However, plain Rayleigh-Schrödinger theory allows
to gain some insights into the microscopic fundament of Landau’s Fermi liquid theory. In the
following, we consider a model of fermions with contact interaction described by the Hamiltonian,

H =
∑
k,s

εkĉ
†
ksĉks +

∫
d3r d3r′ Ψ̂↑(r)†Ψ̂↓(r′)†Uδ(r − r′)Ψ̂↓(r′)Ψ̂↑(r)

=
∑
k,s

εkĉ
†
ksĉks +

U

Ω

∑
k,k′,q

ĉ†k+q↑ĉ
†
k′−q↓ĉk′↓ĉk↑

(4.50)

wobei εk = ~2k2/2m. Note that we had previously found that in order to find well-defined
quasiparticles the interaction between the Fermions has to be short ranged.
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4.3.1 Landau parameters

For a given momentum distribution nks = 〈c†kscks〉 = n
(0)
ks +δnks we can expand the correspond-

ing energy following the Rayleigh-Schrödinger perturbation method,

E = E(0) + E(1) + E(2) + · · · with

E(0) =
∑
k,s

εknks , E(1) =
U

Ω

∑
k,k′

nk↑nk′↓ ,

E(2) =
U2

Ω2

∑
k,k′,q

nk↑nk′↓(1− nk+q↑)(1− nk′−q↓)
εk + εk′ − εk+q − εk′−q

(4.51)

The second order term describes virtual processes corresponding to a pair of particle-hole exci-
tations. The numerator of the term E(2) can be split into four different contributions. We first
consider the term quadratic in nk and combine it with the first order term which has the same
structure,

Ẽ(1) = E(1) +
U2

Ω2

∑
k,k′,q

nk↑nk′↓
εk + εk′ − εk+q − εk′−q

≈ Ũ

Ω

∑
k,k′

nk↑nk′↓ . (4.52)

Here we have defined a renormalized interaction U → Ũ through,

Ũ = U +
U2

Ω

∑
q

1
εk + εk′ − εk+q − εk′−q

(4.53)

In principle, Ũ depends on the wave vectors k and k′. When restricted to the Fermi surface
(|k| = |k′| = kF ), however, this dependency may be neglected, if the range of the interaction `
is small compared to the mean electron spacing, kF `� 1.2

The next higher term is cubic in nk:

Ẽ(2) = − Ũ
2

Ω2

∑
k,k′,q

nk↑nk′↓(nk+q↑ + nk′−q↓)
εk + εk′ − εk+q − εk′−q

(4.55)

We have replaced U2 by Ũ2, which is admissible at this order. The term quartic in nk vanishes
due to symmetry.
We can vary the energy E with respect to δnk↑ and obtain

ε̃↑(k) = εk +
Ũ

Ω

∑
k′

nk′↓ −
Ũ2

Ω2

∑
k′,q

nk′↓(nk+q↑ + nk′−q↓)− nk+q↑nk′−q↓
εk + εk′ − εk+q − εk′−q

(4.56)

and analogously for ε↓(k). The coupling parameters may be determined using the definition
(4.15). Beginning with f↑↑(kF ,k′F ) with wavevectors on the Fermi surface (k→ kF ), the terms

2Care has to be taken for our contact interaction which would lead to a divergence in the large-q range. A
cutoff for q of order Qc ∼ `−1 would regularize the integral which is dominated by the large-q part. Thus we may
use the following expansion,

I =
1

Ω

X
q

1

εk + εk′ − εk+q − εk′−q

=
1

(2π)3

Z Qc

o

dq q2

Z
dΩq

m

(k′ − k) · q − q2
=

m

(2π)2

Z
dq q

Z +1

−1

d cos θ

K cos θ − q

=
m

(2π)2

Z Qc

0

dq qln

˛̨̨̨
q −K
q +K

˛̨̨̨
= − m

(2π)2


Qc +

K2 −Q2
c

2K
ln

˛̨̨̨
Qc −K
Qc +K

˛̨̨̨ff
≈ −2mQc

(2π)2


1− K2

Q2
c

+O

„
K4

Q4
c

«ff
(4.54)

where we use K = |k′ − k| ≤ 2kF � QC . Thus, the momentum dependence of Ũ is indeed weak.
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contributing to the coupling can be written as

Ũ2

Ω2

∑
k′,q

nk+q↑
nk′−q↓ − nk′↓

εk + εk′ − εk+q − εk′−q

k+q→k′F−→ 1
Ω

∑
k′F

nk′F ↑
Ũ2

Ω

∑
k′

n
(0)

k′−q↓ − n
(0)

k′↓
εk′ − εk′−q

∣∣∣∣∣∣
q=k′F−kF

= − 1
Ω

∑
k′F

nk′F ↑
Ũ2

2
χ0(k′F − kF )

(4.57)
where we consider nk′F ↑ = n

(0)

k′F ↑+ δnk′F ↑. Note that the part of n(0)

k′F ↑ in this term will contribute
the ground state energy in Landau’s energy functional. Here, χ0(q) is the static susceptibility
in (3.34) (Lindhard function). It follows that

f↑↑(kF ,k′F ) = f↓↓(kF ,k′F ) =
Ũ2

2
χ0(kF − k′F ) (4.58)

The other couplings are obtained in a similar manner,

f↑↓(kF ,k′F ) = f↓↑(kF ,k′F ) = Ũ − Ũ2

2
{

2χ̃0(kF + k′F )− χ0(kF − k′F )
}

(4.59)

where the function χ̃0(~q) is defined as

χ̃0(q) =
1
Ω

∑
k′

n
(0)

k′+q↑ + n
(0)

k′↓
2εF − εk′+q − εk′

(4.60)

The couplings may be parametrized by the angle θ between kF and k′F .

fσσ′(θ) =
Ũ

2

[{
1 +

ŨN(εF )
2

(
2 +

cos θ
2 sin(θ/2)

ln
1 + sin(θ/2)
1− sin(θ/2)

)}
δσσ′

−
{

1 +
ŨN(εF )

2

(
1− sin(θ/2)

2
ln

1 + sin(θ/2)
1− sin(θ/2)

)}
σσ′
] (4.61)

Now we are in a position to determine the most important Landau parameters (ũ = ŨN(εF ) >
0):

F s0 = ũ

{
1 + ũ

(
1 +

1
6

(2 + ln2
)}

= ũ+ 1.449 ũ2 > 0

F a0 = −ũ
{

1 + ũ

(
1− 2

3
(1− ln2)

)}
= −ũ− 0.895 ũ2 < 0

F s1 = ũ2 2
15

(7ln2− 1) = 0.514 ũ2 > 0

(4.62)

In any case the effective masse m∗ is enhanced as compared to the bare mass m, as the interaction
between the particles enforces the motion of many particles whenever one is moved. The behavior
of the susceptibility and the compressibility depends on the sign of the interaction. If the
interaction is repulsive (ũ > 0), the compressibility decreases, implying that it is harder to
compress the Fermi liquid. The susceptibility is enhanced in this case, so that it is easier
to polarize the electrons’ spins. Conversely, for attractive interactions the compressibility is
enhanced whereas the susceptibility is suppressed. The attractive case, however, is more subtle
because the Fermi liquid becomes unstable at low temperatures, turning into a superfluid or
superconductor, by forming so-called Cooper pairs.
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4.3.2 Distribution function

Finally, we examine the effect of interactions on the ground state properties again using Rayleigh-
Schrödinger perturbation theory. The calculation of the corrections to the ground state |Ψ0〉,
the filled Fermi sea, is relatively simple:

|Ψ〉 = |Ψ(0)〉+ |Ψ(1)〉+ · · ·

|Ψ(0)〉 = |Ψ0〉 und |Ψ(1)〉 =
U

Ω

∑
k,k′,q

∑
s,s′

ĉ†k+q,sĉ
†
k′−q,s′ ĉk′,s′ ĉk,s

εk + εk′ − εk+q − εk′−q
|Ψ0〉

(4.63)

The lowest order correction involves again particle-hole excitations, depleting the Fermi sea by
lifting particles virtually above the Fermi energy. This will affect the distribution function as
we will discuss now. The momentum distribution 〈n̂ks〉 = 〈ĉ†ksĉks〉 is obtain as the expectation
value,

〈n̂ks〉 =
〈Ψ|ĉ†ksĉks|Ψ〉
〈Ψ|Ψ〉 = 〈n̂ks〉(0) + 〈n̂ks〉(2) + · · · (4.64)

where 〈n̂ks〉(0) is the unperturbed (step-function) distribution Θ(kF − |k|), and

〈n̂ks〉(2) =



−U
2

Ω2

∑
k1,k2,k3

(1− nk1)(1− nk2)nk3

(εk + εk3 − εk1 − εk2)2
δk+k3,k1+k2 |k| < kF

U2

Ω2

∑
k1,k2,k3

nk1nk2(1− nk3)
(εk1 + εk2 − εk − εk3)2

δk+k3,k1+k2 |k| > kF

(4.65)

This yields the modification of the distribution functions as depicted in Fig.4.7. It allows us also
to determine the size of the discontinuity of the distribution function at the Fermi surface:

〈n̂kF−〉 − 〈n̂kF+
〉 = 1−

(
UN(εF )

2

)2

ln2 (4.66)

The jump of 〈n̂k〉 is reduced independently of the sign of the interaction. This jump is also a
measure for the weight of the quasiparticle state at the Fermi surface.
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F
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F
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k

n
k

k
k

3D

k

Fig. 4.7: Momentum distribution functions of electrons for a three-dimensional (left panel)
and one-dimensional (right panel) Fermion system.

It is interesting to extend our considerations for an ordinary three dimensional Fermion liquid
to the case of a one-dimensional system. The result is obtained straightforwardly,

〈n̂ks〉(2) ≈


1

8π2

U2

~2v2
F

ln
k+

k − kF k > kF

− 1
8π2

U2

~2v2
F

ln
k−

kF − k k < kF

(4.67)

where k+ and k− are cutoff parameters of the order of the Fermi wave vector kF .
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Apparently the quality of the perturbative calculation deteriorates as k → kF±, since we en-
counter a logarithmic divergence from both sides. Indeed, a more sophisticated approach shows
that the distribution function is continuous at k = kF in one dimension, without any jump.
Correspondingly, the quasiparticle weight vanishes and the elementary excitations cannot be
described by Fermionic quasiparticles but rather by collective modes. This kind of behavior
can be well described by the so-called Bosonization of Fermions in one dimension, a topic that
is beyond the scope of these lectures. However, one of its surprising results is the fact that
in one dimension, the fermionic excitations decay into independent charge and spin excitations
(spin-charge separation). This behavior can be visualized by considering a half-filled lattice with
predominantly antiferromagnetic spin correlations. In this case both charge and spin excitations
are like different kinds of domain walls, moving at different velocities.

q=0

SpinLadung

q=−e S=0 S=1/2

Fig. 4.8: Spin-charge separation: The dominant spin correlation is staggered
(up-down-up-down- ....). A charge excitation is a vacancy which can move. A spin excitation

may be considered as domain wall. Both excitations exist and move independently. A
quasiparticle in a 3D Fermi liquid has always spin and charge together.
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Chapter 5

Transport properties of metals

The ability to transport electrical current is one of the most remarkable and characteristic
properties of metals. There are various influences determining their electrical conductivity:
At zero temperature, a perfect metal is a perfect electrical conductor, i.e., the resistivity is
zero. However, a residual resistivity due to defects in the material remains. At finite temper-
ature, electron-electron and electron-phonon scattering can lead to a temperature-dependent
resistivity. Furthermore, a magnetic field may influence the resistivity, a phenomenon called
magnetoresistance, and lead to the previously mentioned Hall effect. We will, however, not
consider the effects of a magnetic field in this chapter. Finally, we discuss heat transport which
is also mostly mediated by electrons in metals. In this context other transport phenomena such
as thermoelectricity (Seebeck and Peltier effect) will be of interest.

5.1 Electrical conductivity

In a normal metal electrical current density j(q, ω) is the result of an applied electrical field
E(q, ω). We define the electrical conductivity σ(q, ω) within a linear response through

j(q, ω) = σ(q, ω)E(q, ω) (5.1)

for a homogeneous metal. It is interesting to see that a relation between the conductivity and
the dynamical dielectric susceptibility χ0(q, ω) follows from the continuity equation

∂

∂t
ρ(r, t) + ∇ · j(r, t) = 0, (5.2)

with ρ as the charge density, or, in Fourier space,

ωρ(q, ω)− q · j(q, ω) = 0. (5.3)

From this, we can calculate

χ0(q, ω) = − ρ(q, ω)
eVa(q, ω)

= − q · j(q, ω)
eωVa(q, ω)

= −σ(q, ω)
ωe

q ·E(q, ω)
Va(q, ω)

=
σ(q, ω)
ω

{−iq2Va(q, ω)}
e2Va(q, ω)

,

(5.4)
and thus

ε(q, ω) = 1− 4πe2

q2
χ0(q, ω) = 1 +

4πi
ω
σ(q, ω). (5.5)

In the limit q � kF of large wavelengths that ε(0, ω) = 1− ω2
p/ω

2 as discussed previously1, and
thus

σ(ω) =
iω2
p

4πω
. (5.6)

1In the small-q limit we approximate χ0(q, ω) ≈ nq2/mω2 from Eq.(3.45).
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This might be interpreted in a way that the conductivity is purely imaginary. However, this
conclusion is wrong, as we can find the real part of σ(ω) from the Kramers-Kronig relations.
With σ = σ1 + iσ2, they state that

σ1(ω) = − 1
π

∫ +∞

−∞
dω′P 1

ω − ω′σ2(ω′) and σ2(ω) =
1
π

∫ +∞

−∞
dω′P 1

ω − ω′σ1(ω′). (5.7)

A simple calculation then yields

σ1(ω) =
ω2
p

4
δ(ω), σ2(ω) =

ω2
p

4πω
. (5.8)

Obviously this metal is a perfect conductor with σ → ∞ for ω → 0. This comes about as we
have only considered systems without dissipation.
An additional important property is the existence of the so-called f -sum rule,∫ ∞

0
dω′ σ1(ω′) =

1
2

∫ +∞

−∞
dω′ σ1(ω′) =

ω2
p

8
=
πe2n

2m
. (5.9)

It is valid for all electronic systems, in which charges are moved by external fields (even for
semiconductors).

5.2 Transport equations and relaxation time

5.2.1 The Boltzmann equation

In order to tackle the problem of a finite conductivity, it is practicable to use a formalism
analogous to Fermi liquid theory, on the basis of a distribution function of quasi particles. In
transport theory, the distribution function describes the deviation from an equilibrium. If the
system is isolated from the exterior, equilibrium is reached by relaxation after some time.
Let us introduce the distribution function f(k, σ; r, t) , where

f(k, σ; r, t)
d3k

(2π)3
d3r (5.10)

is the number of particles in the infinitesimal phase space volume d3rd3k/(2π)3 at position
(k, r), time t, and with spin σ. Such a description is applicable only if temporal and spacial
variations occur at long wavelength and small frequency, respectively, i.e., if typically q � kF
and ~ω � εF . In the following, we neglect spin. Consequently, the total number of particles N
is given by

N =
∫

d3k

(2π)3
d3rf(k, r, t). (5.11)

We know, that the equilibrium distribution f0 for the quasi particles is given by the Fermi-Dirac
distribution, i.e.,

f0(k, r, t) =
1

e(εk−µ)/kBT + 1
, (5.12)

and is independent of r and t. Usually, we study processes close to equilibrium, where the
deviation f(k, r, t)−f0(k, r, t) is small. The distribution function obeys the Boltzmann equation

D

Dt
f(k, r, t) =

{
∂

∂t
+ ṙ ·∇r + k̇ ·∇k

}
f(k, r, t) =

(
∂f

∂t

)
coll

, (5.13)

where we have defined the substantial derivative in phase space D/Dt (the total temporal
derivative in a frame moving with the phase-space volume). The right side is called collision

91



integral and describes the rate of change in f by collisions. Let us consider the temporal
derivatives of r and k from a quasi–classical viewpoint. Then,

ṙ = v =
~k
m
, (5.14)

~k̇ = −e(E + v ×B), (5.15)

i.e., the force, which is our central interest, originates from the electric and magnetic fields. We
will, however, only consider the case B = 0.
In the collision integral, the probability W (k,k′) to scatter a quasi particle with wave vector k
to k′ is important. For simple scattering on static potentials, the collision integral is given by(

∂f

∂t

)
coll

= −
∫

d3k′

(2π)3

[
W (k,k′)f(k, r, t){1− f(k′, r, t)}

−W (k′,k)f(k′, r, t){1− f(k, r, t)}] . (5.16)

The first term, describing the scattering from k to k′, requires a quasi particle at k [hence the
factor f(k, r, t)] and the absence of a particle at k′ [therefore the factor 1 − f(k′, r, t)]; note
that spin is conserved here. This process describes the scattering out of the phase space volume
under consideration, i.e., reduces the number of particles in it. Therefore, it enters the collision
integral with negative sign. The second term describes the opposite process and thus enters
with positive sign. For a system with time inversion symmetry, W (k,k′) = W (k′,k), i.e., the
opposite scattering process happens with the same probability. Then, we can collect both terms
and end up with (

∂f

∂t

)
coll

=
∫

d3k′

(2π)3
W (k,k′)

{
f(k′, r, t)− f(k, r, t)

}
. (5.17)

The Boltzmann equation is a relatively complicated integro-differential equation and suitable
approximations are required. At small deviations from equilibrium, we can approximate the
collision integral by the so-called relaxation-time approximation. For simplicity, we assume that
the system is isotropic (quasiparticle dispersion εk only depends on |k|) and, furthermore, that
the scattering probabilities depend only on the angle between k and k′ and are elastic. Then,
we make the Ansatz (

∂f

∂t

)
coll

= −f(k, r, t)− f0(k, r, t)
τ(εk)

. (5.18)

Here, as in (5.12), f0(k, r, t) is a local equilibrium distribution with temperature T = T (r, t)
and chemical potential µ = µ(r, t) generally depending weakly/slowly on r and t. τ(εk) is called
relaxation time and is the characteristic time within which the system relaxes to equilibrium.
Consider a (small) uniform electric field E(t) and constant temperature. With f(k, r, t) =
f0(k, r, t)+δf(k, r, t), we write the Fourier-transformed Boltzmann equation (5.13) in relaxation-
time approximation and find, after linearizing in small δf ,

− iωδf(k, ω) +
eE(ω)

~
· ∂f0(k)

∂k
= −δf(k, ω)

τ(εk)
, (5.19)

where we have used that f(k, r, t) = f(k, t) for E = E(t). In linearizing Eq. (5.19) in δf , we
have actually assumed that δf ∝ |E|. This was indeed consistent, since Eq. (5.19) can easily
be transformed into

δf(k, ω) = − eτE(ω)
~(1− iωτ)

· ∂f0(k)
∂k

= − eτE(ω)
~(1− iωτ)

· ∂f0(ε)
∂ε

∂εk
∂k

. (5.20)

From this, we can calculate the quasi-particle current j(ω),

j(ω) = 2e
∫

d3k

(2π)3
vkf(k, ω) = − e2

4π3

∫
d3k

τ(εk)[E(ω) · v]v
1− iωτ(εk)

∂f0(εk)
∂εk

, (5.21)
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i.e.,
jα(ω) =

∑
β

σαβ(ω)Eβ(ω) (5.22)

with the conductivity tensor

σαβ = − e2

4π3

∫
dε
∂f0(ε)
∂ε

τ(ε)
1− iωτ(ε)

∫
dΩkk2 vαkvβk

~|vk| . (5.23)

This corresponds to the Ohmic law. Note that σαβ is diagonal in isotropic systems.

5.2.2 The Drude form

For ωτ � 1 Eq. (5.23) is independent on the relaxation time. In an isotropic system (σαβ =
σδαβ) with T � TF , this leads to

σ(ω) ≈ ie
2m2vF

4π3~3ω

∫
dΩkv2

Fz = i
e2n

mω
= i

ω2
p

4πω
, (5.24)

which we have found already in Eq. (5.6). This does, however, not mean that we are dealing
with a perfect conductor here.
We are actually interested in the static limit, i.e., in the dc conductivity (ω = 0),

σ = −e
2n

m

∫
dε
∂f0

∂ε
τ(ε) =

e2nτ̄

m
=
ω2
p τ̄

4π
. (5.25)

This form is the well-known Drude form of the conductivity.2 If τ depends only weakly on
energy, we can simply calculate the optical conductivity at finite frequency,

σ(ω) =
ω2
p

4π
τ̄

1− iωτ̄ =
ω2
p

4π

{
τ̄

1 + ω2τ̄2
+

īτ
2
ω

1 + ω2τ̄2

}
= σ1 + iσ2. (5.26)

Note that the real part satisfies the f -sum rule,∫ ∞
0

dω σ1(ω) =
∫ ∞

0
dω

ω2
p

4π
τ̄

1 + ω2τ̄2
=
ω2
p

8
(5.27)

and σ(ω) in the limit τ̄ → 0 recovers the behavior of Eq.(5.8). This form of the conductivity
yields the dielectric function

ε(ω) = 1− ω2
p τ̄

ω(i+ ωτ̄)
= 1− ω2

p τ̄
2

1 + ω2τ̄2
+
i

ω

1
1 + ω2τ̄2

, (5.28)

which can be used to discuss the optical properties of metals. The complex index of refraction
N is given through N2 = (n+ ik)2 = ε. We discuss three important regimes of frequency:

Relaxation-free regime (ωτ̄ � 1� ωpτ̄): Here,

ε1(ω) ≈ −ω2
p τ̄

2, (5.29)

ε2(ω) ≈ ω2
p τ̄

ω
. (5.30)

The real part ε1 is constant and negative, whereas the imaginary part ε2 becomes singular for
ω → 0. Thus, the refractive index turns out to be dominated by ε2:

n(ω) ≈ k(ω) ≈
√
ε2(ω)

2
≈
√
ω2
p τ̄

2ω
, (5.31)

2 Note, that the (phenomenological) Drude theory of electron transport can be deduced from purely classical
considerations.
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i.e., n(ω)� 1. As a result, the reflectivity R is practically 100%, since

R =
(n− 1)2 + k2

(n+ 1)2 + k2
. (5.32)

The absorption index k(ω) determines the penetration depth δ through

δ(ω) =
c

ωk(ω)
≈ c

ωp

√
2
ωτ̄

. (5.33)

This is the skin depth of a metal with the famous relation δ(ω) ∝ ω−1/2. This length is much
larger than the Debye length c/ωp (∼ 10−6cm ∼ 100Å für ~ωp = 10 eV). δ is in the cm range
for frequencies of ∼ 10 − 100Hz (cf. Fig. 5.1 on a logarithmic scale to emphasize the behavior
at small frequencies).

Relaxation regime (1� ωτ̄ � ωpτ̄): We expand in (ωτ̄)−1, yielding

ε(ω) = 1− ω2
p

ω2
+ i

ω2
p

ω3τ̄
. (5.34)

The real part ε1 ≈ −ω2
P /ω

2 is still negative and ε2 is still dominant. For the optical properties,
we obtain

k(ω) ≈ ωp
ω

(5.35)

n(ω) ≈ ωp
2ω2τ̄

. (5.36)

k(ω) � n(ω) � 1 implies a large reflectivity of metals in this frequency range as well. Note
that visible frequencies are part of this regime (see Fig. 5.2, 5.3). The frequency dependence
of the penetration depth becomes weak, and its magnitude is approximately the Debye length,
δ ∼ c/ωp.

Figure 5.1: The frequency dependent reflectivity and penetration depth for ωpτ̄ = 500.

Ultraviolet regime (ω ≈ ωp and ω > ωp): In this regime, the imaginary part of ε is
approximately zero and the real part has the well known form

ε1(ω) = 1− ω2
p

ω2
, (5.37)
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such that the reflectivity changes drastically, from ∼ 1 to ∼ 0 (cf. Fig. 5.1). Metals are nearly
transparent for ω > ωp. In Fig. 5.1, one also notices the rapid increase in the penetration depth
δ, showing the transparency of the metal.
In these considerations, we have neglected the contributions to the dielectric function due to
the ion cores (core electrons and nuclei). They do, however, influence the reflecting properties
of metals; particularly, the value of ωp is lowered to ω′p = ωp/

√
ε∞, where ε∞ is the frequency-

independent part of the dielectric function due to the ions. With this, the reflectivity for
frequencies above ω′p approaches R = (ε∞ − 1)2/(ε∞ + 1)2, and 0 < R < 1 (see Fig. 5.2, 5.3).
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Figure 5.2: Reflectance spectra for silver and copper: In both cases the drop of reflectance is due
to optical transitional between the completely filled d-band and the partially filled s-band. Note
the logarithmic scale for the reflectivity. (Source: An introduction to the optical spectroscopy of
inorganic solids, J. Garćıa Solé, L.E. Bausá and D. Jaque, Wiley (2005))

Color of metals: The practically 100% of reflectance for frequencies below ωp is a typical feature
of metals. Since for most metals the plasma frequency lies well above the range of visible light
(~ω = 1.5 − 3.5eV ), they appear shiny to our eye. While most polished metal surfaces appear
shiny white, like silver, there are some metals with a color, like gold which is yellow and copper
which is reddish. White shininess results from reflectance on the whole visible frequency range,
while for colored metals there is a certain threshold above which the reflectance drops and fre-
quencies towards blue are not or much weaker reflected. In most cases this drop is not connected
with the plasma frequency, but with light absorption due to interband transitions. Note that
the single band metal which was used for the Drude theory does not allow for optical absorption
apart from the plasma excitation. Interband transition play, in particular, an important role in
the case of the noble metals, Cu, Ag and Au. For these metas the reflectance drop is caused by
the transition from the completely occupied d-band to the partially filled s-band (in case of Cu:
3d → 4s). For Cu this drop appear below 2.5 eV so that predominantly red light is reflected
(see Fig.5.2). For Au this threshold frequency is slightly higher, but still in the visible, while for
Ag it lies beyond the visible range (see Fig.5.2). For these cases the plasma frequency is not so
easily recognizable in the reflectance. Note that the single band metal which was used for the
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Drude theory does not allow for optical absorption apart from the plasma excitation.
On the other hand, Al shows a reflectance rather close to the expected behavior (see. Fig.5.3).
Also in this case there is some reduction of the reflection due to interband absorption. However,
this effect is weak and the strong drop occurs at the plasma frequency of ~ωp = 15.8eV . Like
Ag also polished Al is white shiny.
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Figure 4.5 The reflectivity spectrum of Aluminum (full line) compared with those predicted
from the ideal metal model with ltato : 15.8 eV (dotted line) and a damped oscillator with f :
1.25 x 16ta r-t (dashed line) (experimental data reproduced with permission from Ehrenreich
et al.,1962).

In Figure 4.5, the experimental reflectivity spectrum of aluminum is compared with
those predicted by the ideal metal and the damped metal models. Al has a free electron
density of ly' : 1 8. I x 1922 .*-3 (three valence electrons per atom) and so, according
toEquation(4.20),itsplasmaenergyisltc,;o: l5.SeV.Thus,thereflectivityspectrum
for the ideal metal can be now calculated. Compared to the experimental spectrum,
the ideal metal model spectrum is only slightly improved when taking into account
the damping terrn, with f : I.25 x 10la s-1, & value deduced from DC conductivity
measurements. The main differences between the two calculated spectra are that
damping produces a reflectivity slightly less than one below op and the ultraviolet
transmission edge is slightly smoothed out.

Finally, it should be mentioned that neither the ideal metal model nor the damped
metal model are able to explain why the actual reflectivity of aluminum is lower than
the calculated one (R ry 1) at frequencies lower than rt r. Also, these simple models
do not reproduce features such as the reflectivity dip observed around 1.5 eV. In order
to account for these aspects, and then to have a better understanding of real metals,
the band structure must be taken into account. This will be discussed at the end of
this chapter, in Section 4.8.

4.5 SEMICONDUCTORS AND INSULATORS

Unlike metals, semiconductors and insulators have bound valence electrons. This
aspect gives rise to interband transitions. The objective of this and the next section is

Figure 5.3: Reflectance spectrum of aluminium: The slight reduction of reflectivity below ωp
is due to interband transitions. The thin line is the theoretical behavior for τ = 0 and the
dashed line for finite τ . (Source: An introduction to the optical spectroscopy of inorganic solids,
J. Garćıa Solé, L.E. Bausá and D. Jaque, Wiley (2005))

5.2.3 The relaxation time

With the help of the approximation Eq. (5.20) to the Boltzmann equation, we study the con-
nection between the scattering rate W (k,k′) and the relaxation time τ . The relation

f(k)− f0(k)
τ(εk)

=
∫

d3k′

(2π)3
W (k,k′){f(k)− f(k′)} (5.38)

shall be valid, and we consider an isotropic system and assume elastic scattering. The solution
of Eq. (5.19) is of the form

f(k) = f0(k) +A(k)k ·E ⇒ f(k)− f(k′) = A(k)(k − k′) ·E. (5.39)

We introduce a parametrization of the angles according to (k ‖ z)

k ·E = kE cos θ,
k · k′ = kk′ cos θ′, (5.40)
k′ ·E = k′E(cos θ cos θ′ + sin θ sin θ′ cosφ′).

With k = k′ (elastic scattering) we obtain

f(k)− f(k′) = A(k)kE[cos θ(1− cos θ′)− sin θ sin θ′ cosφ′]. (5.41)

After insertion in the right side of Eq. (5.38), the φ′-dependent part of the integration vanishes
for an isotropic system, and∫

dΩk′ [f(k)− f(k′)]W (k,k′) = A(k)kE cos θ
∫
dΩk′(1− cos θ′)W (k,k′)

= [f(k)− f0(k)]
∫
dΩk′(1− cos θ′)W (k,k′), (5.42)
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i.e., we can drop the factor f(k)− f0(k) in both sides of Eq. (5.38) and obtain

1
τ(εk)

=
∫

d3k′

(2π)3
W (k,k′)(1− cos θ′), (5.43)

where one should remember that, for elastic scattering, εk = εk′ .

5.3 Impurity scattering

5.3.1 Potential scattering

Every deviation from the perfect periodicity of the ionic lattice is a source of quasiparticle
scattering, leading to the loss of their original momentum. Without translational invariance,
the conservation of momentum is violated (energy, however, is still conserved). Possible static
scatterers are, e.g., vacancies, dislocations, and impurity atoms. The scattering rate W (k,k′)
for a potential V̂ can be determined by the Golden Rule,3

W (k,k′) =
2π
~
nimp|〈k′|V̂ |k〉|2δ(εk − εk′). (5.44)

By nimp we denote the density of impurities, where we have assumed identical impurities. We
neglect interference effects between different impurities, which is a reasonable approximation for
small densities.
According to Eq. (5.43), the lifetime of a quasi particle with momentum ~k is given by

1
τ(εk)

=
2π
~
nimp

∫
d3k′

(2π)3
|〈k′|V̂ |k〉|2(1− k̂ · k̂′)δ(εk − εk′)

= nimp(k̂ · vk)
∫

dσ

dΩ
(k,k′)(1− k̂ · k̂′)dΩk′

4π
, (5.45)

with the differential scattering cross section dσ/dΩ and k̂ = k/|k|. Here, we have used the
connection between the Golden Rule and the Born approximation.4

Note the difference between the relaxation time τ and the lifetime τ̃ , where the Golden rule
yields for the latter

1
τ̃

=
∫

d3k

(2π)3
W (k,k′). (5.48)

The factor 1−cos θ′ in Eq, (5.43) emphasizes backscattering (scattering angle θ′ ≈ π) in contrast
to forward scattering (scattering angle θ′ ≈ 0), as the latter has less influence on transport.
Therefore, τ is called transport lifetime.
Assuming the defects to be point charges with charge Ze, whose potential is screened in a metal,
leads to

〈k′|V̂ |k〉 =
4πZe2

|k − k′|2 + k2
TF

. (5.49)

3This corresponds to the first Born approximation in scattering theory. Note, that this approximation is
insufficient to describe resonant scattering.

4The scattering of particles with momentum ~k into the solid angle dΩk′ around k′ yields

W (k,k′)dΩk′ =
2π

~Ω

X
k′∈dΩk′

|〈k′|bV |k〉|2δ(εk − εk′)
=

2π

~
dΩk′

Z
k′∈dΩk′

d3k′

(2π)3
〈k′|bV |k〉|2δ(εk − εk′) =

2π

~
dΩk′N(ε)|〈k′|bV |k〉|2. (5.46)

The scattering per incoming particle current jindσ(k,k′) = W (k,k′)dΩk′ determines the differential cross section

k̂ · vk
dσ

dΩ
(k,k′) =

2π

~
N(ε)

4π
|〈k′|bV |k〉|2. (5.47)

leading to Eq. (5.45).
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In the case of kTF � kF (very strong screening), the differential cross section becomes indepen-
dent of the deviation—in the context of partial wave expansion one speaks of s-wave scattering,
i.e., δl>0 → 0—the transport and the usual lifetime become equal, τ = τ̃ , where

1
τ
≈ π

~
N(εF )nimp

(
4πZe2

k2
TF

)2

. (5.50)

We determine the conductivity for scattering on defects, assuming s-wave scattering only. Then,
τ(ε) depends weakly on energy and Eq. (5.25) yields

σ =
e2nτ(εF )

m
, (5.51)

or, equivalently,

ρ =
1
σ

=
m

e2nτ(εF )
, (5.52)

with the specific resistivity ρ. Both σ and ρ are independent of temperature. This contribution
is called the residual resistivity of a metal, which approaches zero for a perfect material. The
temperature dependence of the resistivity originates in other scattering processes like electron-
phonon scattering and electron-electron scattering, which consider below. The so-called RRR
(residual resistance ratio) is an often used figure to benchmark the quality of a material. It
is defined as = R(T = 300K)/R(T = 0), i.e., as the ratio between the resistance at room
temperature and the resistance at zero temperature. The bigger the RRR, the better the quality
of the material.

5.3.2 Resonant scattering – Kondo effect

There are impurity atoms inducing so-called resonant scattering. If the resonance is close to
the Fermi energy, the scattering rate is strongly energy dependent, inducing a more pronounced
temperature dependence of the resistivity. An important example is the scattering off magnetic
impurities with a spin degree of freedom, yielding a dramatic energy dependence of the scattering
rate. This problem was first studied by Kondo in 1964, who used this to explain the peculiar
minima in resistivity in some materials.
The coupling between the local spins Si at Ri and the quasi-particle spin s has the exchange
form

V̂K =
∑
i

V̂Ki = J
∑
i

Ŝi · ŝ(r)δ(r −Ri)

= J
∑
i

{
Ŝzi ŝ

z(r) +
1
2
Ŝ+
i ŝ
−(r) +

1
2
Ŝ−i ŝ

+(r)
}
δ(r −Ri) (5.53)

=
J~
2Ω

∑
k,k′,i

[
Ŝzi (ĉ†k↑ĉk′↑ − ĉ†k↓ĉk′↓) + S+

i ĉ
†
k↓ĉk′↑ + S−i ĉk↑ĉk′↓

]
e−i(k−k

′)·Ri .

It is important that spin flip processes, that change the spin state of the impurity and the
scattered electron, are enabled.
We present here the resulting scattering rate without derivation,

W (k,k′) ≈ J2S(S + 1)
{

1 + 2JN(εF )ln
D

|εk − εF | + · · ·
}
, (5.54)

where we have assumed that JN(εF )� 1 (bandwidth D), and the relaxation time turns out to
be

1
τ(εk)

≈ J2S(S + 1)
~

N(ε)
{

1 + 2JN(εF )ln
D

|εk − εF |
}
. (5.55)
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Note that W (k,k′) does not depend on angle (s-wave scattering). The energy dependence is
singular at the Fermi energy, indicating that we are not dealing with simple resonant potential
scattering, but with a much more subtle many-particle effect involving the electrons on the Fermi
surface. The fact that the local spin can be flipped makes the scattering center dynamical, i.e.,
the scatterer is constantly changing. The scattering process of an electron is influenced by
previous scattering events, leading to the singularity at εF . This cannot be described within the
first Born approximation, but requires at least the second approximation or the full solution. We
refer to J.M. Ziman, Principles of the Theory of Solids, and A.C. Hewson, The Kondo Problem
to Heavy Fermions for more details.
As indicated before, the resonant behavior induces a strong temperature dependence of the
conductivity. Indeed,

σ(T ) =
e2k3

F

6π2m

∫
dε

1
4kBT cosh2(ε− εF )/2kBT )

τ(ε)

≈ e2n

8mkBT

∫
dε̃
J2S(S + 1){1− 2JN(εF )ln(D/ε̃)}

cosh2(ε̃/2kBT )
. (5.56)

A simple substitution in the integral leads to

σ(T ) ≈ e2n

2m
J2S(S + 1)

{
1− 2JN(εF )ln

D

kBT

}
. (5.57)

Usual contributions to the resistance (like electron-phonon scattering) typically decrease with
temperature. The contribution due to Eq. (5.57) is strongly increasing, inducing a minimum in
the resistance. At even lower temperatures, the conductivity seems to be suppressed (within our
approximation it even becomes negative). This is, however, an artifact of the approximation.
In reality, the conductivity saturates at a finite value, the crossover occurring at a characteristic
Kondo temperature TK ,

kBTK = De−1/JN(εF ), (5.58)

a characteristic energy scale of this system. The real behavior at temperatures T � TK is not
accessible by simple perturbation theory. It is known as the Kondo problem and constitutes one
of the most interesting correlation effects of many-particle physics.

5.4 Electron-phonon interaction

Even in perfect metals, the conductivity remains finite at finite temperature. The thermally
induced distortions of the lattice acts as fluctuating scattering centers. In the language of
electron-phonon interaction, electrons are scattered by the absorption and emission of phonons,
which induce local fluctuations in volume (cf. Chapter 3). The corresponding coupling term has
the form

V̂ep = i
∑
k,q,s

Ṽqq ·
{
ûq ĉ

†
k+q,sĉk,s − û†−q ĉ†ksĉk+q,s

}

= 2i
∑
k,q,s

Ṽq

√
~

2ρ0ωq
|q|(̂bq − b̂†−q)ĉ†k+q,sĉks. (5.59)

The interaction is similar to the interaction between electrons and electromagnetic radiation
(photons). The most important processes consist of single-phonon processes, i.e., the absorption
or emission of one phonon. Energy and momentum are conserved; for the scattering of an
electron with momentum k to k′ due to the emission of a phonon with momentum q we have
thus

k = k′ + q +G, (5.60)
εk = ~ωq + εk′ , (5.61)
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whereG is a reciprocal lattice vector. By this, the phase space available for scattering is strongly
reduced, especially near the Fermi energy. Note that ~ωq ≤ ~ωD � εF .
In order to calculate the scattering rates, we require the matrix element of the available pro-
cesses,5

〈k + q;Nq′ |(̂bq − b̂†−q)ĉ†k+q,sĉks|k;N ′q′〉
= 〈k + q|ĉ†k+q,sĉks|k〉

{√
N ′q′ δNq′ ,N

′
q′−1 δq,q′ −

√
N ′q′ + 1 δNq′ ,N

′
q′+1 δ~q,−q′

}
. (5.62)

From the Golden Rule we then obtain(
∂f

∂t

)
coll

= −2π
~
∑
q

|g(q)|2 [{f(k) (1− f(k + q)) (1 +N−q)

−f(k + q) (1− f(k))N−q} δ(εk+q − εk + ~ω−q)
−{f(k + q) (1− f(k)) (1 +Nq)
−f(k) (1− f(k + q))Nq} δ(εk+q − εk − ~ωq)] , (5.63)

where g(q) = Ṽq|q|
√

2~/ρ0ωq. The four terms describe the four processes depicted in Fig. 5.4.

−q

k

k + q

k + q

k k

k + q

k + q

k

−q q q

Figure 5.4: The four single-phonon electron-phonon scattering processes.

The collision integral leads to a complicated integro-differential equation, whose solution is very
tedious. Instead of a rigorous calculation, we will explain the behavior in various temperature
regimes by qualitative considerations.
The characteristic temperature of phonons, the Debye temperature ΘD � TF , is much smaller
than the Fermi temperature. Hence, the phonon energy is virtually unimportant for the energy
conservation, εk+q ≈ εk. We can thus concentrate on momentum conservation and consider
the lattice distortion as being essentially static, i.e., in the sense of an adiabatic approximation
according to Born-Oppenheimer. The approximate collision integral then reads(

∂f

∂t

)
coll

=
2π
~
∑
q

|g(q)|22N(ωq)

× {f(k + q) [1− f(k)]− f(k) [1− f(k + q)]}︸ ︷︷ ︸
f(k+q)−f(k)

δ(εk+q − εk), (5.64)

where we assume the occupation of phonon states according to the equilibrium distribution for
bosons,

N(ωq) =
1

e~ωq/kBT − 1
. (5.65)

In analogy to previous approaches, we make the relaxation-time Ansatz and obtain

1
τ(εk)

=
2π
~

λ

N(εF )

∫
d3q

(2π)3
~ωqN(ωq)(1− cos θ)δ(εk+q − εk), (5.66)

5In analogy to the discussion on electromagnetic radiation, the phenomenon of spontaneous phonon emission
due to zero-point fluctuations exists. It is formally visible in the additional “+1” in the factors (1 +N±q).
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where |k| = |k+q| = kF , i.e., the electrons close to the Fermi surface are relevant. Furthermore,
we have parametrized g(q) according to

|g(q)|2 =
λ

2N(εF )Ω
~ωq, (5.67)

where λ is a dimensionless electron-phonon coupling constant. In usual metals λ < 1. As in the
case of defect scattering, the relaxation time depends only weakly on the electron energy. But,
unlike previously, the direct temperature dependence of phonon occupation enters the game.

q

kF
k

k + q

γ

θ

Figure 5.5: The geometry of electron-phonon scattering.

In order to execute the integral in Eq. (5.66), we have to analyze δ(εk+q − εk) and write

δ(εk+q − εk) = δ

(
~2

2m
{q2 − 2kF q cos γ}

)
=

m

~2kF q
δ

(
q

2kF
− cos γ

)
, (5.68)

cf. Fig. 5.5. From there, we also see that 2γ + θ = π, and thus

1− cos θ = 1 + cos(2γ) = 2 cos2 γ. (5.69)

Obviously, we have to integrate over 0 ≤ q ≤ 2kF , and we can reformulate the integrand
according to

1
τ(T )

=
λ

N(εF )
m

~2πkF

∫ 2kF

0
dq qωqN(ωq)

∫
d cos γ cos2 γδ

(
q

2kF
− cos γ

)
(5.70)

=
λ

4N(εF )
mcs

~2πk3
F

∫ 2kF

0

q4dq

e~csq/kBT − 1
=

λ

4N(εF )
mcsk

2
F

~2π

(
T

ΘD

)5 ∫ 2ΘD/T

0

y4dy

ey − 1
,

where we have approximated the Debye temperature by kBΘD ≈ 2~cskF . We notice two distinct
characteristic temperature regimes,

1
τ

=


6ζ(5)λπ

kBΘD

~

(
T

ΘD

)5

, T � ΘD,

λπ
kBΘD

~

(
T

ΘD

)
, T � ΘD.

(5.71)

The prefactors depend on the details of the approximation. The qualitative temperature depen-
dence, however, does not. We finally obtain the conductivity and resistivity from Eq. (5.23),

σ =
e2n

m
τ(T ), (5.72)

ρ =
m

e2n

1
τ(T )

, (5.73)
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where we have used the weak energy dependence of τ (ε ≈ εF ). With this, we obtain the
well-known Bloch-Grüneisen form

ρ(T ) ∝


T 5, T � ΘD,

T, T � ΘD.
(5.74)

At hight temperatures, ρ is determined by the occupation of phonon states, whereas the con-
straint of the scattering phase space is decisive at low temperatures.

5.5 Electron-electron scattering

In Chapter 4 we have learned, that, taking a short-ranged electron-electron interaction into
account, the lifetime of a quasi particle strongly increases close to the Fermi surface. The basic
reason was the constraint of the scattering phase space due to the Pauli principle. The lifetime,
which we identify with the relaxation time here, has the form

1
τ(ε)

= C(ε− εF )2. (5.75)

This allows determining the resistivity from Eq. (5.23), and we find

σ(T ) =
e2n

mC(kBT )2
, (5.76)

i.e., the resistivity ρ ∝ T 2. This is a key property of a Fermi liquid and is often considered an
identifying criterion.
However, an important point requires some explanation. One could, in principle, argue, that
the momentum of the Fermi liquid is conserved upon the collision of two electrons. It is thus
not quite clear what causes a finite resistance. But this argument ignores the existence of the
lattice: The kinematics is also satisfied for electrons being scattered from the Fermi surface of
one Brillouin zone to the one of another Brillouin zone, while incorporating a reciprocal lattice
vector. By this, the momentum is transferred to the lattice. Such processes are called Umklapp
processes and play an important role in electron-phonon scattering as well.

5.6 Matthiessen’s rule and the Ioffe-Regel limit

Matthiessen’s rule states, that the scattering rates of different scattering processes can simply
be added, i.e.,

W (k,k′) = W1(k,k′) +W2(k,k′), (5.77)

or, equivalently, in the relaxation time approximation,

1
τ

=
1
τ1

+
1
τ2
, (5.78)

and

ρ =
m

ne2τ
=

m

ne2

(
1
τ1

+
1
τ2

)
= ρ1 + ρ2. (5.79)

This is a rule and no theorem and corresponds effectively to a serial coupling of resistors. It is
only applicable if the different scattering processes are independent. Actually, already the linear
dependence of the impurity scattering rate on the impurity density nimp is a consequence of
Matthiessen’s rule. Mutual influences of impurities, e.g., through interference effects due to the
coherent scattering of a particle on different impurities, would invalidate this simplification. An
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example where this happens is the reduction to one spacial dimension, where a single scatterer
induces a finite resistance R. Two serial scatterers then lead to a resistance of

R = R1 +R2 +
2e2

h
R1R2 ≥ R1 +R2. (5.80)

The reason is that, in one-dimensional systems, the interference of backscattered waves is un-
avoidable and no impurity can be treated as isolated. Furthermore, every particle traversing the
whole system has to pass all scatterers. A more general Matthiessen’s rule,

ρ ≥ ρ1 + ρ2, (5.81)

is still valid.
For the analysis of resistance data of simple metals, we often assume the validity of Matthiessen’s
rule. A typical example is the resistance minimum explained by Kondo, where

ρ(T ) = ρ0 +ρe−p(T )+ρK(T )+ρe−e(T ) = ρ0 +CT 5 +C ′(1+2JN(εF )ln(D/kBT ))+AT 2. (5.82)

Upon decreasing temperature, the Kondo term is increasing, whereas the electron-phonon and
electron-electron contributions decrease. Consequently, there is a minimum.
Difficulties with Matthiessen’s rule also arise, if the relaxation time depends on k, since then
the averaging is not the same for all scattering processes. The electron-phonon coupling can be
modified by the scattering on impurities, most importantly in the presence of anisotropic Fermi
surfaces.
We now turn to the discussion of resistivity in the high-temperature limit. Were we to believe
the previous considerations entirely, the electrical resistivity would grow indefinitely with tem-
perature. In most cases, however, the resistivity will saturate at a finite limiting value. We
can see this from simple considerations regarding the mean free path ` = vF τ(εF ), the mean
distance an electron travels freely between two collisions. The lattice constant a is a natural
lower boundary to ` in the crystal lattice. Furthermore, we have so far assumed the scattering
between two states with sharp momentum (k → k′). If the de Broglie wavelength becomes
comparable to the mean free path, this picture (i.e., this basis) becomes unsuitable, and k−1

F is
a boundary. In most systems a and k−1

F are comparable lengths.
Empirically, the resistivity is described via the formula

1
ρ(T )

=
1

ρBT(T )
+

1
ρmax

, (5.83)

i.e., the parallel addition of two resistivities: ρBT(T ), which we have investigated using the Boltz-
mann transport theory, and the limiting value ρmax. This is in clear contrast to Matthiessen’s
rule, which is to be expected since kF ` ∼ 1 will definitely lead to complex interference effects.
We can, however, estimate ρmax from the Jellium model to be

ρmax =
m

e2nτ(εF )
=

3π2m

e2k3
F τ(εF )

=
h

e2

3π
2k2

F `

∼ h

e2

3π
2kF

∼ (25kΩ)
3π

2× 108cm−1
≈ 1mΩ× cm, (5.84)

where we have used `−1 ∼ kF ∼ 108cm−1. This is called the Ioffe-Regel limit.6 Estimating ρmax

for a given material is often difficult. There are even materials whose resistivity surpasses the
Ioffe-Regel limit.

6ρmax ∼ 1mΩcm should be compared to the room-temperature resistivity of good conductors, which are

metal Cu Au Ag Pt Al Sn Na Fe Ni Pb

ρ[µΩcm] 1.7 2.2 1.6 10.5 2.7 11 4.6 9.8 7 21

i.e., these values are well below ρmax.
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5.7 General transport coefficients

Besides charge, electrons transport energy, i.e., heat and entropy. Naturally, charge and heat
transport are thus interconnected. In the following, we generalize the transport theory set up
above to include this.

5.7.1 Generalized Boltzmann equation and the Wiedemann-Franz law

We consider a metal with weakly space-dependent temperature T (r) and chemical potential µ(r).
Note that in this section we will work with the electrochemical potential η(r) = eφ(r) + µ(r)
where φ(r) denotes the electrostatic potential. The distribution function then reads

δf(k; r) = f(k; r)− f0[k, T (r), µ(r)], (5.85)

where
f0[k, T (r), µ(r)] =

1
exp{[εk − µ(r)]/kBT (r)}+ 1

. (5.86)

Additionally, we require the charge density to remain constant in space, i.e.,∫
d3k δf(k; r) = 0 (5.87)

for all r. With this, we find the Boltzmann equation for the stationary situation,(
∂f

∂t

)
coll

= vk · ∂f
∂r

+ k̇ · ∂f
∂k

= − ∂f
∂εk

vk ·
{
∂T

∂r

εk − µ
T

− E
}
, (5.88)

with E = −∇(eφ+ µ), where eφ+ µ is called electrochemical potential (E = −∇φ).
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Figure 5.6: Schematic distribution functions δf(k) on a cut through the k-space (kz = 0) with
a circular Fermi surface for two situations: a) for an applied electric field negative x-direction;
b) for a temperature gradient in x-direction.

In the relaxation time approximation for the collision integral we obtain the solution

δf(k) = −∂f0

∂εk
τ(εk)vk ·

{
E − εk − µ

T

∂T

∂r

}
, (5.89)

from which we find the charge and heat currents,

Je = 2
∫

d3k

(2π)3
evkδfk, (5.90)

Jq = 2
∫

d3k

(2π)3
(εk − µ)vkδfk, (5.91)
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respectively. Inserting the solution yields

Je = e2K̂(0)E +
e

T
K̂(1) (−∇T ) , (5.92)

Jq = eK̂(1)E +
1
T
K̂(2) (−∇T ) , (5.93)

where
K

(n)
αβ = − 1

4π3

∫
dε

∂f0

∂ε
τ(ε)(ε− µ)n

∫
dΩk

vFαvFβ
~|vF | . (5.94)

In the case T � TF we can calculate the coefficients,7

K
(0)
αβ =

1
4π3~

τ(εF )
∫
dΩk

vFαvFβ
|vF | , (5.97)

K̂(1) =
π2

3
(kBT )2 ∂

∂ε
K̂(0)(ε)

∣∣∣∣
ε=εF

, (5.98)

K̂(2) =
π2

3
(kBT )2K̂(0)(εF ). (5.99)

We measure the electrical resistivity assuming thermal equilibrium, i.e., ∇T = 0 for all r. With
this, as before,

σαβ = e2K
(0)
αβ . (5.100)

To determine the thermal conductivity κ, we set Je = 0 (open circuit). Then, Eqs. (5.92) and
(5.93) reveal the appearance of an electrochemical field according to

E =
1
T
K̂(0)−1K̂(1)∇T. (5.101)

Thus, the heat current is given by

Jq = − 1
T

(
K̂(2) − K̂(1)K̂(0)−1K̂(1)

)
∇T = −κ̂∇T. (5.102)

In simple metals, the second term is often negligible and one obtains

κ̂ =
1
T
K̂(2) =

π2k2
B

3
TK̂(0) =

π2

3
k2
B

e2
T σ̂, (5.103)

which is the well-known Wiedemann-Franz law. Note, that we can write the thermal conductivity
in the form

κ̂ =
C

e2N(εF )
σ̂, (5.104)

with the electronic specific heat C = π2k2
BT/3.

7 If g(ε) depends only weakly on ε, we can use the Taylor expansion to derive a general approximation for
T → 0 according to

−
Z
dεg(ε)

∂f0

∂ε
= g(εF ) +

π2

6
(kBT )2 ∂2g(ε)

∂ε2

˛̨̨̨
ε=εF

+ . . . (5.95)

and

−
Z
dεg(ε)(ε− εF )

∂f0

∂ε
=
π2

3
(kBT )2 ∂g(ε)

∂ε

˛̨̨̨
ε=εF

, (5.96)

where we have used µ→ εF for T → 0.
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5.7.2 Thermoelectric effect

In Eq. (5.101) we have seen that a temperature gradient induces an electric field. For simplicity,
we assume an isotropic system. Then,

E = Q∇T (5.105)

with the Seebeck coefficient

Q = − π2

3
k2
BT

e

σ′(ε)
σ(ε)

∣∣∣∣
ε=εF

. (5.106)

Using σ(ε) = n(ε)e2τ(ε)/m, we investigate σ′(ε),

σ′(ε) =
τ ′(ε)
τ(ε)

σ(ε) +
n′(ε)
n(ε)

σ(ε) =
τ ′(ε)
τ(ε)

σ(ε) +
N(ε)
n(ε)

σ(ε), (5.107)

i.e., we obtain a contribution if the relaxation time depends strongly on energy. This is most
prominent, if there is resonant scattering involved (e.g., the Kondo effect). If the first term is
irrelevant, we find

Q = −π
2

3
k2
BT

e

N(εF )
n(εF )

= − S

ne
, (5.108)

which corresponds to the entropy per electron.
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Figure 5.7: Schematics of thermoelectric effects: a) Seebeck effect, b) Peltier effect.

We consider two types of thermoelectric effects. The first is the Seebeck effect, where a thermo-
electric voltage appears in a bi-metallic system (cf. Fig. 5.7). With Eq. (5.105), a temperature
gradient across metal B induces an electromotoric force

EMF =
∫
ds ·E =

∫
ds ·Q∇T (5.109)

=
∫ T1

T0

QA d~s · ~∇T +
∫ T2

T1

QB d~s · ~∇T +
∫ T0

T2

QA d~s · ~∇T = (QB −QA)(T2 − T1).

The resulting voltage appears in a second metal A, whose contacts are kept at the same tem-
perature T0. Here, a bi-metallic configuration was chosen to reveal voltage differences across the
contacts which are absent in a single metal.
The second phenomenon, the so-called Peltier effect, emerges in a system kept at the same
temperature everywhere. Here, an electric current induces a heat current in a bi-metallic system
(see Fig. 5.7), such that heat is transferred from one reservoir to another. This follows from
Eqs. (5.92) and (5.92) by assuming ∇T = 0, where

Je = e2K(0) ~E

Jq = eK(1) ~E

 ⇒ Jq =
K(1)

eK(0)
Je = TQJe = ΠJe. (5.110)
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Π is called Peltier coefficient. In Fig. 5.7 we see, that one obtains a contribution to the heat
current from both metals A and B,

Jq = (ΠA −ΠB)Je = T0(QA −QB)Je. (5.111)

This means, that we can control the heat transfer between reservoirs using electrical current.

5.8 Transport in one dimension – Anderson localization

Transport in one spatial dimension is very special, since there are only two ways to go: left
and right. We introduce the transfer matrix formalism and use it to express the conductivity
through the Landauer formula. We will investigate the effects of multiple scattering at different
obstacles, leading to the so-called Anderson localization, which turns a metal into an insulator.

5.8.1 Landauer Formula

The transmission and reflection at an arbitrary potential with finite support in one dimension
can be described by a transfer matrix. A suitable basis for the electrons in this case are left-

x

I1 I2

a1+ a2+

V

a1− a2−

T

Figure 5.8: Transfer matrices describe potential scattering in one dimension.

and right moving plane waves (cf. Fig. 5.8) with wave vector ±k. Only plane waves with the
same |k| on the left and right side of the scatterer are interconnected. Therefore, we write

ψ1(x) = a1+e
ikx + a1−e−ikx, (5.112)

ψ2(x) = a2+e
ikx + a2−e−ikx, (5.113)

where ψ1 (ψ2) is defined in the area I1 (I2). The vectors ai = (ai+, ai−) are connected via a
linear relation,

a2 = Ta1 =
(
T11 T12

T21 T22

)
a1, (5.114)

with the 2× 2 transfer matrix T. The conservation of current (J1 = J2) requires det T = 1, i.e.,
T is unimodular. Here,

J =
i~
2m

{
dψ(x)∗

dx
ψ(x)− ψ(x)∗

dψ(x)
dx

}
, (5.115)

such that, for a plane wave ψ(x) = L−1/2eikx, J = ~k/Lm = v/L (system size L).
Time reversal symmetry implies that, with ψ(x), ψ(x)∗ is a solution of the stationary Schrödinger
equation as well. From this, we find T11 = T ∗22 and T12 = T ∗21, i.e.,

T =
(
T11 T12

T ∗12 T ∗11

)
. (5.116)

It is easily shown that a shift of the scattering potential by a distance x0 changes the coefficients
of T by a phase factor, T11 → T11 and T12 → T12e

i2kx0 .
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We can connect the coefficients of T with the transmission- and reflection amplitudes of the
previous sections: With the ansatz for a right moving (unnormalized) wave,

ψ1(x) = eikx + re−ikx, (5.117)
ψ2(x) = teikx, (5.118)

we find via insertion that

T =
(

1/t∗ −r∗/t∗
−r/t 1/t

)
. (5.119)

Then the conservation of currents imposes the condition 1 = |r|2 + |t|2 making the matrix
unimodular.
We can find a relation between r and t of a potential barrier and the electric resistivity. The
incoming current density J0 is split into a reflected and transmitted part, Jr and Jt, respectively,
all given by

J0 = − 1
L
ve, Jr = −|r|

2

L
ve, Jt = −|t|

2

L
ve, (5.120)

with the velocity v = ~k/m and the electron charge −e. The electron density on the two sides
of the barrier is given by

n1 =
1 + |r|2
L

, (5.121)

n2 =
|t|2
L
, (5.122)

from which a density difference δn = n1−n1 = (1+|r|2−|t|2)/L = 2|r|2/L results. Consequently,
there is an energy difference δE = −eδV between the two sides, corresponding to a voltage via

δn =
dn

dE
δE = − dn

dE
eδV. (5.123)

Here, dn
dEdE is the number of states per length in the energy interval [E,E + dE], i.e.,

dn

dE
=

1
L

∑
~k,s

δ

(
E − ~2k2

2m

)
= 2

∫
dk

2π
δ

(
E − ~2k2

2m

)
=

1
π~v(E)

. (5.124)

The resistance is obtained from

R =
δV

Jt
= −δn

e

(
dn

dE

)−1 1
Jt

=
h

e2

|r|2
|t|2 , (5.125)

where h/e2 ≈ 25.8kΩ is the resistance quantum. This is the famous Landauer formula, which is
valid for all one-dimensional systems and which is often used for the description of mesoscopic
systems and quantum wires.
We consider now two spatially separated scattering potentials, represented by T1 und T2 (r1, t1
bzw. r2, t2). The particles are multiply scattered at these potentials in a complicated manner,

T T
1 2

Figure 5.9: Two spatially separated scattering potentials.
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but the result can, again, be expressed via a simple transfer matrix by multiplying T1 and T2.
All previously found properties remain valid for the new total matrix T, given by

T = T1T2 =


1
t∗1t∗2

+
r∗1r2

t∗1t2
− r∗2
t∗1t∗2
− r∗1
t∗1t2

− r1

t1t∗2
− r2

t1t2

1
t1t2

+
r1r
∗
2

t1t∗2

 =
(

1/t∗ −r∗/t∗
−r/t 1/t

)
. (5.126)

For the ratio between reflection and transmission probability we find

|r|2
|t|2 =

1
|t|2 − 1 =

1
|t1|2|t2|2

∣∣∣∣1 +
r1r
∗
2t2
t∗2

∣∣∣∣2 − 1

=
1

|t1|2|t2|2
(

1 + |r1|2|r2|2 +
r1r
∗
2t2
t∗2

+
r∗1r2t

∗
2

t2

)
− 1. (5.127)

Assuming an arbitrary distance d = x2− x1 between the two potential barriers, wi average over
this distance. Note, that r2/t2 ∝ e−2ikd and, therefore, terms with such a factor vanish after
averaging. The remainders of Eq. (5.127) can be collected to

|r|2
|t|2
∣∣∣∣
avg

=
1

|t1|2|t2|2
(
1 + |r1|2|r2|2

)− 1 =
|r1|2
|t1|2 +

|r2|2
|t2|2 + 2

|r1|2
|t1|2

|r2|2
|t2|2 . (5.128)

Even though two scattering potentials are added in series, a non-linear combination instead of
the sum of the two ratios |ri|2/|ti|2 emerges. From the Landauer formula we see, that resistances
add differently. Adding R1 and R2 serially, the total resistance is not given byR = R1 +R2, but
by

R = R1 +R2 +
2e2

h
R1R2 > R1 +R2. (5.129)

This is a consequence of the unavoidable multiple scattering. It is particularly prominent if
Ri � h/e2, where resistances are multiplied instead of summed.

5.8.2 Anderson localization

Let us consider a system with many arbitrarily distributed scatterers, and let ρ be a mean
resistance per unit length. R0 shall be the resistance between points 0 and `0. The change in
resistance by advancing an infinitesimal δ` is found from

dR = ρd`+
2e2

h
Rρd`, (5.130)

which yields ∫ R

R0

dR

1 + 2e2

h R
=
∫ `

`0

ρd`, (5.131)

and, thus,
h

2e2
ln
(

1 + 2e2R(`)/h
1 + 2e2R0/h

)
= ρ(`− `0). (5.132)

Since R0 → 0 for `0 → 0,

R(`) =
h

2e2

(
e2e2ρ`/h − 1

)
. (5.133)

Obviously, R → ∞ very rapidly for increasing `. This means, that this system is an insulator
for arbitrarily small but finite ρ > 0. The reason for this is that, in one dimension, all states are
localized (i.e., bound states) in the presence of disorder. This phenomenon is called Anderson
localization. Even though all states are localized, the energy spectrum is continuous, as infinitely
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many bound states with different energy exist. The mean localization length ξ (related to mean
extension of wave functions) of individual states is found from Eq. (5.133) to be ξ = h/e2ρ. The
transmission amplitude is reduced on this length scale as well, since |t| ≈ 2e−`/ξ for `� ξ.8

In one dimension, there is no “normal” electric resistance [R(`) ≈ ρ`] for non-interacting parti-
cles, only two extremes: Either, the potential is perfectly periodic and the states correspond to
Bloch waves. Then, coherent constructive interference produces extended states that propagate
freely throughout the system and therefore a perfect conductor without resistance 9. On the
other hand, if the scattering potential is disordered, all states are localized. In this case, there is
no propagation and the system is an insulator. In three-dimensional systems, multiple scattering
is far less dangerous and the Ohmic law is applicable. Localization in two dimensions is very
subtle and part of today’s research.

8For an expanded discussion of this topic, the article “New method for a scaling theory of localization” by P.W.
Anderson, D.J. Thouless, E. Abrahams, and D.S. Fisher, Physical Review B 22, 3519 (1980) is recommended.

9We have also seen in the context of chiral edge states in the Quantum Hall state, that perfect conductance
in a one-dimensional channel, if there is no backscattering due to the lack of states which move in the opposite
direction, i.e. in chiral states particle move only in one directon

110



Chapter 6

Magnetism in metals

Magnetic ordering in metals can be viewed as an instability of the Fermi liquid state. We enter
this new behavior of metals through a detailed description of the Stoner ferromagnetism. The
discussion of antiferromagnetism and spin density wave phases will be only brief. In Stoner
ferromagnets the magnetic moment is provided by the spin of itinerant electrons. Magnetism
due to localized magnetic moments will be considered in the context of Mott insulators which
are subject of the next chapter.
Well-known examples of elemental ferromagnetic metals are Fe, Co and Ni belonging to the
3d transition metals, where the 3d-orbital character dominates the conduction electrons at the
Fermi energy. These orbitals are rather tightly bound to the ion cores such that their mobility
is reduced, enhancing the importance of interactions which essential for the formation of a
magnetic state, as we will see below.
Other forms of magnetism (spin density waves and antiferromagnetism) are found in the 3d
transition metals Cr and Mn, whereas 4d and 5d transition metals within the same columns of
the periodic system are not magnetic. Their d-orbitals are more extended, leading to a higher
mobility of the electrons. The 4d -elements Pd and Rh and the 5d-element Pt are, however,
nearly ferromagnetic. The 4f -orbitals appearing in the lanthanides are nearly localized and can
lead to ferromagnetism, as illustrated by the elements going from Gd through Tm in the periodic
system.
Magnetism appears through a phase transition, i.e., the metal is non-magnetic at sufficiently
high temperatures above a critical temperature Tc (cf. Table 6.1). In many cases magnetism
appears at Tc as a continuous transitiong, a second order phase transition (lacking latent heat but
featuring a discontinuity in the specific heat) involving the spontaneous violation of symmetry.

element Tc (K) type element Tc (K) type
Fe 1043 ferromagnet (3d) Gd 293 ferromagnet (4f)
Co 1388 ferromagnet (3d) Dy 85 ferromagnet (4f)
Ni 627 ferromagnet (3d) Cr 312 spin density wave (3d)
ZrZn2 22 ferromagnet α-Mn 100 antiferromagnet
Pd – paramagnet Pt – paramagnet
HfZn2 – paramagnet

Table 6.1: Selection of ferromagnetic materials with their respective form of magnetism and the
critical temperature Tc.

6.1 Stoner instability

We focus here on the metallic ferromagnetism originating from the Stoner mechanism. In close
analogy to the first Hund’s rule, the exchange interaction is crucial here, i.e., the alignment of
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their spins allows the electrons to reduce the energy cost due to Coulomb repulsion. According
to Landau’s theory of Fermi liquids, the interaction between electrons renormalizes the spin
susceptibility χ to

χ =
m∗

m

χ0

1 + F a0
, (6.1)

which diverges for F a0 → −1. This points towards a possible magnetic instability of the Fermi
liquid, which we discuss within the Stoner model here.

6.1.1 Stoner model within the mean field approximation

We consider a model of conduction electrons with a repulsive contact interaction,

H =
∑
k,s

εkĉ
†
ksĉks + U

∫
d3r d3r′ ρ̂↑(r)δ(r − r′)ρ̂↓(r′), (6.2)

where we use the density ρ̂s(r) = Ψ̂†s(r)Ψ̂s(r). Due to the Pauli exclusion principle, the contact
interaction is only active between electrons with opposite spins. This is a consequence of the
exchange hole in the two-particle correlation between electrons of identical spin.
The general solution of this model is difficult. However, a mean field approximation will provide
very useful insights. We rewrite,

ρ̂s(r) = ns + {ρ̂s(r)− ns}, (6.3)

where
ns = 〈ρ̂s(r)〉. (6.4)

We stipulate that the deviation from the mean value ns shall be small, i.e.,

〈{ρ̂s(r)− ns}2〉 � n2
s. (6.5)

Inserting Eq. (6.3) into the Hamiltonian Eq. (6.2) we obtain

Hmf =
∑
k,s

εkĉ
†
ksĉks + U

∫
d3r {ρ̂↑(r)n↓ + ρ̂↓(r)n↑ − n↑n↓}+ . . .

=
∑
k,s

{εk + Un−s} ĉ†ksĉks +−UΩn↑n↓ + . . . . (6.6)

This mean field Hamiltonian describes electrons which move in the uniform background of
electrons of opposite spin coupling via the (spin dependent) Coulomb interaction (exchange
interaction). Fluctuations are suppressed here. The advantage of this approximation is, that we
are now dealing with an effective one-particle problem, where only the mean electron interaction
is taken into account (this is a generalized Hartree-Fock approximation). This enables us to
calculate a few expectation values, e.g., the density of one spin species

n↑ =
1
Ω

∑
k

〈ĉ†k↑ĉk↑〉 =
1
Ω

∑
k

f(εk + Un↓) =
∫
dε

1
Ω

∑
k

δ(ε− εk − Un↓)︸ ︷︷ ︸
=

1
2
N(ε− Un↓)

f(ε), (6.7)

and analogously, for the opposite spin direction. These mean densities are determined self-
consistently, i.e., the insertion of ns in into the mean field Hamiltonian Eq. (6.6) must provide
the output according to the expectation values Eq. (6.7), under the constraint that the total
number of electrons is conserved. We define the “magnetization” m (the real magnetization
M = µBm) via

ns =
1
2

((n↑ + n↓) + s(n↑ − n↓)) =
n0 + sm

2
, (6.8)
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with the particle density n0. We end up with the two coupled equations

n0 =
1
2

∫
dε {N(ε− Un↓) +N(ε− Un↑)} f(ε)

=
1
2

∑
s

∫
dεN

(
ε− Un0

2
− sUm

2

)
f(ε), (6.9)

m =
1
2

∫
dε {N(ε− Un↓)−N(ε− Un↑)} f(ε)

= −1
2

∑
s

∫
dεsN

(
ε− Un0

2
− sUm

2

)
f(ε). (6.10)

Usually these equations cannot be solved analytically and have to be treated numerically.

6.1.2 Stoner criterion

An approximate solution is possible, if m � n0. For this purpose Eqs. (6.9) and (6.10) solved
adapting the chemical potential µ. For low temperatures and small magnetization we can expand
µ as

µ(m,T ) = εF + ∆µ(m,T ), (6.11)

where the constant energy shift −Un0/2 in Eqs.(6.9) and (6.10) has been absorbed into εF . We
use the Fermi-Dirac distribution in the form

f(ε) =
1

eβ[ε−µ(m,T )] + 1
, (6.12)

where β = (kBT )−1. We first expand Eq. (6.9) and obtain

n0 ≈
∫
dεf(ε)

{
N(ε) +

1
2

(
Um

2

)2

N ′′(ε)

}

≈
∫ εF

0
dεN(ε)︸ ︷︷ ︸

=n0

+N(εF )∆µ+
π2

6
(kBT )2N ′(εF ) +

1
2

(
Um

2

)2

N ′(εF ), (6.13)

where N ′(ε) = dN(ε)/dε and N ′′(ε) = d2N(ε)/dε2. Since the first term on the right side is
identical to n0, we immediately end up with

∆µ(m,T ) ≈ −N
′(εF )

N(εF )

{
π2

6
(kBT )2 +

1
2

(
Um

2

)2
}
, (6.14)

since the remaining terms have to cancel. Analogously we treat Eq. (6.10) and expand in m
and T ,

m ≈
∫
dεf(ε)

[
N ′(ε)

Um

2
+

1
3!
N ′′′(ε)

(
Um

2

)3
]

≈
{
N(εF ) +

π2

6
(kBT )2N ′′(εF ) +

1
3!

(
Um

2

)2

N ′′(εF ) + ∆µN ′(εF )

}
Um

2
, (6.15)

and finally

m =
m

2
UN(εF )

[
1− π2

6
(kBT )2Λ1(εF )2

]
−N(εF )Λ2(εF )2

(
Um

2

)3

, (6.16)
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where

Λ1(εF )2 =
N ′(εF )2

N(εF )2
− N ′′(εF )

N(εF )
, Λ2(εF ) =

1
2

(
N ′(εF )2

N(εF )2
− N ′′(εF )

3N(εF )

)
. (6.17)

The structure of Eq. (6.16) is m = am+bm3, assuming b < 0; it thus has two types of solutions,

m2 =


0, a < 1,

1− a
b

, a ≥ 1.
(6.18)

With this, a = 1 corresponds to a critical value, i.e.,

1 =
1
2
UN(εF )

[
1− π2

6
(kBT )2Λ1(εF )2

]
, (6.19)

yielding

kBTC =
√

6
πΛ1(εF )

√
1− 2

UN(εF )
=

√
6

πΛ1(εF )

√
1− Uc

U
(6.20)

for U > Uc = 2/N(εF ) (cf. Fig. 6.1). This is an instability condition for the nonmagnetic Fermi

UN(ǫF ) > 2

µ

m

UN(ǫF ) < 2

Um

N(ǫ)am + bm2

E

N(ǫ)

Figure 6.1: Graphical solution of Eq. (6.16) and the resulting magnetization.

liquid state with m = 0, and TC is the Curie temperature below which the ferromagnetic state
appears. The temperature dependence of the magnetization M of the ferromagnetic state is
given by

M(T ) = µBm(T ) ∝
√
TC − T , T < TC , (6.21)

if TC − T � TC . Note that TC is only finite for UN(εF ) > 2, and TC → 0 for UN(εF ) → 2+.
This condition for a finite TC , UN(εF ) > 2 is known as the Stoner criterion.
Here, we also have obtained a simple model for a so-called quantum phase transition, i.e., a
phase transition at T = 0 as a function of system parameters, e.g., the density of states or the
Coulomb repulsion. While thermal fluctuations destroy the ordered state at finite temperature
via entropy increase (an enhanced entropy S leads to a lowering of the free energy F at finite
temperatures, dF = −SdT + · · · ), entropy is irrelevant at T = 0. Instead, order is suppressed by
quantum fluctuations (Heisenberg’s uncertainty principle). The density of states as an internal
parameter can, e.g., be changed by external pressure. Pressure by reducing the lattice constant
may facilitate the motion of the conduction electrons (increased overlap of atomic orbitals) and
increase the Fermi velocity. Consequently, the density of states is reduced (cf. Fig. 6.2). In
fact, pressure is able to destroy ferromagnetism in weakly ferromagnetic materials as ZrZn2,
MnSi, and UGe2. In other materials, the Curie temperature is high enough, such that the
technologically feasible pressure is insufficient to suppress magnetism. It is, however, possible,
that pressure leads to other transitions that eventually destroy magnetism, e.g., structural phase
transitions. This is seen in iron (Fe), where a pressure of about 12 GPa induces a transition
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Figure 6.2: Phase diagram of a Stoner ferromagnet in the T -UN(εF ) and T -p plane, respectively.
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Figure 6.3: Phase diagrams of UGe2 and Fe.

from magnetic iron with body-centered crystal (bcc) structure to a nonmagnetic, hexagonal
close packed (hcp) structure (cf. Fig. 6.3). While this form of transition is a quantum phase
transition as well, it appears mostly as a discontinuous transition of first order.1 Pressure can
also induce an increase in N(εF ), e.g., in metals with multiple bands, where compression leads
to a redistribution of charge. One example is most likely Sr3Ru2O7 for which uniaxial pressure
along the z-axis leads to magnetism.
Let us eventually turn to the question, why is Cu, being a direct neighbor of Ni in the 3d-row
of the periodic table, not ferromagnetic? Both elemental metals even share the same crystal
structure (fcc). This can be understood from the Stoner instability criterion (UN(εF ) = 2):
While the conduction electrons at the Fermi level of Ni have 3d-character and belong to a narrow
band with a large density of states, the Fermi energy of Cu is situated in the broad 4s-band
and constitutes a much smaller density of states (cf. Fig. 6.4). With this, the Cu conduction
electrons are much less localized and feature a weaker tendency towards ferromagnetism. Cu is
known to be a better conductor than Ni for this reason.

6.1.3 Spin susceptibility for T > TC

We apply an infinitesimal magnetic field H along the z-axis, which induces a spin polarization
due to the Zeeman coupling. From the self-consistency equations we obtain

m = −1
2

∫
dεf(ε)

∑
s

s N

(
ε− µBsH − sUm2

)
≈
∫
dεf(ε)N ′(ε)

(
Um

2
+ µBH

)
= N(εF )

[
1− π2

6
(kBT )2Λ1(εF )2

](
Um

2
+ µBH

)
. (6.22)

1The Stoner instability is a simplification of the quantum phase transition. In most cases, a discontinuous
phase transition originates in the band structure or in fluctuation effects, which have been ignored here, cf. D.
Belitz and T.R. Kirkpatrick, Phys. Rev. Lett. 89, 247202 (2002).

115



εF
εF

N(  )ε

CuNi

4s

3d

ε

Figure 6.4: The position of the Fermi energy of Cu and Ni, respectively.

Solved for m, this yields

M = µBm =
χ0(T )

1− Uχ0(T )/2µ2
B

H, (6.23)

and, consequently,

χ =
M

H
=

χ0(T )
1− Uχ0(T )/2µ2

B

m, (6.24)

where

χ0(T ) = µ2
BN(εF )

[
1− π2

6
(kBT )2Λ1(εF )2

]
. (6.25)

We see, that the denominator of the susceptibility χ(T ) vanishes exactly if the Stoner instability
criterion is fulfilled, i.e., the diverging susceptibility indicates the instability and

χ(T ) ≈ χ0(TC)
T 2
C
T 2 − 1

. (6.26)

Note that for T → TC+ the susceptibility diverges as χ(T ) ∝ |TC − T |−1 corresponding to the
mean field behavior (mean field coefficient γ = 1).

6.2 General spin susceptibility and magnetic instabilities

The ferromagnetic state is characterized by a uniform magnetization. There are, however,
magnetically ordered states which do not feature a net magnetization. Examples are spin density
waves, antiferromagnets and spin spiral states. Here, we analyze general instability conditions.

6.2.1 General dynamic spin susceptibility

We consider a magnetic field, oscillating in time and modulated space like

H(r, t) = Heiq·r−iωteηt, (6.27)

and calculate the resulting magnetization, for the corresponding Fourier component./ We pro-
ceed analogously as in chapter 3. We define the spin density operator Ŝ(r),

Ŝ(r) =
~
2

∑
s,s′

Ψ̂†s(r)σss′Ψ̂s′(r) (6.28)
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in real space, and

Ŝq =
∫
d3rŜ(r)e−iq·r =

~
2Ω

∑
k,s,s′

c†k+q,sσss′ck,s′ =
1
Ω

∑
k

Ŝk,q (6.29)

in momentum space. The Hamiltonian of the electronic system with contact interaction is given
by

H =
∑
k,s

εkĉ
†
ksĉks−

gµB
~

∫
d3rH(r, t) · Ŝ(r)︸ ︷︷ ︸

=HZ

+U
∫
d3rρ̂↑(r)ρ̂↓(r). (6.30)

We investigate a magnetic field in the x-y-plane, H → H+(q, ω) with

HZ = −gµB
~Ω

∑
k

H+(q, ω)eiq·rŜ−k,−qe
−iωt+ηt + h.c.. (6.31)

We ignore the ’h.c.’ in HZ in the following. Using the equations of motion, analogous to Sect.
3.2, we determine the induced magnetization , first without the interaction term, i.e.,

i~
∂

∂t
Ŝ+
k,q = [H, Ŝ+

k,q]. (6.32)

Thus, we obtain for the given Fourier component,

i~
∂

∂t
Ŝ+
k,q(t)k,q = (εk+q − εk)Ŝ+

k,q(t)− g~µB(ĉ†k+q↑ĉk+q↑ − ĉ†k↓ĉk↓)H+(q, ω)e−iωt . (6.33)

Taking the temporal Fourier transform and the thermal average we obtain,

(εk+q − εk − ~ω + i~η)〈S+
k,q〉 = −g~µB(nk+q↑ − nk↓)H+(q, ω), (6.34)

which then leads to the induced spin density (magnetization),

〈S+
ind(q, ω)〉 =

1
Ω

∑
k

〈S+
k,q〉 =

~
µB

χ0(q, ω)H+(q, ω), (6.35)

with

χ0(q, ω) = −gµ
2
B

Ω

∑
k

nk+q↑ − nk↓
εk+q − εk − ~ω + i~η

. (6.36)

Note that the form of χ0(q, ω) is analogous to the Lindhard function Eq. (3.34). The form Eq.
(6.35) determines the induced spin density in linear response approximation.
Albeit, we have not yet included the effects of the interaction. Analogously to the charge density
in Sect.3.2., the induced spin density generates an effective field: the induced spin polarization
appears in the exchange interaction as an effective magnetic field. We rewrite the contact
interaction in Eq. (6.30) in the form

U

∫
d3rρ↑(r)ρ↓(r) =

U

Ω

∑
k,k′,q

ĉ†k+q↑ĉk↑ĉ
†
k′−q↓ĉk′↓

= −U
Ω

∑
k,k′,q

ĉ†k+q↑ĉk↓ĉ
†
k′−q↓ĉk′↑ = − U

Ω~2

∑
q

Ŝ+
q Ŝ
−
−q. (6.37)

We may now consider the induced spin polarization Ŝ+
q → 〈S+

ind(q, ω)〉 defining an effective
magnetic field due to induced spin polarization coupling to the electron spins through interaction
term:

− gµB
~
H+

ind(q, ω)Ŝ−−q = −U
~2
〈S+(q, ω)〉Ŝ−−q, (6.38)
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the effective magnetic field H+
ind is then given by

H+
ind =

U

gµB~
〈S+(q, ω)〉. (6.39)

This induced field acts on the spins as well, such that the total response of the spin density on
the external field becomes

M+(q, ω) =
µB
~
〈S+(q, ω)〉 = χ0(q, ω){H+(q, ω) +H+

ind(q, ω)}

= χ0(q, ω)H+(q, ω) + χ0(q, ω)
U

gµB~
〈S+(q, ω)〉. (6.40)

Thus, M+(q, ω) = χ(q, ω)H+(q, ω), with

χ(q, ω) =
χ0(q, ω)

1− U
2µ2
B
χ0(q, ω)

. (6.41)

In analogy to Sect.3.2, this corresponds to the so-called RPA form. This form is valid for all
field directions, as long as spin-orbit coupling is neglected and the spin is isotropic.
Looking at the case q, ω → 0 corresponding to a uniform, static external field, we obtain

χ0(q, 0) = −2µ2
B

Ω

∑
k

nk+q↑ − nk↓
εk+q − εk

q→0−→ −2µ2
B

Ω

∑
k

∂f(εk)
∂εk

= χ0(T ), (6.42)

which corresponds to the Pauli susceptibility (g = 2). Then, χ(T ) is again cast into the form
that we have seen in Eq. (6.24) and describes the instability of the metal with respect to
ferromagnetic spin polarization, where the denominator vanishes. It is, however, possible, that
q = 0 is not the leading instability, if χ0(q, 0) > χ0(0, 0). Then, another form of magnetic order
would occur.

6.2.2 Instability with finite wave vector q

In order to show that, indeed, the Stoner instability does not always prevail among all possible
magnetic instabilities, we look first at a simple argument based on the local susceptibility. We
define the local magnetic moment along the z-axis, M(r) = µB〈ρ̂↑(r) − ρ̂↓(r)〉, and observe in
linear response the nonlocal relation

M(r) =
∫
d3r′ χ̃0(r − r′)Hz(r′), (6.43)

or, in Fourier space,
Mq = χ0(q)Hq, (6.44)

with
χ0(q) =

∫
d3r χ̃0(r)e−iq·r. (6.45)

Let us compare χ0(q = 0) with χ(q) = χ̃0(r = 0), i.e., the uniform and the local susceptibility
at T = 0. The local susceptibility appears as the average of χ0(q) over all q,

χ0(q) =
2µ2

B

Ω2

∑
k,q

nk+q − nk
εk − εk+q

=
µ2
B

2

∫
dεN(ε)

∫
dε′N(ε′)

f(ε)− f(ε′)
ε′ − ε , (6.46)

as compared to χ0(q = 0) = µ2
BN(εF ). The local susceptibility depends on the density of states

and the Fermi energy of the system.
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A very good qualitative understanding can be obtained already by a very simple form of the
density of states,

N(ε) =


1
D
, −D ≤ ε ≤ +D,

0, |ε| > D,

(6.47)

i.e., N(ε) for a band in the form of a box with width 2D (band width). With this, the integral
in Eq. (6.46) is easily evaluated and leads to the ratio,

R0 =
χ0(q)

χ0(q = 0)
= ln

(
4

1− η2

)
+ ηln

(
1− η
1 + η

)
, (6.48)

with η = εF /D (cf. Fig. 6.5). For small and large band fillings (εF close to the band edges),

Figure 6.5: R0 for a box-shaped band with width η = εF /D.

the tendency towards ferromagnetism dominates. If, on the other hand, εF tends towards the
middle of the band, the susceptibility χ0(q) will cease to be maximal at q = 0, and magnetic
ordering with finite q becomes more probable.

6.2.3 Influence of the band structure

Magnetic order at finite q depends strongly on the details of the band structure. The argument
with the local susceptibility is nothing more but a general indication on a possible instability at
finite q. A crucial feature for the importance of a given q is the so-called “nesting” of the Fermi
surface. Let us assume that, around certain extended areas of the Fermi surface the energy
dispersion satisfies the condition,

ξk+Q = −ξk (6.49)

for a fixed vector Q and for all k in close proximity of the Fermi surface with ξk = εk − εF .
Then, this area will dominate the susceptibility. Let us investigate the static susceptibility χ0(q)
for ~q = ~Q under the assumption, that Eq.(6.49) holds for all ~k. Then,

χ0( ~Q;T ) =
2µ2

B

Ω

∑
~k

n~k+ ~Q
− n~k

ξ~k − ξ~k+ ~Q

= µ2
B

∫
d3k

(2π)3

f(−ξ~k)− f(ξ~k)
ξ~k

= µ2
B

∫
d3k

(2π)3

tanh(ξ~k/2kBT )
ξ~k

=
µ2
B

2

∫
dξN(ξ)

tanh(ξ/2kBT )
ξ

. (6.50)

In order to evaluate this integral approximately, we realize that the leading contributions comes
from the immediate vicinity of the Fermi energy so that we replace N(ξ) by the constant density
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of states N(εF ). Furthermore, the integral is only convergent, if we introduce a cutoff, which
we do at ε0 ∼ D, half the bandwidth. Thus,

χ0( ~Q, 0;T ) ≈ −µ2
BN(εF )

∫ ε0

0
dξ

tanh(ξ/2kBT )
ξ

= µ2
BN(εF )

{
ln
(

ε0
2kBT

)
+ ln

(
4eγ

π

)}
≈ µ2

BN(εF ) ln
(

1.14ε0
2kBT

)
, (6.51)

where we assume ε0 � kBT , and where γ = 0.57777 is Eulers constant. The non-renormalized
susceptibility diverges logarithmically at low temperatures. By inserting the generalized Stoner
relation, we find the instability criterion [divergence of χ( ~Q, 0;T ) in Eq. (6.41)] in the form

0 = 1− UN(εF )
2

ln
(

1.14ε0
2kBTc

)
, (6.52)

and the critical temperature
kBTc = 1.14ε0e−2/UN(εF ). (6.53)

Obviously, there is a finite critical temperature for arbitrarily small values of UN(εF ) > 0. The
nesting condition results in χ0(~q, 0;T ) being maximal for ~q = ~Q and leading to the relevant
instability in Eq. (6.41) producing magnetic order with wave vector Q. We speak here of a spin
density wave. The spin density has, for example, the form

S(r) = ẑS cos(Q · r), (6.54)

without a uniform component. Such spin density waves are known in low-dimensional systems
like organic conductors, or in transition metals like chrome (Cr). In all cases, nesting plays an
important role (cf. Fig. 6.6).

Γ

H

Q
Q Q

lochartige
Fermifläche

elektronartige
Fermifläche

eindimensional quasi−eindimensional

BZ BZ

BZ

Chrom

Figure 6.6: Different nesting conditions.

In quasi-one-dimensional electron systems, there is a main direction of motion and two unimpor-
tant directions with weak dispersion. In this case nesting is possible as shown in the center panel
of Fig.6.6. Chrome is a three-dimensional metal, where nesting occurs between a electron-like
Fermi surface around the Γ point and a hole-like Fermi surface at the zone boundary (H point).
These Fermi surfaces originate in different bands (right panel in Fig.6.6). Chrome has a cubic
body centered crystal structure, where the H-point at (π/a, 0, 0) leads to the nesting vector
Q ‖ (1, 0, 0) (and equivalent directions), which is incommensurable with the lattice.
The textbook example of nesting is found from a tight-binding model in a simple cubic lattice
with nearest-neighbor hopping and half filling. The band structure is given by

εk = −2t[cos kxa+ cos kya+ cos kza], (6.55)
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with the chemical potential µ = 0. Obviously, εk+Q = −εk for all k, if Q = π
a (1, 1, 1). This

corresponds to total particle-hole symmetry.
Analogously to the Peierls instability, the spin density wave induces the opening of a gap at the
Fermi surface. Thus, the instability is a Fermi surface instability. The gap is confined to the
areas of the Fermi surface obeying the nesting condition. Contrarily to the ferromagnetic order,
the material can become insulating due to the formation of a spin density wave.

6.3 Stoner excitations

Finally, we discuss the elementary excitations of the ferromagnetic ground state, including
particle-hole excitations as well as new, collective modes. We focus on spin excitations, for
which we make the Ansatz

|ψq〉 =
∑
k

fkĉ
†
k+q,↓ĉk↑|ψg〉, (6.56)

i.e., we extract an electron from the ground state |ψg〉 and replace it by one with an opposite
spin. This implies a selection factor nk↑(1 − nk+q,↓) which takes care of a electron with (k ↓)
being available, and no electron with (k + q, ↑) being present.
We solve the Schrödinger equation

H|ψq〉 = (Eg + ~ωq)|ψq〉. (6.57)

A straightforward calculation shows, that the eigenvalue condition has the form

1
U

=
1
Ω

∑
k

nk↓ − nk+q↑
~ωq − εk+q↓ + εk↑

, (6.58)

corresponding to a root of the denominator of the RPA susceptibility Eq. (6.41). One no-
tices immediately, that a part of the eigenvalues corresponds, in principle, to the continuum of
electron-hole excitations with the spectrum

~ωq = εk+q,↓ − εk↑ = εk+q − εk + U(n↑ − n↓) , (6.59)

where we use the definition εks = εk + Un−s.
In addition collective excitations exist. One can interpret it as a bound state of an electron and
a hole analogous to the exciton. It is easily seen that, in the limit q → 0, Eq. (6.58) becomes

1
U

=
n↓ − n↑

~ω0 − U(n↑ − n↓) . (6.60)

This means, that ~ω0 = 0 is a solution which we will interpret later. We expand the right hand
side of Eq. (6.58),

1
U

=
1

∆Ω

∑
k

nk+q↑ − nk↓
1− ~ω

∆ + 1
∆(εk+q − εk)

, (6.61)

with ∆ = U(n↑ − n↓) and εk+q,↓ − εk↑ = εk+q − εk + ∆. With Eq. (6.60), we obtain

0 =
U

∆

∑
k

(nk+q↓ − nk↑)
[
{~ωq + εk+q − εk} − 1

∆
{~ωq + εk+q − εk}2

]
+ . . . (6.62)

≈ ~ωq − U

∆

∑
k

nk↑ + nk↓
2

(q ·∇k)2εk − U

∆2

∑
k

(nk↓ − nk↑)(q ·∇kεk)2 +O(q4)

up to second order in q. For the concrete evaluation we assume a simple parabolic form for the
band energies (εk = ~2k2/2m∗), and a weak magnetization n↑ − n↓ � n0. Then,

~ωq =
~2q2

2m∗
1
∆

{
Un0 − 4εF

3

}
= vq2. (6.63)
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Note, that v > 0, since the instability criterion for this case reads Uc = 4εF /3n0 = 2/N(εF ) and

~ωq =
~2q2

2m∗
n0

3
√

3

(
Uc
U
− 1
)1/2

≥ 0. (6.64)

This collective excitation features a q2-dependence and vanishes for q → 0. The last point
is a consequence of the ferromagnetic state breaking a continuous symmetry, i.e., the rotation
symmetry which is broken by the choice of a given direction of magnetization. A uniform
rotation of the magnetization does not cost any energy. This corresponds to the so-called
Goldstone theorem.2 Such an infinitesimal rotation is induced by our excitation with q = 0
(global spin rotation), i.e., ∑

k

ĉ†k↓ĉk↑ = Ŝ−tot. (6.65)

The elementary excitations have both electron and hole contributions, with an energy gap ≈ ∆
at small q. Thus, the collective excitations, which we call magnons, are well defined quasi-
particles. The constitute propagating spin waves. When these excitations enter the particle-hole
continuum, the are damped in the same way as plasmons (cf. Fig. 6.7). Being a bound state
between an electron and a hole, magnons are, like excitons, bosonic quasi-particles.

∆

hω

q

Magnon

Kontinuum
Elektron−Loch

Figure 6.7: Elementary (particle-hole) and collective (magnons) excitations of the Stoner ferro-
magnet.

2The Goldstone theorem states that, in a system with a short-ranged interaction, a phase which is reached
by the breaking of a continuous symmetry features collective excitation with arbitrarily small energy, so-called
Goldstone modes. These modes have bosonic character. In the case of the Stoner ferromagnet, these modes are
the magnons or spin waves.
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Chapter 7

Mott insulators and the magnetism
of localized moments

Up to now, we have mostly assumed that the interaction between electrons leads to secondary
effects. This was, essentially, the message of the Fermi liquid theory, the standard model of
condensed matter physics. There, the interactions of course renormalize the properties of a
metal, but their description is still possible by using a language of nearly independent fermionic
quasiparticles with a few modifications. Even in connection with the magnetism of itinerant
electrons, where interactions proved to be crucial, the description in terms of extended Bloch
states. Many properties were determined by the band structure of the electrons in the lattice,
i.e., the electrons were preferably described in k-space.
However, in this chapter, we will consider situations, were it is less clear wether we should
describe the electrons in momentum or in real space. The problem becomes obvious with the
following Gedanken experiment: We look at a regular lattice of H-atoms. The lattice constant
should be large enough such that the atoms can be considered to be independent for now. In the
ground state, each H-atom contains exactly one electron in the 1s-state, which is the only atomic
orbital we consider at the moment. The transfer of one electron to another atom would cost the
relatively high energy of E(H+)+E(H−)−2E(H) ∼ 15eV, since it corresponds to an ionization.
Therefore, the electrons remain localized on the individual H-atoms and the description of the
electron states is obviously best done in real space. The reduction of the lattice constant will
gradually increase the overlap of the electron wave functions of neighboring atoms. In analogy
to the H2 molecule, the electrons can now extend on neighboring atoms, but the cost in energy
remains that of an ”ionization”. Thus, transfer processes are only possible virtually, there are
not yet itinerant electrons in the sense of a metal.

Überlapp
starkerschwacher

Überlapp

Figure 7.1: Possible states of the electrons in a lattice with weak or strong overlap of the electron
wave functions, respectively.
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On the other hand, we know the example of the alkali metals, which release their outermost ns-
electron into an extended Bloch state and build a metallic (half-filled) band. This would actually
work well for the H-atoms for sufficiently small lattice constant too.1 Obviously, a transition
between the two limiting behaviors should exist. This metal-insulator transition, which occurs,
if the gain of kinetic energy surpasses the energy costs for the charge transfer. The insulating
side is known as a Mott insulator.
While the obviously metallic state is reliably described by the band picture and can be sufficiently
well approximated by the previously discussed methods, this point of view becomes obsolete
when approaching the metal-insulator transition. According to band theory, a half-filled band
must produce a metal, which definitely turns wrong when entering the insulating side of the
transition. Unfortunately, no well controlled approximation for the description of this metal-
insulator transition exists, since there are no small parameters for a perturbation theory.
Another important aspect is the fact, that in a standard Mott insulator each atom features
an electron in the outermost occupied orbital and, hence, a degree of freedom in the form of
a localized spin s = 1/2, in the simplest case. While charge degrees of freedom (motion of
electrons) are frozen at small temperatures, the same does not apply to these spin degrees of
freedom. Many interesting magnetic phenomena are produced by the coupling of these spins.
Other, more general forms of Mott insulators exist as well, which include more complex forms
of localized degrees of freedom, e.g., partially occupied degenerate orbital states.

7.1 Mott transition

First, we investigate the metal-insulator transition. Its description is difficult, since it does
not constitute a transition between an ordered and a disordered state in the usual sense. We
will, however, use some simple considerations which will allow us to gain some insight into the
behavior of such systems.

7.1.1 Hubbard model

We introduce a model, which is based on the tight-binding approximation we have introduced
in Chapt. 1. It is inevitable to go back to a description based on a lattice and give up continuity.
The model describes the motion of electrons, if their wave functions on neighboring lattice sites
only weakly overlap. Furthermore, the Coulomb repulsion, leading to an increase in energy, if a
site is doubly occupied, is taken into account. We include this with the lattice analogue of the
contact interaction. The model, called Hubbard model, has the form

H = −t
∑
〈i,j〉,s

(ĉ†isĉjs + h.c.) + U
∑
i

n̂i↑n̂i↓, (7.1)

where we consider hopping between nearest neighbors only, via the matrix element −t. Note,
that ĉ(†)

is are real-space field operators on the lattice (site index i) and n̂is = ĉ†isĉis is the density
operator. We focus on half filling, n = 1, one electron per site on average.
There are two obvious limiting cases:

• Insulating atomic limit: We put t = 0. The ground state has exactly one electron on
each lattice site. This state is, however, highly degenerate. In fact, the degeneracy is 2N

(number of sites N), since each electron has spin 1/2, i.e.,

|ΦA0{si}〉 =
∏
i

ĉ†i,si |0〉, (7.2)

1In nature, this can only be induced by enormous pressures metallic hydrogen probably exists in the centers
of the large gas planets Jupiter and Saturn due to the gravitational pressure.
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where the spin configuration {si} can be chosen arbitrarily. We will deal with the lifting
of this degeneracy later. The first excited states feature one lattice site without electron
and one doubly occupied site. This state has energy U and its degeneracy is even higher,
i.e., 2N−2N(N − 1). Even higher excited states correspond to more empty and doubly
occupied sites. The system is an insulator and the density of states is shown in Fig. 7.2.

• Metallic band limit: We set U = 0. The electrons are independent and move freely
via hopping processes. The band energy is found through a Fourier transform of the
Hamiltonian. With

ĉis =
1√
N

∑
k

ĉkse
ik·ri , (7.3)

we can rewrite
− t

∑
〈i,j〉,s

(ĉ†isĉjs + h.c.) =
∑
k,s

εkĉ
†
ksĉks, (7.4)

where
εk = −t

∑
a

eik·a = −2t {cos kxa+ cos kya+ cos kza} , (7.5)

and the sum runs over all vectors a connecting nearest neighbors. The density of states is
also shown in Fig. 7.2. Obviously, this system is metallic, with a unique ground state

|ΦB0〉 =
∏
k

Θ(−εk)ĉ†k↑ĉ
†
k↓|0〉. (7.6)

Note, that εF = 0 at half filling, whereas the bandwidth 2D = 12t.

atomischer Limes  metallischer Limes

E

N(E) N(E)

E

U

Figure 7.2: Density of states of the Hubbard model in the atomic limit (left) and in the free
limit (right).

7.1.2 Insulating state

We consider the two lowest energy sectors for the case t � U . The ground state sector α has
already been defined: one electrons sits on each lattice site. The lowest excited states create the
sector β with one empty and one doubly occupied site (cf. Fig. 7.3). With the finite hopping
matrix element, the empty (holon) and the doubly occupied (doublon) site become ”mobile”. A
fraction of the degeneracy (2N−2N(N−1)) is herewith lifted and the energy obtains a momentum
dependence,

Ek,k′ = U + εk + εk′ > U − 12t. (7.7)

125



Even though ignoring the spin configurations here is a daring approximation, we obtain a qual-
itatively good picture of the situation.2 One notices that, with increasing |t|, the two energy
sectors approach each other, until they finally overlap. In the left panel Fig.7.2 the holon-
doublon excitation spectrum is depicted by two bands, the lower and upper Hubbard bands,
where the holon is a hole in the lower and the doublon a particle in the upper Hubbard band.
The excitation gap is the gap between the two bands and we may interpret this system as an
insulator, called a Mott insulator. (Note, however, that this band structure depends strongly
on the correlation effects (e.g. spin correlation) and is not rigid as the band structure of a
semiconductor.) The band overlap (closeing of the gap) indicates a transition, after which a
perturbative treatment is definitely inapplicable. This is, in fact, the metal-insulator transition.

βα −Sektor −Sektor

Figure 7.3: Illustration of the two energy sectors, α and β.

7.1.3 The metallic state

On the metallic side, the initial state is better defined since the ground state is a filled Fermi sea
without degeneracy. The treatment of the Coulomb repulsion U turns out to become difficult,
once we approach the Mott transition, where the electrons suffer a strong impediment in their
mobility. In this region, there is no straight-forward way of a perturbative treatment. The so-
called Gutzwiller approximation, however, provides a qualitative and very instructive insights
into the properties of the strongly correlated electrons.
For this approximation we introduce the following important densities:

1: electron density

s↑: density of the singly occupied lattice sites with spin ↑
s↓: density of the singly occupied lattice sites with spin ↓
d: density of the doubly occupied sites

h: density of the empty sites

It is easily seen, that h = d and s↑ = s↓ = s/2, as long as no uniform magnetization is present.
Note, that d determines the energy contribution of the interaction term to Ud, which we regard
as the index of fixed interaction energy sectors. Furthermore,

1 = s+ 2d (7.8)

holds. The view point of the Gutzwiller approximation is based on the renormalization of the
probability of the hopping process due to the correlation of the electrons,exceeding restrictions
due to the Pauli principle. With this, the importance of the spatial configuration of the electrons
is enhanced. In the Gutzwiller approximation, the latter is taken into account statistically by
simple probabilities for the occupation of lattice sites.
We fix the density of the doubly occupied sites d and investigate the hopping processes which
keep d constant. First, we consider an electron hopping from a singly occupied to an empty

2Note that the motion of an empty site (holon) or doubly occupied site (doublon) is not independent of the
spin configuration which is altered through moving these objects. As a consequence, the holon/doublon motion is
not entirely free leading to a reduction of the band width. Therefore the band width seen in Fig.7.2 (left panel)
is smaller than 2D, in general. The motion of a single hole was in detail discussed by Brinkman and Rice (Phys.
Rev. B 2, 1324 (1970).
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site (i → j). Hopping probability depends on the availability of the initial configuration. We
compare the probability to find this initial state for the correlated (P ) and the uncorrelated (P0)
case and write

P (↑ 0) + P (↓ 0) = gt{P0(↑ 0) + P0(↓ 0)}. (7.9)

The factor gt will eventually appear as the renormalization of the hopping probability and, thus,
leads to an effective kinetic energy of the system due to correlations. We determine both sides
statistically. In the correlated case, the joint probability for i to be singly occupied and j to be
empty is obviously

P (↑ 0) + P (↓ 0) = sh = sd = d(1− 2d). (7.10)

where we used Eq.(7.8). In the uncorrelated case (where d is not fixed), we have

P0(↑ 0) = ni↑(1− ni↓)(1− nj↑)(1− nj↓) =
1
16
. (7.11)

The case for ↓ follows accordingly. In order to collect the total result for hopping processes which
keep d constant, we have to do the same calculation for the hopping process (↑↓, ↑) → (↑, ↑↓),
which leads to the same result. Processes of the kind (↑↓, 0) → (↑, ↓) leave the sector of fixed
d and are ignored.3 With this, we obtain in all cases the same renormalization factor for the
kinetic energy,

gt = 8d(1− 2d), (7.12)

i.e., t → gtt. We consider the correlations by treating the electrons as independent but with a
renormalized matrix element gtt. The energy in the sector d becomes

E(d) = gtεkin + Ud = 8d(1− 2d)εkin + Ud, εkin =
1
N

∫ 0

−D
dε N(ε)ε. (7.13)

For fixed U and t, we can minimize this w.r.t. d (note that this in not a variational calculation
in a strict sense, the resulting energy is not an upper bound to the ground state energy), and
find

d =
1
4

(
1− U

Uc

)
und gt = 1−

(
U

Uc

)2

, (7.14)

with the critical value
Uc = 8|εkin| ≈ 25t ∼ 4D. (7.15)

For u ≥ Uc, double occupancy and, thus, hopping is completely suppressed, i.e., electrons
become localized. This observation by Brinkman and Rice [Phys. Rev. B 2, 4302 (1970)]
provides a qualitative description of the metal-insulator transition to a Mott insulator, but
takes into account only local correlations, while correlations between different lattice sites are not
considered. Moreover, correlations between the spin degrees of freedom are entirely neglected.
The charge excitations contain contributions between different energy scales: (1) a metallic part,
described via the renormalized effective Hamiltonian

Hren =
∑
k,s

gtεkĉ
†
ksĉks + Ud, (7.16)

and (2) a part with higher energy, corresponding to charge excitations on the energy scale U ,
i.e., to excitations raising the number of doubly occupied sites by one (or more).

3This formulation is based on plausible arguments. A more rigorous derivation can be found in the
literature, e.g., in D. Vollhardt, Rev. Mod. Phys. 56, 99 (1984); T. Ogawa et al., Prog. Theor.
Phys. 53, 614 (1975); S. Huber, Gutzwiller-Approximation to the Hubbard-Model (Proseminar SS02,
http://www.itp.phys.ethz.ch/proseminar/condmat02).

127



We can estimate the contribution to the metallic conduction. Since in the tight-binding descrip-
tion the current operator contains the hopping matrix element and is thus subject to the same
renormalization as the kinetic energy, we obtain

σ1(ω) =
ω∗2p
4
δ(ω) + σhigh energy

1 (ω), (7.17)

where we have used Eq. (5.8) for a perfect conductor (no residual resistivity in a perfect lattice).
There is a high-energy part which we do not specify here. The plasma frequency is renormalized,
ω∗2p = gtω

2
p, such that the f -sum rule in Eq. (5.9) yields

I =
∫ ∞

0
dωσ1(ω) =

ω2
p

8
gt + Ihigh energy =

ω2
p

8
. (7.18)

For U → Uc, the coherent metallic part becomes weaker and weaker,

ω2
p

8
gt =

{
1−

(
U

Uc

)2
}
ω2
p

8
. (7.19)

According to the f -sum rule, the lost weight must gradually be transferred to the “high-energy”
contribution.

7.1.4 Fermi liquid properties of the metallic state

The just discussed approximation allows us to discuss a few Fermi liquid properties of the metallic
state close to metal-insulator transition in a simplified way. Let us investigate the momentum
distribution. According to the above definition,

εkin =
∑
k∈FS

εk, (7.20)

where the sum runs over all k in the Fermi sea (FS). One can show within the above approxi-
mation, that the distribution is a constant within (nin) and outside (nout) the Fermi surface for
finite U , such that, for k in the first Brillouin zone,

1
2

=
1
N

∑
k∈FS

nin +
1
N

∑
k/∈FS

nout =
1
2

(nin + nout) (7.21)

and
gtεkin =

1
N

∑
k∈FS

ninεk +
1
N

∑
k/∈FS

noutεk. (7.22)

Taking into account particle-hole symmetry, i.e.,∑
k

εk =
∑
k∈FS

εk +
∑
k/∈FS

εk = 0, (7.23)

we are able to determine nin and nout,

nin + nout = 1

nin − nout = gt

⇒ nin =
1
2

(1 + gt) , nout =
1
2

(1− gt). (7.24)

With this, the jump in the distribution at the Fermi energy is equal to gt, which, as previously,
corresponds to the quasi-particle weight (cf. Fig. 7.4). For U → Uc it vanihes, i.e., the
quasiparticles cease to exist for U = Uc.

128



kF

nk

g
t

k

Figure 7.4: The distribution function in the Gutzwiller approximation, displaying the jump at
the Fermi energy.

Without going into the details of the calculation, we provide a few Fermi liquid parameters. It
is easy to see that the effective mass

m

m∗
= gt, (7.25)

and thus

F s1 = 3
(
g−1
t − 1

)
=

3U2

U2
c − U2

, (7.26)

where t = 1/2m and the density of states N(εF )∗ = N(εF )g−1
t . Furthermore,

F a0 = −UN(εF )
4

2Uc + U

(U + Uc)2
Uc, ⇒ χ =

µ2
BN(εF )∗

1 + F a0
, (7.27)

F s0 =
UN(εF )

4
2UC − U
(U − Uc)2

Uc, ⇒ κ =
N(εF )∗

n2(1 + F s0 )
. (7.28)

It follows, that the compressibility κ vanishes for U → Uc as expected, since it becomes more
and more difficult to compress the electrons or to add more electrons, respectively. The insulator
is, of curse, incompressible. The spin susceptibility diverges because of the diverging density
of states N(εF )∗. This indicates, that local spins form, which exist as completely independent
degrees of freedom at U = Uc. Only the antiferromagnetic correlation between the spins would
lead to a renormalization, which turns χ finite. This correlation is, as mentioned above, neglected
in the Gutzwiller approximation. The effective mass diverges and shows that the quasiparticles
are more and more localized close to the transition, since the occupation of a lattice site is
getting more rigidly fixed to 1.4

As a last remark, it turns out that the Gutzwiller approximation is well suited to describe the
strongly correlated Fermi liquid 3He [cf., e.g., D. Vollhardt, Rev. Mod. Phys. 56, 99 (1984)].

4This can be observed within the Gutzwiller approximation in the form of local fluctuations of the particle
number. For this, we introduce the density matrix of the electron states on an arbitrary lattice site,

ρ̂ = h|0〉〈0|+ d| ↑↓〉〈↑↓ |+ s

2
{| ↑〉〈↑ |+ | ↓〉〈↓ |} , (7.29)

from which we deduce the variance of the occupation number,

〈n2〉 − 〈n〉2 = 〈n2〉 − 1 = tr(ρ̂n2)− 1 = 4d+ s− 1 = 2d. (7.30)

The deviation from single occupation vanishes with d, i.e., with the approach of the metal-insulator transition.
Note that the dissipation-fluctuation theorem connects 〈n2〉 − 〈n〉2 to the compressibility.
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7.2 The Mott insulator as a quantum spin system

One of the most important characteristics of the Mott insulator is the presence of spin degrees of
freedom after the freezing of the charge. This is one of the most profound features distinguishing
a Mott insulator from a band insulator. In our simple discussion, we have seen that the atomic
limit of the Mott insulator provides us with a highly degenerate ground state, where a spin-1/2
degree of freedom is present on each lattice site. We lift this degeneracy by taking into account
the kinetic energy term Hkin (t � U). In this way new physics appears on a low-energy scale,
which can be described by an effective spin Hamiltonian. Prominent examples for such spin
systems are transition-metal oxides like the cuprates La2CuO4, SrCu2O3 or vanadates CaV4O9,
NaV2O5.

7.2.1 The effective Hamiltonian

In order to employ our perturbative considerations, it is sufficient to observe the spins of two
neighboring lattice sites and to consider perturbation theory for discrete degenerate states. Here,
this is preferably done in real space. There are 4 degenerate configurations, {| ↑, ↑〉, | ↑, ↓〉, | ↓, ↑
〉, | ↓, ↓〉}. The application of Hkin yields

Hkin| ↑, ↑〉 = Hkin| ↓, ↓〉 = 0, (7.31)

and
Hkin| ↑, ↓〉 = −Hkin| ↓, ↑〉 = −t| ↑↓, 0〉 − t|0, ↑↓〉, (7.32)

where, in the last two cases, the resulting states have an energy higher by U and lie outside the
ground state sector. Thus, it becomes clear that we have to proceed to second order perturbation,
where the states of higher energy will appear only virtually (cf. Fig. 7.5). We obtain the matrix

oder

virtuell 

−t −t
E = U

Figure 7.5: Illustration of the origin of the superexchange.

elements
Ms1,s2;s′1,s

′
2

= −
∑
n

〈s1, s2|Hkin|n〉 1
〈n|HCoul|n〉〈n|Hkin|s′1, s′′2〉, (7.33)

where |n〉 = | ↑↓, 0〉 or |0, ↑↓〉, such that the denominator is always U . We end up with

M↑↓;↑↓ = M↓↑;↓↑ = −M↑↓;↓↑ = −M↓↑;↑↓ = −2t2

U
. (7.34)

Note that the signs originates from the anticommutation properties of the Fermion operators.
In the subspace {| ↑, ↓〉, | ↓, ↑〉} we find the eigenstates of the respective secular equations,

1√
2

(| ↑, ↓〉+ | ↓, ↑〉) E = 0,

1√
2

(| ↑, ↓〉 − | ↓, ↑〉) E = −4t2

U
.

(7.35)

Since the states | ↑, ↑〉 and | ↓, ↓〉 have energy E = 0, the sector with total spin S = 1 is
degenerate (spin triplet). The spin sector S = 0 with the energy −4t2/U is the ground state
(spin singlet).
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An effective Hamiltonian with the same energy spectrum for the spin configurations can be
written with the help of the spin operators Ŝ1 and Ŝ2 on the two lattice sites

Heff = J

(
Ŝ1 · Ŝ2 − ~2

4

)
, J =

4t2

U~2
> 0. (7.36)

This mechanism of spin-spin coupling is called superexchange and introduced by P.W. Anderson
[Phys. Rev. 79, 350 (1950)].
Since this relation is valid between all neighboring lattice sites, we can write the total Hamilto-
nian as

HH = J
∑
〈i,j〉

Ŝi · Ŝj + const. (7.37)

This model, reduced to spins only, is called Heisenberg model. The Hamiltonian is invariant
under a global SU(2) spin rotation,

Us(θ) = e−ibS·θ, Ŝ =
∑
j

Ŝj . (7.38)

Thus, the total spin is a good quantum number, as we have seen in the two-spin case. The
coupling constant is positive and favors an antiparallel alignment of neighboring spins. The
ground state is therefore not ferromagnetic.

7.2.2 Mean field approximation of the anti-ferromagnet

There are a few exact results for the Heisenberg model, but not even the ground state energy
can be calculated exactly (except in the case of the one-dimensional spin chain which can be
solved by means of a Bethe Ansatz). The difficulty lies predominantly in the treatment of
quantum fluctuations, i.e., the zero-point motion of coupled spins. It is easiest seen already with
two spins, where the ground state is a singlet and maximally entangled. The ground state of
all antiferromagnetic systems is a spin singlet (S − tot = 0). In the so-called thermodynamic
limit (N →∞) there is long-ranged anti-ferromagnetic order in the ground state for dimensions
D ≥ 2. Contrarily, the fully polarized ferromagnetic state (ground state for a model with J < 0)
is known exactly, and as a state with maximal spin quantum number S2 it features no quantum
fluctuations.
In order to describe the antiferromagnetic state anyway, we apply the mean field approximation
again. We can characterize the equilibrium state of the classical Heisenberg model (spins as
simple vectors without quantum properties) by splitting the lattice into two sublattices A and
B, where each A-site has only B-sites as neighbors, and vice-versa.5 On the A-(B-)sublattice,
the spins point up (down). This is unique up to a global spin rotations. Note, that this spin
configuration doubles the unit cell.
We introduce the respective mean field,

Ŝzi =


m+ (Ŝzi −m) i ∈ A

−m+ (Ŝzi +m) i ∈ B
. (7.39)

This leads to the mean field Hamiltonian

Hmf = HA +HB = −Jzm
∑
i∈A

Ŝzi + Jzm
∑
i∈B

Ŝzi + Jz
m2

2
N + · · · , (7.40)

5Lattices which allow for such a separation are called bipartite. There are lattices, where this is not possible,
e.g., triangular or cubic face centered latticesl. There, frustration phenomena appear, a further complication of
anti-ferromagnetically coupled systems.
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with the coordination number z, the number of nearest neighbors (z = 6 in a simple cubic
lattice). It is simple to calculate the partition sum of this Hamiltonian,

Z = tr
{
e−βHmf

}
=
[{
eβJmz~/2 + e−βJmz~/2

}
e−βJzm

2/2
]N

. (7.41)

The free energy per spin is consequently given by

F (m,T ) = − 1
N
kBT lnZ = Jz

m2

2
− kBT ln (2 cosh(βJzm~/2)) . (7.42)

At fixed temperature, we minimize the free energy w.r.t m to determine the thermal equilibrium
state,6 i.e., set ∂F/∂m = 0 and find

m =
~
2

tanh
(
Jzm~
2kBT

)
. (7.43)

This is the self-consistency equation of the mean field theory. It provides a critical temperature
TN (Nel temperature), below which the mean moment m is finite. For T → TN−, m approaches
0 continuously. Thus, TN can be found from a linearized self-consistency equation,

m =
Jzm~2

4kBT

∣∣∣∣
T=TN

, (7.44)

and thus

TN =
Jz~2

4kB
. (7.45)

This means, that TN scales with the coupling constant and with z. The larger J and the more
neighbors are present, the more stable is the ordered state.7 For T close to TN , we can expand
the free energy in m,

F (m,T ) = F0 +
Jz

2

[(
1− TN

T

)
m2 +

2
3~2

(
TN
T

)3

m4 · · ·
]
. (7.46)

This is a Landau theory for a phase transition of second order, where a symmetry is spon-
taneously broken. The breaking of the symmetry (from the high-temperature phase with high
symmetry to the low-temperature phase with low symmetry) is described by the order parameter
m. The minimization of F w.r.t. m yields (cf. Fig. 7.6)

m(T ) =


0, T > TN ,

~
2

√
3(TN/T − 1), T ≤ TN .

(7.47)

7.3 Collective modes – spin wave excitations

Besides its favorable properties, the mean field approximation also has a number of insufficien-
cies. Quantum and some part of thermal fluctuations are neglected, and the insight into the
low-energy excitations remains vague. As a matter of fact, as in the case of the ferromagnet,
collective excitations exist here. In order to investigate these, we write the Heisenberg model in
its spin components, i.e.,

HH = J
∑
〈i,j〉

{
Ŝzi Ŝ

z
j +

1
2

(
Ŝ+
i Ŝ
−
j + Ŝ−i Ŝ

+
j

)}
. (7.48)

6Actually, a magnetic field pointing into the opposite direction on each site would be another equilibrium
variable (next to the temperature). We set it to zero.

7At infinite z, the mean field approximation becomes exact.
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Figure 7.6: The free energy and magnetization of the anti-ferromagnet above and below TN .

In the ordered state, the moments shall be aligned along the z-axis.
To observe the dynamics of a flipped spin, we apply the operator Ŝ−l on the ground state |Φ0〉,
and determine the spectrum, by solving the resulting eigenvalue equation

(HH − E0)Ŝ−l |Φ0〉 = [HH , Ŝ−l ]|Φ0〉 = ~ωŜ−l |Φ0〉, (7.49)

with the ground state energy E0. Using the spin-commutation relations[
Ŝ+
j , Ŝ

−
j

]
= 2Ŝzj δij , (7.50)[

Ŝzj , Ŝ
±
j

]
= ±Ŝ±j δij , (7.51)

then yields the equation−J∑
j

′
Ŝzj Ŝ

−
l + J

∑
j

′
Ŝ−j Ŝ

z
l − ~ωŜ−l

 |Φ0〉 = 0, (7.52)

where
∑′

j runs over all neighbors of l. We decouple this complicated problem by replacing
the operators Ŝz by their mean fields. Therefore, we have to distinguish between A and B
sublattices, such that we end up with two equations,{

JmzŜ−l + Jm
∑
a

Ŝ−l+a − ~ωŜ−l

}
|Φ0〉 = 0, l ∈ A, (7.53){

−JmzŜ−l′ − Jm
∑
a

Ŝ−l′+a − ~ωŜ−l′

}
|Φ0〉 = 0, l′ ∈ B. (7.54)

We introduce the operators

Ŝ−l =

√
2
N

∑
q

â†qe
iq·rl , Ŝ−l′ =

√
2
N

∑
q

b̂†qe
iq·rl′ , (7.55)

with l ∈ A and l′ ∈ B, and, vice versa,

â†~q =

√
2
N

∑
l∈A

Ŝ−l e
−iq·rl , b̂†q =

√
2
N

∑
l′∈B

Ŝ−l′ e
−iq·rl′ , (7.56)

and insert them into the equation and obtain,{
(Jmz − ~ω)

∑
l∈A

Ŝ−l e
−iq·rl + Jm

∑
a

eiq·a
∑
l′∈B

Ŝ−l′ e
−iq·rl′

}
|Φ0〉 = 0, (7.57){

(−Jmz − ~ω)
∑
l′∈B

Ŝ−l′ e
−iq·rl′ − Jm

∑
a

eiq·a
∑
l∈A

Ŝ−l e
−iq·rl

}
|Φ0〉 = 0. (7.58)
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From this follows that {
(Jmz − ~ω)â†q + Jmγq b̂

†
q

}
|Φ0〉 = 0, (7.59){

(−Jmz − ~ω)̂b†q − Jmγqâ†q
}
|Φ0〉 = 0, (7.60)

with γq =
∑
a e

iq·a = 2(cos qxa + cos qya + cos qza). This eigenvalue equation is easily solved
leading to the description of spin waves in the antiferromagnet. The energy spectrum is given
by

~ωq = ±Jm
√
z2 − γ2

q. (7.61)

Note, that only the positive energies make sense.
It is interesting to investigate the limit of small q,

z2 − γ2
q → z2q2 +O(q4), (7.62)

where
~ωq = Jmz|q|+ · · · . (7.63)

This means that, in contrast to the ferromagnet, the spin waves of the antiferromagnet have a
linear low-energy spectrum (cf. Fig. 7.7). The same applies here if we expand the spectrum
around Q = (1, 1, 1)π/a (folding of the Brillouin zone due to the doubling of the unit cell).
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Figure 7.7: Spectrum of the spin waves in the antiferromagnet.

After a suitable normalization, the operators âq and b̂q are of bosonic nature; this comes about
since, due to the mean field approximation, the Ŝ±l are bosonic as well,

[Ŝ+
l , Ŝ

−
j ] = 2Ŝzl δlj ≈ ±2mδlj , (7.64)

where the sign depends on the sublattice. The zero-point fluctuations of these bosons yield quan-
tum fluctuations, which reduce the moment m from its mean field value. In a one-dimensional
spin chain these fluctuations are strong enough to suppress antiferromagnetically order even for
the ground state.
The fact that the spectrum starts at zero has to do with the infinite degeneracy of the ground
state. The ordered moments can be turned into any direction globally. This property is known
under the name Goldstone theorem, which tells that each ordered state that breaks a continuous
symmetry has collective excitations with arbitrary small (positive) energies. The linear spectrum
is normal for collective excitations of this kind; the quadratic spectrum of the ferromagnet has
to do with the fact that the state breaks time-inversion symmetry.

These spin excitations show the difference between a band and a Mott insulator very clearly.
While in the band insulator both charge and spin excitations have an energy gap and are inert,
the Mott insulator has only gapped charge excitation. However, the spin degrees of freedom for
a low-energy sector which can even form gapless excitations as shown just above.
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